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ABSTRACT

Lung cancer is the leading cause of cancer-related
deaths worldwide. Targeted therapy is beneficial in most
cases, but the development of drug resistance stands as
an obstacle to good prognosis. Multiple mechanisms
were explored such as genetic alterations, activation of
bypass signaling, and phenotypic transition. These
intrinsic and/or extrinsic dynamic regulations facilitate
tumor cell survival in meeting the demands of signaling
under different stimulus. This review introduces lung
cancer plasticity and heterogeneity and their correlation
with drug resistance. While cancer plasticity and
heterogeneity play an essential role in the development
of drug resistance, the manipulation of them may bring
some inspirations to cancer prognosis and treatment.
That is to say, lung cancer plasticity and heterogeneity
present us with not only challenges but also
opportunities.
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INTRODUCTION

Lung cancer is the most common cause of cancer-related
deaths in both men and women with a stable worldwide
5-year survival rate of approximately 15% despite advanced
medical efforts (Key et al., 2014). Primary therapeutic
strategies include surgery, chemotherapy, radiotherapy, and
targeted therapy. Although these treatments can initially
reduce tumor burden, relapse occurs in most cases.

Drug resistance and metastasis are the two major causes
of mortality, both of which are attributed to genetic hetero-
geneity, genetic evolution, and tumor plasticity. Together,
these three aspects produce tumor heterogeneity and allow
cancer cells to survive pressures induced by dynamic
changes in the surrounding microenvironment and immune
system. Plasticity refers to several processes including dif-
ferentiation, dedifferentiation and transdifferentiation, por-
traying the dramatic capacity of cells to change their fates
(Shoshani and Zipori, 2015). As for cancer cells, epithelial-
mesenchymal transition (EMT), and subtype transdifferenti-
ation best embody the property of tumor plasticity. As for the
arising of secondary mutations and gene amplifications
against tyrosine kinase inhibitor (TKI) treatment, genetic
evolution and heterogeneity theories could provide reason-
able explanation. Evidences from multiple works have
highlighted characteristics of cancer cell plasticity and
genetic heterogeneity as a major cause of drug resistance
during pre-clinical and clinical studies (Sequist et al., 2011;
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Shien et al., 2013). This review primarily focuses on lung
cancer plasticity and heterogeneity. These facilitate cancer
cell survival and bring considerable challenges to clinical
treatment, yet they may also provide inspirations on cancer
prognosis and potential therapies.

PLASTICITY OF LUNG CANCER IN EPITHELIAL
TO MESENCHYMAL TRANSITION

An example of a long-known plasticity of epithelia is EMT.
During cancer progression, plasticity is exemplified by mor-
phological and phenotypical conversions such as the
expression of mesenchymal markers and loss of epithelial
markers (Park et al., 2015). EMT provides cancer cells with a
more invasive and motile phenotype thus enhancing their
invasive and metastatic potential (Thiery et al., 2009).
Recent work has also demonstrated that EMT has a role in
multidrug resistance (Xin et al., 2013; Sui et al., 2014).

The role of EMT in modulating cancer dissemination has
been intensively addressed. Transcriptional repressors of the
E-cadherin gene are activated during EMT, leading to the loss of
the epithelial phenotype. The repressors can either directly
repress the activity of the E-cadherin promoter or indirectly
repress E-cadherin transcription (Nurwidya et al., 2012).
Downstream molecules, such as Snail and ZEB, can also induce
the expression of metalloproteases, which degrade the base-
ment membrane thereby favoring invasion (Thiery et al., 2009).

EMT is also highly associated with EGFR-TKI induced drug
resistance. Non-small cell lung cancer (NSCLC) cell lines sen-
sitive to gefitinib express EMT markers such as E-cadherin,
claudin-4 and claudin-7, but resistant cell lines have lost
expression of these genes, while the mesenchymal marker
vimentin was highly expressed in the resistant cell lines (Fred-
erick et al., 2007). When the EMT-inducing ligand TGF-$ was
added to HCC4006 lung cancer cells in vitro, morphological
changes and resistance to erlotinib were observed in two weeks.
On the other hand, removal of TGF-( helped cells reverse their
morphology as well as sensibility to erlotinib (Suda et al., 2011).

