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Abstract

All immune systems must distinguish self from non-self to repel invaders without inducing 

autoimmunity. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci protect 

bacteria and archaea from invasion by phage and plasmid DNA through a genetic interference 

pathway1–9. CRISPR loci are present in ~ 40% and ~90% of sequenced bacterial and archaeal 

genomes respectively10 and evolve rapidly, acquiring new spacer sequences to adapt to highly 

dynamic viral populations1, 11–13. Immunity requires a sequence match between the invasive 

DNA and the spacers that lie between CRISPR repeats1–9. Each cluster is genetically linked to a 

subset of the cas (CRISPR-associated) genes14–16 that collectively encode >40 families of 

proteins involved in adaptation and interference. CRISPR loci encode small CRISPR RNAs 

(crRNAs) that contain a full spacer flanked by partial repeat sequences2, 17–19. CrRNA spacers are 

thought to identify targets by direct Watson-Crick pairing with invasive “protospacer” DNA2, 3, 

but how they avoid targeting the spacer DNA within the encoding CRISPR locus itself is 

unknown. Here we have defined the mechanism of CRISPR self/non-self discrimination. In 

Staphylococcus epidermidis, target/crRNA mismatches at specific positions outside of the spacer 

sequence license foreign DNA for interference, whereas extended pairing between crRNA and 

CRISPR DNA repeats prevents autoimmunity. Hence, this CRISPR system uses the base-pairing 

potential of crRNAs not only to specify a target but also to spare the bacterial chromosome from 

interference. Differential complementarity outside of the spacer sequence is a built-in feature of all 

CRISPR systems, suggesting that this mechanism is a broadly applicable solution to the self/non-

self dilemma that confronts all immune pathways.

S. epidermidis strain RP62a (ref. 20) contains a CRISPR locus that includes a spacer (spc1) 

that is identical to a region of the nickase (nes) gene found in nearly all sequenced 

staphylococcal conjugative plasmids (Fig. 1a and Supplementary Fig. 1a), including those 
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that confer antibiotic resistance in methicillin- and vancomycin-resistant Staphylococcus 

aureus strains21–23. The S. epidermidis CRISPR system limits conjugation between 

staphylococci by an spc1-directed interference pathway3. As in other species2, 7, 17–19, 24, 25 

the S. epidermidis CRISPR locus is transcribed and processed into crRNAs3, and northern 

analysis indicates that most spc1-containing crRNAs are ~49 nucleotides long 

(Supplementary Fig. 1b). During CRISPR interference in S. epidermidis, target specificity 

appears to be achieved by direct pairing of the spc1 crRNA with the plasmid DNA3. DNA 

targeting most likely underlies CRISPR interference in many other bacterial and archaeal 

species as well2, 26. Since a sequence match also exists between the crRNA and the CRISPR 

locus DNA that encodes it, a central issue in CRISPR interference is therefore how the 

crRNA identifies bona fide targets without attacking the CRISPR locus in the host 

chromosome.

We previously demonstrated that CRISPR interference can prevent transformation of 

pC194-based plasmids that contain a target sequence3. To test whether CRISPR spacers 

have an intrinsic ability to evade interference, we cloned the repeat/spacer sequences of the 

RP62a CRISPR locus, along with ~200 base pairs (bp) from either side of the repeats and 

spacers, into pC194 (Fig. 1a). The resulting plasmid, pCRISPR(wt), which contains three 

possible interference targets (spc1, spc2 and spc3), was transformed into wild-type and 

Δcrispr cells. Unlike the nes protospacer-containing plasmid, pCRISPR(wt) transformation 

efficiency was similar in both strains [Fig. 1a; Supplementary Table 1 shows the 

transformation efficiency values for all plasmids here described]. These results indicate that 

the potential targets present in the CRISPR locus are specifically exempted from CRISPR 

interference.

We hypothesized that differences between flanking regions of spacers and targets – i.e., the 

presence or absence of repeats – could provide the basis for self/non-self discrimination. To 

test this, we replaced 15 bp from either side of the nes target with the corresponding spc1-

flanking repeat sequences. The resulting plasmids [pNes(5′DR,15) and pNes(3′DR,15)] 

were tested for CRISPR interference by transformation into wild-type and Δcrispr cells (Fig. 

