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Abstract

Injury prevention is critical to the achievement of peak performance in elite sport. For profes-

sional tennis players, the topic of injury prevention has gained even greater importance in

recent years as multiple of the best male players have been sidelined owing to injury. Identify-

ing potential causative factors of injury is essential for the development of effective prevention

strategies, yet such research is hampered by incomplete data, the complexity of injury etiol-

ogy, and observational study biases. The present study attempts to address these challenges

by focusing on competition load and time-loss to competition—a completely observable risk

factor and outcome—and using a structural nested mean model (SNMM) to identify the poten-

tial causal role of cumulative competition load on the risk of time-loss. Using inverse probability

of treatment weights to balance exposure histories with respect to player ability, past injury,

and consecutive competition weeks at each time point; the SNMM analysis of 389 professional

male players and 55,773 weeks of competition found that total load significantly increases the

risk of time-loss (HR = 1.05 per 1,000 games of additional load 95% CI 1.01-1.10) and this

effect becomes magnified with age. Standard regression showed a protective effect of load,

highlighting the value of more robust causal methods in the study of dynamic exposures and

injury in sport and the need for further applications of these methods for understanding how

time-loss and injuries of elite athletes might be prevented in the future.

Introduction

Injury is one of the most significant threats to the longevity of elite athletes and, when injury

ends the careers of the industry’s stars prematurely, can pose a significant threat to the business

of sports [1]. Continued growth of the sports market has resulted in increasing commercial

opportunities and, inevitably, greater physical demands on athletes to play harder, faster, and

longer [2]. The growing pressure to stay competitive has made injury prevention a top priority

of high-performance sport [3].

The demands of play have reached a crisis point for professional tennis in recent years. At

the end of 2018, a spate of injuries at the top of the men’s sport saw multiple of the highest

ranked players end their seasons early, several spending more than six months away from the
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sport [4]. It remains unclear whether these prominent cases are indicative of a broader rise in

injury risk, yet several characteristics about the structure of the sport make it vulnerable to sys-

temic fluctuations in its risk profile [5]. Firstly, tennis events are spread throughout the globe

and top players are often travelling long distances between events. Secondly, matches them-

selves have no theoretical limit and the actual duration of a match can change dramatically

depending on the match format, surface, and other tournament factors. Thirdly, the calendar

of professional events is constantly in flux, with most changes resulting in a more congested

season where there are fewer opportunities for recovery [6]. The ‘grind’ [7] that the season

schedule imposes is most pronounced for the best players as they are the ones expected to last

through the most rounds at each tournament.

Etiological models of injury in sport describe a multifactorial process characterized by mul-

tiple intrinsic and extrinsic variables [8]. The complexity of the mechanisms of injury makes

it clear that no single causative factor can explain all injuries. However, there is consensus

among governing bodies of sport that the volume and intensity of physical activity, referred to

as ‘load’, is a major risk factor [9]. This consensus is equally prevalent in tennis where load

management is a central tenet of injury prevention [10]. Despite general agreement about the

importance of load, there is little agreement on how load is best distributed over time to pro-

tect against serious injury [11].

Research into the causal relationship between load and injury in tennis faces many chal-

lenges. The individualized nature of the sport makes consistent collection of injury events rare.

And injuries that may be documented by physicians or athletic trainers at specific events do

not follow a standard protocol, making the comparability of injury data between events ques-

tionable [5]. Gathering high-quality data about load is also a challenge. One reason for this is

the lack of agreement on how ‘load’ is defined. Load can take different meanings depending

on the experts who are using it [12]: biomechanists use load to focus on the frequency and

force of stress to joints, physiologists use load to refer to the respiratory demands on the car-

diovascular system, while sports scientists use load to refer to total accelerations performed.

Under any definition, a complete picture of the load an athlete may experience over time is

rarely available owing to the difficulties of collecting data during the training periods of top

athletes [13, 14].

Even addressing the incompleteness and inconsistency of data on injury and its risk

factors would not eliminate the hurdles to studying the causes of injury in tennis. Because of

the observational nature of tennis data, any analysis would be vulnerable to multiple biases.

Owing to single-elimination tournament designs, for instance, more talented players ‘select’

into higher levels of load but the same players could have better ways to protect against high

load (through better movement or recovery practices, for example) such that naive association

studies could find load to be associated with fewer injuries. It is well-established that such sce-

narios generally do not allow the identification of potential causal effects from observational

data with standard techniques, like regression analysis [15]. Proper accounting of observa-

tional bias is especially difficult in the load-injury setting because of the complexity of load—

an exposure of variable intensity that is constantly changing over time and where future expo-

sure may depend on prior exposure [16]. The analytical challenges inherent in modelling a

dynamic, continuous exposure is further compounded by the potential for multiple other

time-varying factors—player ability, past injury, age, etc.—to moderate or confound the direct

effect of load on future injury risk.