More specific mechanisms of EMT are still being uncov-
ered. It has been reported that Forkhead box protein M1
(FOXM1), pyruvate dehydrogenase kinase 4 (PDK4) and
Cx26 are important regulators of EMT and are associated
with drug resistance (Kong et al., 2014; Sun et al., 2014;
Yang et al., 2015). In a clinical study, 4 out of 9 patients with
EGFR-mutant lung adenocarcinoma exhibited changed EMT
status pre-and post-gefitinib treatments (Uramoto et al.,
2010). EMT is a primary cause of metastasis, which is
responsible for approximately 95% of cancer mortality.
Therefore, more emphasis should be placed on under-
standing EMT, especially as associated with drug resistance.

PLASTICITY IN HISTOLOGICAL TRANSITION
AS A NEW MECHANISM OF DRUG RESISTANCE

NSCLC, which accounts for 75% of all lung cancers, and
small cell lung cancer (SCLC) are two subtypes of lung
cancer that share distinct histological and genetic

signatures. The histological heterogeneity of lung cancer
makes treatment complicated. The two major subtypes of
non-small cell lung cancer, lung adenocarcinoma (ADC) and
squamous cell carcinoma (SCC), account for almost 80% of
all subtypes of NSCLC. These subtypes can highly benefit
from multiple lines of therapeutics. It is generally accepted
that there are different cells-of-origin for the different types of
lung cancer. For example, lung ADC is believed to be
derived from type-ll pneumocytes, while lung SCC descend
from basal cells. High expression of neuroendocrine mark-
ers, such as calcitonin-gene related peptide (CGRP) and
adhesion molecule (Ncam1) in SCLC, indicates a neuroen-
docrine (NE)-associated pulmonary cell-of-origin (Sutherland
and Berns, 2010). To date, however, no direct evidence has
identified the true cells-of-origin for all subtypes of lung
cancer. Interestingly, recent clinical studies revealed that
drug treatments could induce a histological transition from
ADC to SCLC or SCC. These observations challenge our
current knowledge on the cell-of-origin of lung cancer and
further highlight the importance of cancer plasticity in lung
cancer progression.

Transformation from NSCLC to SCLC

Clinical observations in which primary lung ADC developed
into SCLC after prolonged drug treatment (more than 2
years) have been previously reported (Morinaga et al.,
2007). Engelman et al had a similar discovery. Specifically, it
was reported that five patients (14%) with lung ADC were
found to have a diagnosis of SCLC in EGFR TKI-resistant
tumor biopsies despite maintaining the original mutation and
became sensitive to classical SCLC treatment (Sequist
et al., 2011). A long remission following TKI treatment and
conservation of the original activating EGFR mutation sug-
gests a transformation rather than a coexistence of SCLC
and NSCLC. Histological transformation further supports
plasticity and is one of main causes of TKl-resistance (Shien
et al.,, 2014). In three out of the five resistant patients, genetic
mechanisms of resistance were lost in the absence of the
continued selective pressure of EGFR inhibitor treatment,
and these cancers were sensitive to a second round of
treatment with EGFR inhibitors (Sequist et al., 2011).
Transformed SCLCs have features of classical SCLC
including universal alterations of the RB tumor suppressor,
reduced EGFR expression, and a heightened sensitivity to
BCL-2 family inhibition (Niederst et al., 2015). Transformed
SCLCs have EGFR mutations, but do not express EGFR
protein, which could potentially explain why they are no
longer sensitive to EGFR inhibitors. However, additional
molecular mechanisms of transformation remain to be fur-
ther investigated (Fig. 1).

Emma Norkowski et al found that SCLC developing with
ADC, either synchronously or asynchronously, appears to be
associated with EGFR mutations independent of TKI treat-
ment. Two cases of NSCLC to SCLC transformation were
observed after drug treatment, and two cases of phenotypic
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Figure 1. Histological transition and drug resistance. Lung ADC with LKB1 deficiency treated with -aminoproprionitrile (BAPN)
or phenformin undergoes ECM remodeling, fibroblast losing, metabolic reprograming and oxidative stress accumulation. Along with
these changes the histology gradually transdifferentiates from ADC to SCC. As a consequence, the tumor eventually becomes
resistant to BAPN/DPA or piperlongumine (PL)/phenformin (1). In addition, histological transition in lung EGFR mutant tumor also
contributes to drug resistance: on one hand, ADC can transdifferentiate into SCC which is resistant to EGFR inhibitor; on the other
hand, ADC can also transform into SCLC with decreased EGFR expression and resistance to EGFR inhibitor. Although the tumor still
harbors identical EGFR mutation after histological transition, the possibility of preexistent SCC or SCLC can not be excluded (2).

transition without TKI treatment were also observed. How-
ever, the possible coexistence of two cell types of origin
could not be excluded (Norkowski et al., 2013). Although the
spontaneous transformation of EGFR mutant ADC to SCLC
may be possible, current evidence to support this are weak.
Therefore, additional cases need to be analyzed to support
this theory (Fig. 1).