1b and Supplementary Fig. 2a,b). Only pNes(5′DR,15) escaped interference, indicating that 

repeat sequences upstream of a target (i.e., adjacent to the 5′ end of the crRNA spacer 

sequence) can protect that target. Similar experiments further narrowed the protective region 

to the eight bp closest to the target (Fig. 1b and Supplementary Fig. 2b). This region 

contains five mutations in the nes upstream sequence, since the 5′-AGA-3′ sequence from 

position −5 (i.e., 5 bps upstream of the start of the nes protospacer) to −3 are shared with 

spc1 5′ flank (Supplementary Fig. 2a). Each of these five mutations was individually tested 

for its effect on CRISPR interference (Fig. 1c). Only the guanosine-to-adenosine change at 

position −2 (G-2A) conferred protection. These results demonstrate that repeat sequences 

upstream of spacers prevent CRISPR interference, and point to position −2 as an important 

determinant of this effect.

Short (2–4 bp), conserved sequences called “CRISPR motifs”12, 24, 25 or “protospacer 

adjacent motifs” (PAMs)27 have been found near protospacers in other CRISPR systems, 

and mutations in these motifs can compromise interference12, 25. A CRISPR motif has not 

been defined in S. epidermidis protospacers, of which only two have been specified3. To test 
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whether G-2 is part of a conserved motif important for interference, we tested plasmids 

carrying the mutations G-2C and G-2T. Surprisingly, unlike the G-2A mutation, C and T 

transversions had no effect on transformation efficiency (Fig. 1c). This result was 

corroborated in a conjugation assay3 using pG0400 G-2A or G-2C mutants (Supplementary 

Fig. 3) and excludes the possibility that a G at position -2 is simply a crucial CRISPR motif 

residue. Instead, this observation suggests that only an A at position −2 – i.e., the nucleotide 

present in the repeats – allows protection, and that any deviation from this nucleotide 

enables interference.

In light of this observation, we considered the complementarity of crRNAs with target 

protospacers and with CRISPR sequences: although the spacer region of a crRNA can pair 

with target DNA (Fig. 2a) and CRISPR DNA alike, only the CRISPR DNA will be fully 

complementary with the CRISPR repeat sequences at the crRNA termini. We therefore 

hypothesized that specific base pairs in the crRNA/DNA heteroduplex outside of the spacer 

enable protection, thereby providing a mechanism to avoid autoimmunity. To explore this 

possibility we introduced compensatory mutations in the crRNA (Fig. 2a, b) by changing 

sequences upstream of spc1 in pCRISPR(wt), which can complement the interference 

deficiency of the Δcrispr strain. The wild-type spc1 crRNA contains an adenosine at 

position −2, so we generated the A-2G, A-2C and A-2T mutants. We then tested each for 

interference with conjugation of wild-type pG0400 as well as its G-2A and G-2C mutant 

derivatives. In agreement with our hypothesis, the nes target was protected from interference 

only when pairing was possible at position -2: rA-dT, rG-dC, and rC-dG Watson-Crick 

appositions each resulted in evasion of the CRISPR system by the conjugative plasmid (Fig. 

2b). All crRNA mutants were functional and therefore correctly processed2, since all 

pCRISPR plasmids were able to restore interference in Δcrispr cells with pG0400 

derivatives that were mismatched at position −2 (Fig. 2b). Interestingly, a rU-dG wobble 

apposition also protected the conjugative plasmid from interference while a rG-dT wobble 

apposition did not, despite the greater stability of rG-dT pairs in an otherwise Watson-Crick-

paired heteroduplex28. These results provide strong evidence that crRNA/target 

noncomplementarity at position −2 is important for interference. Further mutagenesis of the 

−5 to −2 sequence of spc1 crRNA indicated that the minimal complementarity required for 

protection involves positions −4, −3 and −2 (Fig. 2c and Supplementary Fig. 4). Altogether 

these results indicate that protection of the nes target during conjugation in S. epidermidis 

requires complementarity between crRNA and target upstream flanking sequences at these 

positions, and strongly suggest that the mechanism of protection requires base-pair 

formation in this region (Fig. 4a). Furthermore, the base pairing implied by our 

compensatory analyses reinforces our earlier conclusion3 that the target of the S. epidermidis 

spc1 crRNA is the antisense strand of the nes DNA locus, not the sense-oriented mRNA.