The present paper takes several steps to address the above challenges. First, we focus on a

well-defined subset of experienced load and outcomes that are completely observable for top

professional players; namely, competition load and competition time-loss. Competition load, a

type of external load, measures the volume and intensity of professional play throughout a
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player’s entire professional career, allowing the examination of both acute and chronic cumu-

lative effects of load. Time-loss, an extended break from competitive play suggestive of an

unintended absence, will be the outcome of focus because, poor health is the primary cause of

missed competition at the elite level [17, 18]. Moreover, like injury itself, time-loss is an out-

come that top tennis players want to minimize.

The second major contribution of this paper is the use of a more principled approach to

studying the effects of cumulative load on the risk of time-loss. Specifically, we propose a struc-

tural nested mean model (SNMM) to estimate the potential causal effect of load. Like marginal

structural models (MSMs), the SNMM when combined with inverse probability of treatment

weights, can help to address selection and confounding biases when evaluating the effects of

time-varying exposures [19]. SNMM are particularly useful when the primary exposure of

interest may be moderated by another time-dependent variable [20]. This is relevant in the

present study where age is expected to moderate the risk of a given level of accumulated load.

In what follows, we develop an SNMM for the potential causal effect of cumulative load on

time-loss risk in the presence of age modification using regression with residuals and an

inverse probability of treatment weighting strategy.

Methods and materials

Sample

Competitive results of men’s professional tennis players from 1990 to the present were

obtained from the OnCourt database (www.oncourt.info). These data include unique identifi-

ers for the winners and losers of matches, the date of each competition, and the score, which

includes the total games and sets played. Player ratings were derived from the first recorded

match results in this database using a previously described Elo-based rating system, a statistical

algorithm for rating the latent ability of tennis players that accounts for surface and margin of

victory [21, 22].

Because the main risk factor of interest in this study was cumulative professional play,

it was important to have complete competitive history for players included in the analysis.

Results for the lowest-level of competition where money can still be earned professionally,

ITF Futures events, are not represented in the database until 2004, only years from 2005 and

onward were considered and only for players whose first professional match was 2005 or later.

An early step in the data preparation was defining a sample of players who are regular com-

petitors. Here ‘regular’ means, players who, if fit, are expected to play throughout the season.

Player schedules are expected to vary considerably with the level of their ability, as this dictates

the number of events where they are eligible throughout the year. The regularity in play was

explored by grouping player-seasons according to the player’s rating at the start of the season,

using rating groups of 100 points over the range of 1900 to 3000, forming 11 total groups (Note

that the average rating of a professional player is 1500, while players who compete in the main

draw of Grand Slams are usually rated 2000 or higher). Given that official rankings (See https://

en.wikipedia.org/wiki/ATP_Rankings) are based on a player’s best 18 tournament results and

that no ATP event outside of the World Tour Finals takes place in the months of November

and December, it is reasonable to use 3 weeks as a threshold for the upper bound of between-

event gaps of a typical top player. Looking over the seasons of the players in the different ratings

groups, it was found that only players rated 2300 or higher in the study’s player ratings had the

majority of gaps (judged by the 90th percentiles, which include 90% of all observed gap days)

less than 3 weeks for at least 9 months of the year (see S1 File).

Given this observation, the sample of players were all of those who attained a player rating

of 2300 or higher during the observation period. There were 389 players who met this
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criterion. The basic time unit for the sample was the competition week, as most professional

events last one week at most. With a traditional survival analysis, comparing the 25% of players

with the highest game load against the rest of the player sample would have a power of 80% to

detect a 20% risk increase for competition time loss over the base rate of 3%.

Outcome

The primary outcome of the study was competition time-loss: an extended absence from

competition.

Definitions for time-loss from competition were individualized to each player using a linear

mixed model of the maximum gap during a calendar month (the largest number of consecu-

tive days a player was not competing in a given month) with player random effects and an

unstructured covariance-variance [23]. Since a period between competition could extend over

one or more months, the period was assigned to the month when the gap commenced and

that month alone. From this regression model, we could obtain the expected value for the max-

imum number of consecutive days a player spends away from competition in a given month.

The model was trained on data for players who had 3 or more seasons at a rating of 2300 or

more. For players with fewer than 3 seasons at the minimum rating, the expected maximum

gap days was set to the average.

The above regression model provides a player and month specific estimate of the maximum

between-event days (here on called ‘gap days’) under normal conditions. A time-loss event was

defined as instances where the actual gap days in a month were 2 weeks longer than expected (4

weeks longer for the month of January, owing to the off-season). This rule was validated against

a small sample of former World No. 1 players (n = 3) with well-documented injury histories

and was found to identify all of their documented absences from competition due to injury.

Full details of the outcome determination and validation are provided as S1 File.