Transdifferentiation from lung ADC to SCC

NSCLC can be further pathologically divided into three major
subtypes: ADC, SCC and large cell carcinoma (Tuveson and
Jacks, 1999; Jackson et al., 2001). There is also a mixed

lung adenosquamous cell carcinoma subtype (Ad-SCC) that
accounts for 4-10% of NSCLC subtypes. Identical genetic
mutations between the adenomatous and squamous parts of
a single Ad-SCC lesion suggests that the phenotypic tran-
sition between ADC and SCC occurs according to the can-
cer monoclonal theory (Hofmann et al., 1994; Toyooka et al.,
2006; Kang et al., 2007; Ichinokawa et al., 2011).

Stress triggered by TKI treatment has been reported as a
driver of phenotype transition in clinical studies. For exam-
ple, ADCs with EGFR mutations may transform into SCCs
following TKI treatment and eventually become resistant to
TKI. In another case, a mutation in PIK3CA has been
observed in a patient with an EGFR mutation following
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erlotinib and second-line chemotherapy. Histological analy-
sis indicated a transformation into the SCC subtype (Kuiper
et al., 2015). Furthermore, transformation into SCC has been
documented in two cases of EGFR mutated ADC with
acquired resistance to gefitinib treatment (Hsieh et al., 2015).
These findings emphasize the need to understand the his-
tological changes of human lung cancer subtypes before
and after drug treatment and highlight the importance of
repeated biopsy during diagnosis (Fig. 1).

Genetically engineered mouse models have allowed for
the extensive study of lung cancer plasticity (Sugano et al.).
Han et al showed that inactivation of Lkb7 in lung ADC
conferred plasticity that promoted a progressive transfor-
mation into SCC in mice (Han et al., 2014). This process was
driven by extracellular matrix (ECM) remodeling caused by
downregulation of lysyl oxidase (Lox). Pharmacological
treatment using LOX enzymatic inhibitors in Kras®'2°/Lkb 1~
(KL) mice also promoted ADC-to-SCC transition. Importantly,
the SCCs remain highly proliferative following drug treat-
ment, suggesting that this phenotypic transition could be an
underlying mechanism to drug resistance in pre-clinical tri-
als. Additionally, the authors found that reactive oxygen
species (ROS) functionally modulated the ADC-to-SCC
transdifferentiation in the KL mouse model. The squamous
transition was accompanied by metabolic reprogramming
upon oxidative stress accumulation during phenformin
treatment in pre-clinical trials, representing a novel mecha-
nism of drug resistance (Li et al., 2015b). It has also been
demonstrated that Yes-associated protein (YAP) overex-
pression, through the regulation of P63/, inhibited ADC-to-
SCC transdifferentiation, while YAP knockdown promoted
this process in Lkb1-deficient mouse models (Gao et al.,
2014). Lkb1 deficiency causes a robust accumulation of
cellular oxidative stress, which confers lung cancer cells with
higher plasticity and facilitates an adaptive metabolic repro-
gramming of cancer cell through phenotypic transition.
These works provide insight into lung cancer plasticity and
cell-fate determination during tumor progression. In conclu-
sion, histological evolution from ADC to the less stress-
sensitive SCC is a strategy for tumor cells to survive and
confers drug resistance (Fig. 1).