If base pairs at positions −4, −3 and −2 confer protection on an otherwise susceptible target, 

then abolition of base pairing in the same region should confer susceptibility on an 

otherwise protected CRISPR locus. Deletion analyses in pCRISPR (Fig. 3a and 

Supplementary Fig. 5a) demonstrated that sequences immediately upstream of spacers 

prevent autoimmunity. We then tested the effect of substitutions on the direct repeat 

upstream of spc1 (DR1) on CRISPR protection (Fig. 3b, c). To avoid the expression of 
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mutant crRNAs that would complicate our analyses, we generated pDR1(wt), a deletion 

variant of pCRISPR(wt) that lacks the 200 bp preceding the CRISPR locus. This plasmid is 

unable to produce functional crRNAs (data not shown) but is protected from interference in 

wild-type cells (Fig. 3b,c). In contrast, plasmid pDR1(AGAA→TCTG), which contains 

mutations at positions −5 to −2, was subject to CRISPR interference. This indicates that this 

region is critical for protection of the CRISPR locus. Mutagenesis of this and other regions 

of spc1 upstream flanking sequences (Fig. 3b, c and Supplementary Fig. 5b) indicated that at 

least two consecutive mismatches from positions −4 to −2 are required to eliminate 

protection of the CRISPR locus (Fig. 4b).

CRISPR systems show a high degree of diversity in cas gene content4, 9, 15, 16, and 

therefore mechanistic differences between different CRISPR/cas subtypes are likely to exist. 

However, differential crRNA pairing potential with CRISPR loci and invasive targets 

outside of the spacer region (Fig. 4c) is intrinsic to all CRISPR systems, and therefore the 

mechanism of self/non-self discrimination that we have defined in S. epidermidis could 

apply broadly. The specific bps that are monitored could vary between CRISPR/cas 

systems, and we speculate that protein components of the system may “proofread” paired vs. 

unpaired structures at these sites in a manner that either aborts or enables later steps in 

interference, respectively. Our findings also highlight the importance of the previously noted 

5′-terminal homogeneity of crRNAs2,3,17, which consistently contain ~8 nt of upstream 

repeat sequences. Finally, our results are inconsistent with a critical role for the CRISPR 

motif12, 25, 27 during the interference phase of CRISPR immunity. No significant similarity 

exists between the two known targets of the S. epidermidis CRISPR locus (Supplementary 

Fig. 5c) and therefore we cannot determine if the nucleotides that are important for 

discrimination are also part of a CRISPR motif. However, our mutagenesis experiments 

indicate that no specific flanking nucleotides are required for interference: the decisive 

characteristic is noncomplementarity with the crRNA rather than nucleotide identity per se. 

By extension, it is conceivable that CRISPR motif mutants previously shown to evade 

interference12, 25 could reflect a failure of self/non-self discrimination via crRNA/target 

base pairing, rather than a requirement for specific nucleotide identity within the CRISPR 

motif. We therefore suspect that CRISPR motifs are more important during the acquisition 

of new spacers27. In summary, our results reveal the mechanism of self/non-self 

discrimination in this recently discovered immune system and will facilitate efforts to 

exploit CRISPR interference for biotechnological applications.

Methods summary

Bacterial strains and growth conditions

S. epidermidis wildtype (RP62a, ref. 20) and Δcrispr (LAM104, ref. 3) and S. aureus 

(RN4220, ref. 29) strains were grown in brain-heart infusion (BHI) and tryptic soy broth 

media, respectively. When required, the medium was supplemented with antibiotics as 

follows: neomycin (15 μg/ml) for selection of S. epidermidis; chloramphenicol (10 μg/ml) 

for selection of pC194-based plasmids; and mupirocin (5 μg/ml) for selection of pG0400-

based plasmids. E. coli DH5α cells were grown in LB medium, supplemented with 

ampicillin (100 μg/ml) or kanamycin (50 μg/ml) when necessary.
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Conjugation and transformation

Conjugation and transformation were performed as described previously3 with the following 

modification: transformations of S. epidermidis were recovered at 30 °C in 150 μl of BHI for 

6 hs. Corroboration of the presence of the desired plasmid in transconjugants or 

transformants was achieved by extracting DNA of at least two colonies or agar of empty 

plates, performing PCR with suitable primers and sequencing the resulting PCR product.

Online Methods

DNA cloning

All plasmids used in this study were constructed by cloning CRISPR or nes sequences into 

the HindIII site of pC194 (ref. 30). Inserts were generated by PCR using primers and 

templates described in Supplementary Table 2. Supplementary Table 3 contains primer 

sequences. To introduce mutations, internal primers carrying the desired substitution were 

used with external primers, thus generating two PCR products that were then joined by 

nested PCR using the external primers. Amplified DNA was cloned into pCR2.1 vector 

(Invitrogen), the resulting plasmid purified and the insert sequenced. Inserts were cut from 

pCR2.1 with HindIII, purified and ligated into pC194. Ligation products were transformed 

into S. aureus OS2 cells31 and colonies containing the desired insert were identified by PCR 

using primers P86/P87.