Fig 1 shows the 90th percentile range for the gap criteria. The months of March to Novem-

ber show the most consistency, with gaps of 25 to 40 days or fewer being the minimum thresh-

old for an unexpected absence. For February, the range is slightly more, with losses of time

greater than 40 days before their first match not being unusual for a subset of players. Inspec-

tion of players with longer time-loss in February suggests that this subset are players who did

Fig 1. The 90th percentile range for ‘gap days’ for each month, which depicts the range containing 90% of the

longest periods outside of competition that were observed for each month.

https://doi.org/10.1371/journal.pone.0231568.g001
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not tend to compete in the Australian events in January and also players who participated in

first round Davis Cup events in early February, a non-tour event that, like exhibition events, is

not included in the competition calendar of players in this study. January and December stand

out clearly as periods following a player’s elected off-season, lasting no more than 60 to 100

days for the typical professional player.

Baseline for monitoring competition time-loss began after a player accumulated 8,000

cumulative games played. Thus all players entered the risk pool with an equal career load.

Censoring and competing risk

Because a player is only observed when they compete, the last observation is either the last

observation in the study observation window, the last observation before an absence in play, or

the last professional match.

Retirement, a permanent break from professional play, is a competing risk for temporary

absences from competition. Of the 1901 player seasons in the sample, there were 84 instances

where a player’s last observed professional match was at least one year before the end of the

study observation (March 2019). In 36 instances, the final recorded match was in 2018. A

review of players whose last observed matches were in 2016 to 2018 revealed 20 players who

were not officially retired and 2 who were serving an extended ban. The analysis considered

the 20 cases to be instances of an unintended absence, while the remaining 64 cases were

treated as censored observations.

Exposure and moderator

In the absence of confounding, the basic effect modification relationship can be depicted with

the directed acyclic graph (DAG) shown in Fig 2 [24]. The target outcome of interest Y, which

has direct causal effects from X. The factor M moderates the process between X and Y, as

denoted by an edge directed to the edge between X and Y. Changes in X are not expected to

change the level of the moderator M and M does not have direct influence on Y in the absence

of X, but the level of M influences the effect of X on the outcome [25, 26].

In the context of competition time lost in professional tennis, the primary causal factor is

load (Fig 3). The term ‘load’ has taken various definitions in the sport injury literature [9]. The

present work load will be used to refer to the intensity of competition, a type of external load,

which will be measured by the games played during a match.

Fig 2. Point treatment directed acyclic graph for exposure with effect modification.

https://doi.org/10.1371/journal.pone.0231568.g002
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The effect of load is presumed to be moderated by an athlete’s age, as an equal level of load

may become more damaging owing to increase physiological susceptibility associated with age.

A more accurate model for the load-age relationship on competition time-loss accounts for

the fact that both factors are changing over time and can be influenced by measured and

unmeasured confounders. Let Y�GðtÞ;�AðtÞ be the potential outcome of a time-loss from play given

age �AðtÞ ¼ ðA1; :::;AtÞ and game load history �GðtÞ ¼ ðG1; :::;GtÞ after the tth week of profes-

sional competition. The model below is a time-dependent DAG describing the exposure-mod-

erator history in the presence of confounders, assuming that all edges capture the factors that

have a causal influence on Y.

Fig 4 shows the exposure having direct effects on the target outcome, the moderator having

an influence on these effects as well as the values of the primary exposure. The exposure is not

Fig 3. Point treatment directed acyclic graph for causal effect of load on time-loss with age effect modification.

https://doi.org/10.1371/journal.pone.0231568.g003

Fig 4. Directed acyclic graph of presumed causal model for time-varying exposure with effect modification and

time-varying measured and unmeasured confounders.

https://doi.org/10.1371/journal.pone.0231568.g004
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presumed to have any direct effects on the moderator. However, both the exposure and media-

tor could be influenced by observed confounders �LðtÞ ¼ ðL1; :::; LtÞ and unmeasured con-

founders �UðtÞ ¼ ðU1; :::;UtÞ, which could both have direct effects on the future risk of time-

loss from competition.

Marginal structural model

Our primary interest is in the role that accumulated load has on the risk of time-loss from

competition. A player’s historical load and age could influence their risk of time-loss in a vari-

ety of ways. This paper will consider the role of simple cumulative load. Under this model, the

potential outcome of the hazard of a time-loss at time t, if load were set to history �GðtÞ and age

were set to the aging history �AðtÞ, has the following log-linear dose-response relationship

logðlðtj�AðtÞ; �GðtÞÞÞ ¼ logðl0ðtÞÞ þ b1cumð�GðtÞÞ þ b2At þ b3At � cumð�GðtÞÞ ð1Þ

where cumð�GðtÞÞ ¼
P

j�tGj is the total game load through to the tth competition week and At

is the calendar age at the tth competition week. There are many possible ways a player could

get to the tth week with total load cumð�GðtÞÞ and age At, but the MSM says that all the relevant

information for the present hazard is captured by the total load and current age.

Standard MSMs cannot be used to model the effect modification of time-varying covariates

[15]. The reason for this is two-fold. First, when a time-varying moderator is correlated with

previous levels of treatment, adjusting for the moderator can lead to a biased estimate of the

direct and interactive effects of treatment. Second, bias of the direct and interactive effects of

treatment could also arise when conditioning on the time-varying moderator owing to

unknown causes of the moderator, what is sometimes called a ‘collider bias’ [27].