PLASTICITY IN CHEMOTHERAPY RESISTANCE

Approximately 60% of NSCLC tumors do not harbor tar-
getable driver mutations (Shea et al., 2016), and conven-
tional cytotoxic chemotherapy remains the standard-of-care
treatment for NSCLC patients. The most common cytotoxic
agents used in treating NSCLC patients are alkylating
agents, including cisplatin and carboplatin, which damage
DNA by forming platinum-DNA adducts and thus disrupt
DNA replication and transcription (Olaussen and Postel-Vi-
nay, 2016). However, tumor cells adapt mechanisms to
protect against cytotoxic agents, which remains an obstacle
to successful treatment of NSCLC. A major mechanism of
chemotherapy resistance is insufficient amount agent to

reach the target DNA. For example, high expression of the
detoxification protein Gluthatione S-transfer protein GSTP1
(Nakanishi et al., 1999), high expression of the plasma-
membrane transporter Copper transporter 1 (CTR1) (Kim
et al.,, 2014), and low expression of BCL-2 (Jeong et al.,
2010) have been reported as mediators of resistance.
Another major mechanism of resistance is failure to achieve
cell death after platinum-DNA adduct formation. For
instance, increased expression of ERCC1, which is a pivotal
endonuclease in the nucleotide excision repair (NER) path-
way (Zhou et al., 2004), and increased expression of survival
signaling pathways, such as activation of the phosphatidyli-
nositol 3 kinase (PI3K)/AKT pathway, and overexpression of
HER2 (Calikusu et al., 2009) allow tumor cells to evade
apoptosis. These epigenetic alterations also reflect cancer
cell plasticity and enable cells to adapt to new environments
caused by drug treatment. In order to enhance response and
avoid resistance to chemotherapy, efforts to identify predic-
tive biomarkers are highly needed. Moreover, selecting the
appropriate chemotherapies in combination with targeted
therapies or immunotherapies will be synergistic.

GENETIC EVOLUTION AND HETEROGENEITY
OF LUNG CANCER IN DRUG RESISTANCE

In addition to cancer cell plasticity, genetic alterations are a
major mechanism of acquired drug resistance that has been
confirmed in patients. The target gene itself can be altered
by mutation or amplification, thus limiting the ability of the
drug to inhibit activity of the kinase that remains active and
drives aberrant signaling. Another resistance mechanism is
bypass signaling, which can be activated under pressure to
circumvent the inhibited kinase. Regardless of mechanism,
genetic alterations lead to tumor heterogeneity and provide
advantages against drug treatment.

Drug resistance in EGFR mutant lung cancer

EGFR protein overexpression is frequently observed in
NSCLC patients and is correlated with a poor prognosis
(Hirsch et al., 2003). Hyperactivation of EGFR is closely
associated with the development and progression of lung
cancer. Mutation of the EGFR kinase domain accounts for
the majority of EGFR activation. EGFR mutations occurred
in 10% to 20% of NSCLC patients (Riely and Yu, 2015), so
further exploration of EGFR as therapeutic target is highly
valuable. Two predominant classes of EGFR inhibitors have
been developed including monoclonal antibodies that target
the extracellular domain of EGFR, such as cetuximab, and
small molecule TKIs that target the catalytic domain of
EGFR, such as gefitinib and erlotinib. TKls are synthetic,
mainly quinazoline-derived, low-weight molecules that
interact with the intracellular tyrosine kinase domain of sev-
eral receptors, including EGFR, and inhibit ligand-induced
receptor phosphorylation by competing for the intracellular
ATP-binding site (Ciardiello, 2000). TKIs show initial
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response rates of over 75% in mutant EGFR-NSCLC
patients (Perez-Ramirez et al., 2015). In the Iressa Pan-Asia
Study (IPASS), EGFR mutations were reported to be the
strongest predictive biomarker for progression-free survival
and objective response rate to first-line gefitinib versus car-
boplatin/paclitaxel (Fukuoka et al., 2011). However, after an
initial marked response to EGFR TKis, almost all patients
inevitably relapse via development of acquired resistance
within a median of 9-12 months (Riely and Yu, 2015; San-
tarpia et al., 2015). Because it was observed that TKils
induced drug resistance in EGFR mutant lung cancer, this
indicates that genetic variation and tumor heterogeneity can
act as intrinsic drivers for the acquisition of additional
mutations upon drug treatment.