pG0400 mutagenesis

Mutations were introduced by allelic exchange as previously described3. P15 and P18 

primers were used with reverse and forward primers containing the desired mutation, 

respectively, to amplify 1 kb of nes sequence. PCR products were then joined by nested 

PCR using P15/P18 primers and recombined into pKOR1 (ref. 32). Recombination products 

were transformed into E. coli DH5α, and the resulting plasmids were purified, sequenced 

and transformed into S. aureus RN4220 (pG0400) (ref. 33) for allelic exchange. 

pG0400(G-2A), pG0400(G-2C) and pG0400(G-2T) mutants were generated using the 

knock-out constructs pLM397, pLM406 and pLM405, respectively. Inserts contained in 

these plasmids were generated by joining the PCR products obtained with the following 

primer pairs: pLM397, P15/P190 and P191/P18; pLM406, P15/P208 and P209/P18; 

pLM405, P15/P206 and P207/P18. See Supplementary Table 3 for primer sequences.

Northern blot analysis

RNA extraction of S. epidermidis and oligonucleotide labelling was performed as indicated 

in ref. 3. Northern blot analysis was carried out according to Pall et al. 34 using UV 

crosslinking and a hybridization temperature of 37°C.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Protection of nes target by spacer flanking sequences
a, Direct repeats (DR1–4, purple boxes) and spacers (1–3, colored boxes) of the S. 

epidermidis RP62a CRISPR locus were cloned into pC194 generating pCRISPR(wt) and its 

deletion variant, pCRISPR(del). b, pNes(wt) and pNes(mut) contain wild-type and mutated 

nes target sequence of pG0400 (highlighted in yellow, with mutations in red). In pNes(5′DR,

8-1) and pNes(3′DR,15) nes target flanks were replaced by repeat sequences present 

upstream and downstream of spc1 (highlighted in purple), respectively. c, Individual 

nucleotides upstream of nes target were replaced by those present upstream of spc1 

(highlighted in purple). The G at position −2 was also changed to C and T (in red). The 

AGA sequence (underlined) is shared by both the nes target and spacer 5′ flanking 
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sequences. All plasmids were transformed into S. epidermidis RP62a and its isogenic 

Δcrispr mutant. The average of at least three independent measures of the transformation 

efficiency (determined as cfu/μg DNA) is reported and error bars indicate 1 s.d.
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Figure 2. Complementarity between crRNA and target DNA flanking sequences is required for 
protection
a, Schematic of the complementarity between the flanking sequences of crRNA (top, 

highlighted in purple) and target DNA (bottom). The red box indicates the nucleotides 

mutated in the experiments shown in b. b, c, Conjugation assays of pG0400 and its mutant 

variants, using as a recipient the Δcrispr strain harboring different pCRISPR plasmids. 

Mutations are shown in red. Conjugation efficiency was determined as transconjugant cfu/

recipient cfu; the average of at least 3 independent experiments is reported.
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Figure 3. Mutations in upstream flanking sequences of CRISPR spacers elicit autoimmunity
a, Deletions were performed in the flanking repeats of spc1: the 3′ half of DR2, the 5′ half of 

DR2, and all of DR1 were deleted from pCRISPR(wt) in pDR2(3′del), pDR2(5′del) and 

pDR1(del), respectively. b, c, Substitutions (red) were introduced in the 5′ flanking 

sequence (highlighted in purple) of spc1 (highlighted in yellow), generating different pDR1 

variants that were tested by transformation. All plasmids were transformed into S. 

epidermidis RP62a and Δcrispr strains. The average of at least three independent measures 

of the transformation efficiency (determined as cfu/μg DNA) is reported and error bars 

indicate 1 s.d.
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Figure 4. Requirements for targeting and protection during CRISPR immunity
a, In S. epidermidis, CRISPR interference is enabled by mismatches between target DNA 

and crRNA sequences upstream of the spacer. Formation of at least 3 base pairs at positions 

−4, −3 and −2 eliminates targeting. b, Complementarity between the S. epidermidis CRISPR 

locus and the crRNA 5′ terminus protects it from interference. Disruption of base pairing at 

positions −4,−3 or −3,−2 eliminates protection. c, General model for the prevention of 

autoimmunity in CRISPR systems. The ability of crRNA termini (5′, 3′, or both) to base pair 

Marraffini and Sontheimer Page 12

Nature. Author manuscript; available in PMC 2010 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with potential targets enables discrimination between self and non-self DNA during CRISPR 

immunity.
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