An approach for dealing with these sources of potential bias is the structural nested mean

model (SNMM) [20]. The SNMM specifies the moderated time-varying causal effects of inter-

est in a conditional mean model for a continuous response given time-varying treatments and

candidate moderators. The specific form of the model in the present case can be derived by

decomposing Eq (1) into its conditional components. Suppose that the actual level of load

received by time t is g� and the counterfactual age that would be reached by this load is At(g�).
The potential hazard can be expressed as,

E½logðlðtjAtðg�Þ; cumð �GðtÞÞ ¼ g�ÞÞ� ¼ logðl0ðtÞÞþ

E½logðlðtjAtðg�Þ; cumð�GðtÞÞ ¼ g�ÞÞ � logðlðtjAtðg�Þ; cumð�GÞt ¼ gÞÞ�þ

lðtjAtðg�Þ; cumð�GðtÞÞ ¼ gÞÞ � logðlðtjAtðgÞ; cumð�GðtÞÞ ¼ gÞÞ�

ð2Þ

a sum of the direct and interactive effects of changing g� to g when age is fixed and the direct

effect of changing At(g�) to At(g) when load is fixed. Both of these components are conditional

means that, for simplicity, we can assign to the functions μ(.) and �(.),

E½logðlðtjAtðg�Þ; cumð�GðtÞÞ ¼ g�ÞÞ� ¼ logðl0ðtÞÞ þ mðAtðgÞ; g�Þ þ �ðAtðg�Þ; gÞ ð3Þ

The function μ(At(g), g�) captures the causal effect of changing load at time t for a player of

a fixed age. The function �(At(g�), g) represents the causal and non-causal relationship between

the moderator and response, and is considered a ‘nuisance function’ in the SNMM

framework.
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In relation to the dose-response model in Eq (1), we model the conditional mean function

μ as a linear function of the cumulative load,

mðAtðgÞ; g�Þ ¼ b1g� þ b2AtðgÞg� ð4Þ

which states that, conditional on a player’s age, a unit increase in load has the same change on

the log-hazard no matter the time t or the load prior to t.
The nuisance function � has to have the property that E[�(At(g), g)] is zero with respect to

the random variable At(g). We can guarantee this property by specifying the following residua-

lized form of �. Namely,

�ðAtðgÞ; gÞ ¼ n1½AtðgÞ � ða1 þ a2gÞ� ð5Þ

which says that the conditional mean of age is linearly related to the cumulative load g, such

that a unit increase in load has the same expected association with age no matter the specific

history it took to get to load g. This conditional expectation is subtracted from the realization

of At(g), giving the residual between the observed and expected age, conditional on all prior

history of load.

Combining the above, we get the complete log-linear SNMM,

E½logðlðtja; g�ÞÞ� ¼ logðl0ðtÞÞ þ b1g� þ b2ag� þ n1ða � a1 � a2g�Þ ð6Þ

Eq (6) looks much like a standard log-linear model with interactions. However, the SNMM

is based on a conditional mean of the supposed moderator. It also lacks direct adjustment for

time-dependent confounders. Imbalance in these factors are instead handled through the use

of inverse probability of treatment weights. The ‘treatment’, a general term the causal inference

literature uses to refer to the main explanatory variable of interest, in this case is the cumulative

competition load. Weighting observations by the inverse probability of the observed dose of

treatment received is well known to be a more effective strategy for protecting against con-

founder bias than regression [28].

Estimation

The estimation of the SNMM begins by preparing the outcomes and covariates of the observed

data. Baseline for the player sample began when all players reached 8,000 cumulative games.

From baseline, every competition week was collected and summarized until a player’s last pro-

fessional event or the end of data collection (March 2019). For each week, we computed the

total game load, player age in years, player rating, whether the player competed in the previous

week, and whether they had a time-loss of more than 180 days at any time in their past 30

events played.

The outcome of time-loss was determined at the end of each competition week according

to the player-specific criteria described above.

The first step of the SNMM estimation is the derivation of inverse-probability of treatment

weights (IPTW). The purpose of these weights is to create a pseudo population that is balanced

with respect to confounding variables, like player ability or competitive play, for all time t.
Let git be the observed game load for the ith subject in the tth competition week. In the

absence of censoring, the stabilized weights are given by,

swit ¼
Yt

j¼1

f ðGij ¼ gijj�Aiðj� 1Þ;
�Giðj� 1ÞÞ

f ðGij ¼ gijj�Giðj� 1Þ;
�LijÞ

ð7Þ
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Here, f(.) is a likelihood function for some parametric family appropriate for a continuous

treatment variable. The denominator’s role is to identify individuals who would be unlikely to

have received a given level of load, gij, given their covariate history, and to upweight them

accordingly. This is how the weights function to balance the sample with respect to time-vary-

ing confounders. The numerator does not include any confounding factors and its purpose is

solely to provide stability to the overall weights by providing a number on the scale of the

denominator.