One of the greatest therapeutic challenges is gatekeeper
mutation that change the accessibility of a hydrophobic
pocket critical for the binding of small molecule TKls (Zhang
et al.,, 2009). For example, the secondary mutation T790M
increases the affinity of EGFR for ATP and renders the
EGFR kinase inhibitors gefitinib and erlotinib less effective in
displacing this ATP (Yun et al., 2008). The T790M mutation
is responsible for half of EGFR TKI resistance (Wang et al.,
2015). Strategies were developed to overcome this resis-
tance such as the generation of the quinazoline irreversible
EGFR TKI afatinib (Pao et al., 2005); however, high con-
centration of this inhibitor is required to inhibit the T790M
mutation and acquired resistance to afatinib was also
observed in clinical studies (Hashida et al., 2015). Although
intensive preclinical studies show impressive results for
third-generation mutant-specific EGFR inhibitors such as
AZD9291, rociletinib, and WZ4002, drug resistance has still
been observed. New tertiary mutations were identified such
as C797S in AZD9291-resistant T790M-positive tumors and
L718Q, L844V, and C797S in WZ4002-resistant tumors
(Thress et al., 2015; Yu et al., 2015). Sequentially detected
mutations in NSCLC samples depict the genetic alterations
in response to the modified inhibitors. A recent study
revealed that the acquired resistance caused by T790M
could occur either by selection of pre-existing T790M-posi-
tive clones or via genetic evolution from initially T790M-
negative drug-tolerant cells (Hata et al., 2016). Although
heterogeneity-based tumor cell selection stands as a new
mechanism of drug resistance, it determines cell identity
through genetic alterations in early stage (Fig. 2).

Moreover, alternative signaling pathways, or so-called
bypass tracks, can be activated in resistant cells bypassing
the need for signaling from the target. An increasing recog-
nized drug resistance mechanism occurs through a bypass
tracks module. For example, 15% to 20% of EGFR TKI-
resistant cases are mediated by amplification of the c-MET
receptor tyrosine kinase. Activation of signaling downstream
of c-MET is independent of EGFR and allows resistant cells
to grow despite EGFR inhibition (Bean et al., 2007; Engel-
man et al., 2007). To prevent MET amplification, combination
therapies of EGFR TKI and MET inhibitors have been
applied in clinical trials. However, cancer relapse inevitably

occurred. It was discovered that ATP-binding cassette sub-
family B member 1 (ABCB1) overexpression, which was
associated with cancer stem cell (CSC) properties and EMT,
was involved in the acquired resistance to MET inhibitors.
ABCB1 inhibitors could be a potential drug to fight against
this resistance (Sugano et al., 2015) although this remains to
be investigated (Fig. 2).

Furthermore, systematic genetic and histological analy-
ses have been performed on tumor biopsies from 37 patients
with drug-resistant lung adenocarcinoma carrying EGFR
mutations (Sequist et al., 2011). Other than MET amplifica-
tion, some resistant cancers showed unexpected genetic
alterations including mutations in PIK3CA and amplification
of HER2. Aberrant activation of PI3K/AKT signaling in the
presence of EGFR kinase inhibitor can result in drug resis-
tance (Engelman and Janne, 2008). Takezawa et al found
that HER2 was amplified in 12% of tumors with acquired
resistance and 1% of untreated lung adenocarcinomas
(Takezawa et al., 2012) (Fig. 2).

Drug resistance of lung cancer with EML4-ALK fusion

Another example of drug resistance in lung cancer is
anaplastic lymphoma kinase (ALK) target treatment. Echin-
oderm microtubule-associated protein-like 4 (EML4) and
ALK (Choi et al. 2010) fusion protein is an oncogenic driver
occurring in approximately 5% of NSCLC and leading to the
expression of constitutively active ALK tyrosine kinase
(Soda et al., 2007). Aberrant ALK activity activates mitogen-
activated protein kinase kinase/extracellular signal-regulated
protein kinase (MEK/ERK) and PI3K signaling pathways and
promotes cell survival and proliferation (Shaw et al., 2013).
Crizotinib is an ALK ATP-competitive inhibitor used as first-
line therapy in the treatment of advanced NSCLC harboring
ALK rearrangement. Unfortunately, responses to this agent
are not long-lasting. Genetic alterations and activation of
bypass tracks are two main mechanisms of acquiring
resistance. Secondary mutations in ALK TK domain as well
as ALK fusion gene amplification have been identified
(Doebele et al., 2012; Katayama et al., 2012). L1196M, a
gatekeeper mutation, has been detected, as well as L1152R,
C1156Y, IM171T/N/S, F1174L/C/V, V1180L, G1202R,
S1206Y, and G1269A mutations (lams and Lovly, 2015). In
crizotinib-resistant tumors, several distinct bypass tracks
mediating resistance have been reported. Among them,
activation of EGFR has been identified in several indepen-
dent studies. As revealed by studies from the Massachusetts
General Hospital, 5 out of 9 resistant patient samples have
EGFR activation compared to sensitive samples. This find-
ing has been further confirmed by in vitro experiments
(Sasaki et al., 2011; Katayama et al., 2012; Yamaguchi et al.,
2014). Katayama et al also found high-level of c-KIT gene
amplification in 2 out of 18 resistant samples. Further studies
showed that c-KIT overexpression required stem-cell factor
to promote resistance and that resistance could be over-
come by combined imatinib and crizotinib treatment
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Figure 2. Drug resistance in EGFR mutant lung cancer. Lung ADC with EGFR mutation, such as exon 19 deletion or L858R
substitution, can develop drug resistance after or even before drug treatment. In the first case, after being exposed to EGFR TKI, such
as gefitinib or erlotinib, the tumor becomes resistant through bypass signaling pathway, such as amplification of MET or HER2. Also,
under the pressure of inhibitor, the tumor can develop secondary mutation because of its genetic instability. As for the second case,
the tumor has the capacity of spontaneous evolution before drug treatment. As a result, the tumor also develops secondary mutation.
After drug treatment, the secondary mutation is subjected to selection and the cells with secondary mutation become a majority of the
tumor. Admittedly, it is hard to diagnose in each tumor whether the secondary mutation has already existed before drug treatment or
not. However in both cases, the tumor subsequently treated with the drug, which is targeted to the secondary or third mutation, finally
develops drug resistance, manifesting as holding the third or tertiary mutation.

(Katayama et al., 2012). Upregulation of insulin like growth
factor receptor 1R (IGF-1R) and SRC activity have also been
detected in ALK TKI resistance (Crystal et al., 2014; Lovly
et al., 2014). Furthermore, P2Y receptors were reported to
mediate ALK inhibitor resistance and protein kinase C
played an important role in this process (Wilson et al., 2015)
(Fig. 3).

Based on the exploration of the resistance mechanisms,
multiple second-generation ALK inhibitors functioning as
first-line therapies and crizotinib resistance therapies are
currently applied in clinic, such as ceritinib, or are in clinical
trials, such as alectinib, brigatinib, X-396, PF-06463922, and
TSR-011 (lams and Lovly, 2015; Wilson et al., 2015). How-
ever, resistance to second-generation ALK inhibitors has
also been observed. Katayama et al found a novel V1180L
gatekeeper mutation from a cell line model and a novel
11171T secondary mutation from a patient who developed
resistance to alectinib (Katayama et al., 2014). Another
study suggested that inhibitors of heat shock protein 90
(Hsp90), such as 17-DMAG, ganetespib, and IPI-504, may

overcome ligand-triggered resistance to second-generation
ALK inhibitors (Tanimoto et al., 2014). However, resistance
to Hsp90 inhibition has also been discovered. Expression of
P-glycoprotein has been reported to be associated with
resistance to 17-DMAG (Kim et al., 2015) (Fig. 3).

Genetic evolution and heterogeneity

It is generally accepted that tumors are monoclonal in origin.
That is, only a single cell can cross over the border from
normalcy to malignancy to become the ancestor of the cells
in a tumor mass. As a result, all cells in a tumor are expected
to share common genetic or biochemical markers (Wein-
berg, 2013). However, it is also known that tumors are
composed of several subpopulations with genotypic and
phenotypic heterogeneity. At initiation, the tumor is a rela-
tively homogeneous collection of cells that soon become
heterogeneous due to the continuous acquisition of new
mutations. This acquisition is mostly due to the development
of genetic instability. The clonal evolution model suggests
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Figure 3. EML4-ALK fusion and TKI resistance. Similar to EGFR TKI resistance, lung ADC with EML4-ALK fusion gene also
becomes resistant to ALK TKI in two major ways. One way is due to secondary mutation after crizonib treatment; and cells with third
mutation dominate the tumor after being treated with second-generation ALK inhibitor. Another way is through EGFR activation in

order to compensate the inhibitory effect of ALK inhibitor.

that the genetic evolution among cancer cells is responsible
for cancer progression and heterogeneity in phenotype,
function, and response to therapy (Hockel and Vaupel,
2001).