Let C(t) be the indicator of a player who is censored in the tth competition, because of

administrative censoring or retirement. Censoring weights take a similar form as in Eq 8, with

cwit ¼
Yt

j¼1

ProbðCij ¼ 0j�Aiðj� 1Þ;
�Giðj� 1ÞÞ

ProbðCij ¼ 0j�Giðj� 1Þ;
�LijÞ

ð8Þ

the probability of having made it to the tth competition week without having been censored

given load and moderator history, in the numerator, and additional confounder history, in the

denominator. The final weight assigned at time t is wit = swit × cwit.

The treatment denominator weights were obtained from the following linear regression

model,

EðGit ¼ gitj�Giðt� 1Þ;
�LitÞ ¼ d0 þ d1giðt� 1Þ þ d2x1;it þ d3x2;it þ sðx3;it; y1Þ ð9Þ

where x1 is the indicator of back-to-back competition weeks, x2 is the indicator of a 180 day

time loss in the past 30 competition weeks, and x3 is a player’s rating. The function s(.) is a

smoothing cubic spline.

The treatment numerator weights were similarly obtained using,

EðGit ¼ gitj�Giðt� 1Þ;Aiðt� 1ÞÞ ¼ d
0

0
þ d

0

1
giðt� 1Þ þ d

0

2
a1;iðt� 1Þ: ð10Þ

Estimates for the expected means given in Eqs (9) and (10) were fitted using a GEE model

with player as clusters and independent covariance structure between players. Let

m̂it ¼ ÊðGit ¼ gitj�Giðt� 1Þ;
�Liðt� 1ÞÞ. The denominator is then calculated as �ððgit � m̂itÞ=ŝÞ,

where ϕ(.) is the density function for the standard normal and ŝ is the residual standard devia-

tion of the fitted model.

Numerator estimates are obtained with the same methodology but without the condition-

ing on time-dependent covariates. Given numerator expectation,

m̂0it ¼ ÊðGit ¼ gitj�Giðt� 1Þ;Aiðt� 1ÞÞ, with dispersion ŝ0, the stable weight is calculated as,

ŝwit ¼
�ððgit � m̂0itÞ=ŝ0Þ

�ððgit � m̂itÞ=ŝÞ
ð11Þ

The identical right-hand side models in Eqs (9) and (10) were used for the models of the

censoring weights. However, these were fit in a logistic regression with the outcome being the

binary indicator of censoring at the end of the tth competition.

The stability of the weights ŵit were evaluated graphically by plotting box-plots against the

weeks from baseline. Balance was evaluated by calculating the population standard bias (PSB)

at each time t for all time-varying covariates. PSB� 0.25 was set as the criteria for good balance.

A weighted generalized linear model was used to fit the conditional mean model of the

moderator at time t given weights ŵit. The age residuals were obtained and served as covariates

for the model to estimate the SNMM outcome model. For this model, a weighted pooled logis-

tic regression was used [16]. Effects of load and its moderation by age were illustrated by com-

paring the estimated hazard ratio at the lower and upper 25th percentiles of cumulative load
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observed in the sample for players of age 25, 27 and 29. The upper 25th percentile was approxi-

mately 3,000 games more for each of these age groups and this was the increased in load used

for these comparisons. For all hazard ratios shown, the reference player was a 25 year-old with

a total competition load of 10,000 games. Because the conventional standard errors of the

logistic model fail to account for the estimation of the residuals and stabilized weights, boot-

strap standard errors and confidence intervals were obtained by repeating the weight, residual,

and outcome model estimation for 1,000 bootstrap resamples.

SNMM estimates were compared to the standard association models using an unweighted

pooled logistic regression of load and age effect modification with and without adjustment for

other measured time-varying covariates in this study. An additional analysis, included the

same time-varying covariates in the SNMM outcome model, a so-called ‘doubly robust esti-

mate’ of the potential causal effect of load [29].

Summaries of the absolute risk from the SNMM model were also estimated for a range of

ages and game loads, using the baseline rate for players of 25 years and a 10,000 game load. To

understand the potential reduction in absolute risk for top players with some of the highest

cumulative loads on tour, the absolute risk reduction for a decrease of 1,000 and 2,000 games

played from actual games played was calculated for several prominent players.

All data analysis and modeling was performed in the R statistical programming language [30].

Identifiability

The ability to identify the causal effects of load using the framework presented in this study

rests on several assumptions. The first concerns the correct specification of the dose-response

model. A central assumption to the simple cumulative load model is the premise that load and

aging history is independent of the actual sequence load was received with age conditional on

the current total load and age. In mathematical terms,

lðtj�Gt;
�AtÞ ¼ lðtjcumð�GtÞ;AtÞ

Related to the above, is the consistency assumption [31]. This states that a player who has

the same treatment and aging history must have the same potential outcome,

lðtj�Gt;
�AtÞ ¼ l�Gt �At

8 �Gt;
�At

The next assumption concerns the positivity of treatment. In the case of the cumulative

load, it requires that

0 < f ð�Gt ¼ gj�Gt� 1;At� 1;
�Lt� 1Þ < 1 8 t; g

all possible treatment levels can be observed for any at-risk person at a given time over all time

points.