Tumor initiation and progression are dependent on rare,
stochastic mutations that create genetic variability in a cell pop-
ulation. Most of the spontaneous mutations are neutral or dele-
terious, while disadvantage mutations will be discarded, and
neutral mutations can still retain. Mutations that confer compet-
itive advantages, such as increased proliferation and survival in
the restrictive microenvironment, can be selected for by Dar-
winian forces. As a consequence, these cells have an advantage
in outgrowth and eventual dominance in the local tissue envi-
ronment. Normally, a majority of the tumor cells undergo several
successive mutations and Darwinian selection after the initiating
mutation. This process is called clonal succession, on which the
clonal evolution model is based (Weinberg, 2013). However, a
minority of tumor cells may harbor only one or two advantageous
or neutral mutations. This provides genetic heterogeneity within
atumor. Additionally, cells within different parts of the tumor could
experience different selective pressures before drug treatment,
such as differential interactions with the extracellular matrix,
gradients of oxygen, nutrition, growth factors, and blood supply.
This differential exposure could be another cause of tumor
heterogeneity (Marusyk and Polyak, 2010).

Following drug treatment, the primary stress afflicting
tumor cells is caused by the drug and genetic heterogeneity
might be a reasonable explanation of drug resistance.
Although it is accepted that resistant properties occur after
pharmacological treatment, researchers have found that
some resistance-related mutations exist prior to treatment
(Denis et al., 2015; Gurden et al., 2015). There is also the

possibility that previously advantageous mutations may no
longer benefit the tumor proliferation or survival, but that
previously neutral mutations harbored by a very small frac-
tion of the tumor cells become beneficial under drug expo-
sure. Drug treatment becomes the catalyst for the
accumulation of certain clones that then become detectable.
The preexistence of EGFR TKI resistant cells have been
validated in cell lines as well as in primary human lung
tumors through high-throughput FISH analyses and peptide
nucleic acid-clamping PCR or ultra-sensitive droplet digital
PCR (Turke et al., 2010; Oh et al., 2011; Watanabe et al.,
2015). Darwinian selection will allow tumor cell survival in
patients with pre-existing resistant cells, even if it is a mini-
mal subgroup, when drugs are administered (Gerlinger et al.,
2012; Turtoi et al., 2015). On the other hand, if there are no
pre-existing advantageous mutations against the drug
treatment, the tumor will undergo regression. However,
during this period of drug treatment, residual cells may still
mutate. Tumor cells that adapt to drug treatment by acquiring
additional mutations will dominate the tumor cell population
rapidly. Both pre-existing and later evolving mutations could
lead to detectable genetic alterations. Changes in the cell
population embody the characteristic of cancer plasticity,
which could explain how genetic alterations contribute to
EGFR or ALK resistance.

MODULATING PLASTICITY AND HETEROGENEITY:
AN OPPORTUNITY FOR CANCER TREATMENT

Cell intrinsic and cell extrinsic features contribute to tumor
heterogeneity, which aids cancer cells in acquiring functional
capabilities that allow the malignant cells to survive,
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proliferate, and disseminate through genetic alterations,
epigenetic modifications or subtype transdifferentiation. Cell
extrinsic properties arise from factors in the microenviron-
ment including the composition of the extracellular matrix
and factors sequestered to its constituents, the tumor’s
ability to recruit adequate blood supply, and the recruitment
of stromal cells that aid in tumor growth (Marjanovic et al.,
2013). These diverse aspects help cancer cells fight drug
treatment and eventually develop resistance. However,
studying tumor plasticity and heterogeneity provides us with
more opportunities to fully understand the processes and
molecular mechanisms that underlie drug resistance. It is
therefore reasonable to be optimistic about the future of lung
cancer treatment benefiting from an increased knowledge of
plasticity and heterogeneity (Fig. 4).

Opportunities brought by cancer plasticity can be mani-
fested in treatment. Loss of stem properties in tumor initiating
cells (TICs) (Lovly et al.) can be beneficial for drug treatment
with fewer concerns regarding clinical relapse. Cancer stem
cell differentiation is a new hot spot for such studies. All-trans
retinoic acid (Miller et al. 2004) is an agent that can induce
differentiation and may be effective against residual tumor
cells that are resistant to drug treatment. Moro et al found
that several cycles of all-trans retinoic acid (ATRA) and cis-
platin treatment are able to stably reduce lung TIC and dis-
semination (Moro et al., 2015). The histone deacetylase
inhibitors senistein and C-phycocyanin have been reported
to strengthen the anti-cancer affects of ATRA and reduce the
metastatic potential of lung cancer (Zhou et al., 2012; Cheng
et al., 2015; Greve et al., 2015; Li et al., 2015a). ATRA also
works in the development of drug-resistant neuroblastoma
both in vitro and in vivo (Matthay et al., 1999; Merrill et al.,
2004). In advanced hepatocellular carcinoma, ATRA also
helps against resistance to sorafenib, which is considered as
the first-line treatment of the malignant disease (Guan et al.,
2015). These studies suggest that depriving stem cell func-
tion might be universal and effective in cancer treatments,
including in drug resistance in lung cancer (Fig. 4).