Finally, in the setting of time-varying treatments with observational data, we have to have

sequential ignorability of treatment to be able to identify causal effects [19]. This states that,

�Gt ? flðtj�GtÞj
�Gðt� 1Þ;

�At� 1;
�Lt� 1g 8

�Gt

the particular treatment received at time t must be ignorbale given the measured confounders,

pre-treatment moderator history, and pre-treatment treatment history. Because sequential

ignorability can be violated if any unmeasured confounders are present, it is an assumption

that is not verifiable.
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Results

The data sample included 55,773 competition weeks for 389 professional male tennis players

(Table 1). Three percent of the weeks in the study sample were followed by a time-loss. Cumu-

lative game loads had an average of 13,615 games and a maximum of 39,303 across the sam-

pled competition weeks. By design, players had a mean rating over 2300 and the majority of

players were rated between 2100 and 2500 in any given week. One of every three competitive

events were played on the back of another competition, indicative of the congestion of the ten-

nis calendar. Only a small fraction of players were competing when having had a more than 6

month break from competition in the past 30 events played.

Stratifying the sample by the quintiles of cumulative load shows how the time-dependent

covariates vary with increasing games played. As expected, age increases steadily with increas-

ing load with most players being age 29 years or older by the time they have accumulated

15,000 games played (Table 2). Positive trends with load were also observed for the 30-event

180 day or more time-loss, which had its highest observed rates of 5% for the two highest quin-

tiles of load, and player rating, which had a greater average with each higher strata of load. No

pronounced trend with back-to-back competition was observed.

The combined stabilized weights show good stability over the competition weeks (Fig 5).

On the log-scale, the average weight across the time periods was 1.07 and the interquartile-

range was an average of 0.5, a moderate amount of variation over the competition weeks.

More instability was observable in the latest weeks, where the sample size was smallest. By the

350th competition week, the average weight dropped to 0.2.

In terms of balance, the player rating showed the greatest potential for confounding bias

(Fig 6). The unweighted PSB for the player rating had an average of 0.33, a maximum of 1.15

and exceeded the threshold of 0.25 in 63% of the competition weeks. With weighting, the PSB

for the rating reduced to an average of 0.08 and never exceeded 1 in any competition week.

For 20% of weeks, the PSB was greater than 0.25 even with weighting. However, this rate was

just 4% for the first 200 competition weeks. All other covariates were well-balanced across all

competition weeks.

Unweighted regression analysis without adjustment for time-varying covariates showed a

protective effect with increasing game load (Table 3). Counterintuitively, the estimates from

this regression suggested that an increase of 1,000 accumulated games was associated with a

decrease of 3% risk in time-loss for a player of the same age. Adjusting for time-dependent

covariates removed any statistically significant association, supporting the conclusion that, for

players of the same age and skill level, game load has no causal influence on risk of time-loss.

Table 1. Summary of overall sample characteristics. Unless otherwise noted, the summary is the mean (standard

deviation) for all competition weeks.

Characteristic Value

Competition Weeks, n 55,773

Players, n 389

Time-Loss % 3 (17)

Game load 13,615 (4,208)

Age 28 (3.24)

Competed in previous week % 33 (47)

Player rating 2325 (199)

30-event�180 day time-loss % 3 (17)

https://doi.org/10.1371/journal.pone.0231568.t001
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In contrast to the standard regression analysis, the SNMM found a significant positive rela-

tionship between increased load and risk of time-loss (Table 3). The direct effect of an increase

of 1,000 games, for example, is estimated to increase the risk of time-loss by 4% (95% CI 0-9%)

in the unadjusted and 5% (95% CI 1-10%) for the doubly-robust analysis. Comparisons

between the lowest 25th and highest 25th percentiles of empirical load observed at ages 25, 27

and 29 showed even starker effects. Based on the doubly-robust estimates, the hazard ratios of

players in the top 25% of load were consistently greater than those of players of the same age

but with the lowest 25% of experienced load. At age 25, the hazard ratio of 1.17 (95% CI 1.02-

1.35) corresponds to a risk increase of 17%; at age 27, the hazard ratios of 1.28 (95% CI 1.12-

1.47) and 1.06 (95% CI 1.03-1.10) correspond to an increase of 21%; and at age 29, the hazard

ratios of 1.65 (95% CI 1.38-1.95) and 1.33 (95% CI 1.20-1.47) correspond to an increase of

24%. Though each of these comparisons correspond to a fixed increase of 3,000 games, we see

that the risk associated with that same change in load is increasing, indicating the positive

effect modification due to age.

Confidence bands for the effect of load over a broader age range show the results of the

SNMM in greater detail (Fig 7). The grey regions highlight the 90th interquartile range of

observed load for the specific age group in each panel. In the observed load range for ages 25

to 28 years old, the absolute risk ranged from 2 to 4%. For ages 29 to 32, the absolute risk

increased to 6 to 8% for players in the highest load range. Over the age of 32, even players in

the lowest observed range had an absolute risk over 4%. Among the highest loads, the risk of

time-loss was as high as 18% by age 35.

Table 2. Summary of outcome and covariates (mean, SD) by quintiles of cumulative game load.

Load Quintile Load Time-Loss Age Competed in Previous Week Elo Rating 30-event Time-Loss

Q1 8,851 (499) 3 (16) 24.8 (1.77) 34 (47) 2232 (176) 0 (0)

Q2 10,673 (558) 2 (16) 26.1 (1.85) 34 (47) 2266 (173) 2 (15)

Q3 12,821 (689) 2 (15) 27.5 (1.96) 34 (47) 2318 (175) 3 (16)

Q4 15,526 (889) 3 (17) 29.3 (2.12) 33 (47) 2358 (180) 5 (23)

Q5 20,205 (2,767) 4 (19) 32.0 (2.39) 31 (46) 2452 (213) 5 (22)

https://doi.org/10.1371/journal.pone.0231568.t002

Fig 5. Log-scale of combined IPTW and censor weights by competition week.

https://doi.org/10.1371/journal.pone.0231568.g005
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Since 2016, several of the most successful male players in tennis have simultaneously suf-

fered long breaks from their usual competition schedule owing to injury. Andy Murray is one

among these and is especially notable for having announced his intended retirement at the

beginning of 2019. The nature of the sport means that players who consistently perform well

tend to accumulate greater load at a similar age. In Fig 8 we see the estimated risk of time-loss

for three of the most successful contemporaries—Rafael Nadal, Novak Djokovic, and Andy

Murray—given their observed cumulative load at ages 23 to 30 years old. By age 30, Murray

had accumulated 24,000 games, Nadal 26,000 games, and Djokovic 27,000 games; levels of

load that put them each in the top 10% of load acquired by age 30. At those levels, each of these

players would have an expected risk of time-loss for 1 in every 25 weeks of competition.

Reductions of 1,000 games would be expected to provide a negligible change in that risk, while

5,000 games fewer of load would be expected to have a more appreciable reduction in the risk

of time loss, decreasing the risk to 1 in every 30 weeks of competition.

Discussion

Despite general agreement about the etiological importance of load for injuries in sport, few

studies have examined the longitudinal effects of load [9]. To our knowledge, the present study

is the first to investigate the risk of competition load for professional tennis players [32]. Our

Fig 6. Population standard bias for time-varying covariates by competition week with and without weighting. The

size of points is scaled to reflect the number of observations at each time point.

https://doi.org/10.1371/journal.pone.0231568.g006

Table 3. Hazard ratio (95% CI) change with load and the effect modification of age for the observed lower and upper 25th percentiles of load for each age.

Age Game Load Unweighted Unadjusted Unweighted Adjusteda SNMM Unadjusted SNMM Adjusteda

Same Age 1,000 more 0.97 (0.94-0.99) 1.00 (0.97-1.03) 1.04 (1.00-1.09) 1.05 (1.01-1.10)

25 10,000 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.)

13,000 0.90 (0.83 -0.97) 0.99 (0.90 -1.08) 1.14 (1.00-1.30) 1.17 (1.02-1.35)

27 11,000 0.97 (0.94 -1.00) 1.00 (0.96 -1.03) 1.06 (1.02 -1.09) 1.06 (1.03-1.10)

14,000 0.89 (0.79-1.01) 1.00 (0.86-1.15) 1.24 (1.10-1.43) 1.28 (1.12-1.47)

29 14,000 0.92 (0.79 -1.07) 1.01 (0.86 -1.19) 1.31 (1.20 -1.43) 1.33 (1.20-1.47)

17,000 0.87 (0.66-1.12) 1.02 (0.76-1.36) 1.61 (1.37-1.88) 1.65 (1.38-1.95)

a, Adjusted for player rating, back-to-back competition, and 30-event 180-day time-loss or longer

https://doi.org/10.1371/journal.pone.0231568.t003
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analysis of tens of thousands of competition weeks over the complete professional careers of

top male tennis players found significant increases in the risk of time-loss from competition

with greater total competition load. We also demonstrated that the risk for the same increase

in load increased with a player’s biological age, indicating that the harmful effects of load are

magnified for older players compared to younger players.

One of the strengths of the present study was its use of a structural nested mean model to

identify the potential causal role of load in the presence of moderation by age. The SNMM is a

recently developed technique that provides a more principled way to address observational

study biases compared to standard regression techniques, the mainstay of epidemiological

studies of injury in sport [32]. The SNMM is particularly necessary when the exposure and

moderators of interest are varying in time, as is likely the case for any study of load and injury,

owing to the dynamic nature of load and other putative factors involved in the mechanisms of

injury. The main reason for this is that past exposure could influence levels of future exposure,

moderators, and confounders. Careful balancing and conditioning at each time point of the

analysis is required to remove the bias induced by the interplay of these factors over time [16].

Indeed, the present study found that standard methods, which do not protect against such

biases, would lead to the conclusion that cumulative competition load was protective against

absences from competition. One contributor to this discrepancy is age, which both theory and

prior empirical evidence suggests is likely to modify the effect of load [33]. When player age is

Fig 7. Absolute risk time-loss 90% confidence bands associated with changing load and the modification effect of age

according to the SNMM. The shaded grey regions show the empirical 90th percentile range of actual game load observed for each

age group.

https://doi.org/10.1371/journal.pone.0231568.g007
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adjusted for with standard regression, it cuts off the effect of load because it is a correlate of

future levels of load and a moderator of load’s effect. Another contributor is the confounding

of player rating, as greater ability predicts higher levels of future load but is also an indepen-

dent predictor of a lower risk of time-loss. The counterintuitive protective effect of load has

been frequently reported in studies of load and injury in sport [6]. The fact that we, in the con-

text of time-loss in tennis, observe a reversal in effect when using causal inference methods

raises the possibility that conclusions about the protective effects of load have been grounded

in questionable methodology that has not adequately addressed effect modifiers or confound-

ers. A recent critique of methods behind the literature on acute-chronic load ratios in the man-

agement of load, reinforces the dangers of observational study biases when researching the

effects of dynamic exposures in sport [34].

Today’s top men’s tennis players compete in an average of 25 events per year and play an

average of 50 games per event. Given current playing schedules, a reduction of 1,000 games of

load is approximately equal to skipping an entire season of competition. Since the present

study found only modest reductions in risk with 1,000 fewer games played, practically mean-

ingful reductions in risk would appear to require early-career implementation of long-term

load management strategies. Although reductions in load could be aided by structural changes

in the sport, via a reduced calendar or shortened match format, for example, the commercial

drives to see the best players playing longer and more often would suggest that immediate

reductions in load will rest on the ability of players to sacrifice play opportunities and adopt

more selective schedules.

Although the present study provides some broad guidance for load management in tennis,

many questions remain to be addressed in order to develop more practically useful, individual-

ized strategies for specific players. How effects of competition load vary by gender, playing sur-

face, upper-body versus lower-body, or player anthropometry are all relevant questions for

future research. Because all of these could be regarded as types of stratification analysis, the

SNMM framework we have presented could be readily applied to address these questions. It

Fig 8. Absolute risk (± SD) of time-loss for actual age-specific total games played and counterfactual reductions of 1,000

and 5,000 games for Andy Murray, Rafael Nadal and Novak Djokovic.

https://doi.org/10.1371/journal.pone.0231568.g008
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would also be possible to explore the severity of time-loss by considering the number of days

between competitive play as the primary outcome of analysis or to link outcomes directly to

injuries, as more consistent injury documentation becomes available.

Other major remaining questions would be difficult to address without resolving the limita-

tions of present data and methodology. Our approach has presumed that cumulative external

load is the primary mechanism by which load effects risk of injury. While total absolute load

may be a reasonable measure of the cumulative stress on tissue, other factors about how this

load is distributed over time may be important for further elucidation of the effects of load.

The variability in load over time and the level of acute load relative to long-term load have

both been stressed as important factors to the risk of tissue damage in athletes [35, 36]. Study

into the casual effects of varying short- and long-term temporal patterns of load will require

extending current causal methods for time-varying exposures and effect modifications that

allow for greater flexibility in the exposure mechanism.

In focusing on load information that could be consistently observed for a large group of

players over time, we have used game load as a proxy for the intensity of biomechanical stress

player’s are exposed to in a given match. Owing to differences in player movement and playing

strategy, games played could mask significant differences in the duration and severity of expe-

rienced biomechanical stress.

Of even greater concern than the coarseness of available measures of competition load is

the scarcity of training load. Without information about training load, the present study’s abil-

ity to identify the potential causal effects of competition load rests on the assumption that com-

petition load is the primary causative factor of time-loss and that, after accounting for

observed covariates, the level of competition load is ignorable regardless of past training load.

These are both strong assumptions that require further research to verify. Although the incom-

pleteness of training load data is unlikely to allow for large-scale study, smaller scale investiga-

tions may be possible and still informative. Indeed, for epidemiological work of tennis injuries

to have a meaningful impact on clinical practice, combining more principled statistical meth-

ods with a more complete picture of player load in training and competition will be a crucial

next step.

Conclusions

This study provides valuable new evidence about the potential causal role of cumulative com-

petition load and time-loss events in professional tennis. Both the use of causal methods that

are appropriate for dynamic dose-response mechanisms and the application of these methods

to complete competition histories of hundreds of players makes this study’s evidence for the

harmful effects of load some of the strongest yet reported. We hope that our findings will high-

light the need for casual methods in observational studies of injury in sport and will spark con-

tinued development and application of these techniques to further understand the causative

role of load and guide future load management strategies.
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