Moreover, the inhibition or interference of the transdiffer-
entiation process may strengthen the effect of TKI treatment
EGFR mutant lung ADC. In a Lkb1-deficient lung cancer
mouse model, the quenching of ROS has been validated to
functionally inhibit the ADC-to-SCC transdifferentiation (Li
et al., 2015b). Although validation of phenotypic transition in
human NSCLC is challenging, the potential for the combi-
nation treatment of ROS scavengers with transition inhibitors
to overcome drug resistance is high. Additionally, impairing
the ability of tumor cells to eliminate accumulated oxidative
stress during metabolically controlled phenotypic transitions
may sensitize tumors to ROS inducing reagent. Awareness
of lung cancer plasticity may affect treatment regiments to
maximize pathological response. If transdifferentiation can
be detected early, corresponding changes to therapy may
benefit patients. On the other hand, a forced transdifferen-
tiation to a complete transformation may make tumors more
sensitive to chemotherapy and radiation than the original

tumor. In this manner, patients may achieve longer period of
disease control and survival via effective chemotherapy and
radiotherapy (Fig. 4).

Plasticity may allow cancer cells to revert back to normal
cells. The discovery of the reversal phenomenon dates back to
the 1970s. It was observed that the injection of blastocysts into
malignant mouse embryonal carcinoma cells reverted them
back into normalcy (Mintz and llimensee, 1975). This shows
the impact of the microenvironment on cancer progression.
Cancer cell reversal to non-malignant cells has been observed
in various types of cancers through transplantation into a
normal adult or embryonic tissue (Lee et al., 2005; Krause
et al., 2010; Bischof et al., 2013; Brock et al., 2015). This
highlights a potential new approach to cancer treatment
helping cancer cells transit back into the normal state.
Recently, the development of systems biology has allowed for
a more efficient exploration of phenotype switching and
identification of essential molecular targets (Brock et al.,
2015). While there are no current applications of cancer-nor-
malcy-transition treatment, new mechanisms are continu-
ously being uncovered. The study of normalcy reversal could
lead to the development of novel cancer therapies one day.

Increasing evidence has shown that inhibition of EMT may
be a possible mechanism of drug resistance. Suppression of
the master EMT-inducer zinc finger E-box-binding homeobox
1 (ZEB1) significantly enhanced the chemosensitivity of
docetaxel-resistant ADC in vitro and in vivo, and ectopic
expression of ZEB1 increased chemoresistance (Ren et al.,
2013). Furthermore, through the screening of established
small anti-cancer molecules in the EGFR mutant NSCLC
HCC827 cell line and a corresponding mesenchymal
derivative cell line, Wilson et al. found that dasatinib, an Abl/
Src inhibitor, was a potential candidate for treatment of erlo-
tinib resistance associated with EMT (Wilson et al., 2014). A
forced EMT experiment also helps finding of agents with
epithelial CSC-specific toxicity. The trial is based on the study
of epithelial CSCs which are enriched in EMT process. The
candidate agent Salinomycin can lead to the loss of
expression of breast cancer stem cell genes in patients
(Gupta et al., 2009). However, recent research shows that
non-cancer stem cells have the potential to dedifferentiate
into cancer stem cells (Chaffer et al., 2011). A major limitation
to the use of agents with CSC-specific toxicity is the possi-
bility for the non-stem cells to convert into cancer stem cells.
However, further research may identify new strategies to
overcome these conflicts, such as finding new agents tar-
geting both cancer stem cells and non-stem cells, or drugs
specifically point to non-cancer stem cells and cancer stem
cells respectively (Gupta et al., 2009).

Heterogeneity, particularly intratumoral heterogeneity,
increases the challenges of cancer subtype classification. It
may lead to the biased analysis of single tumor-biopsy
samples since the sample may represent only a part of the
tumor genomic landscape (Gerlinger et al., 2012). This
represents a potential obstacle to successful biomarker
discovery, validation, and application (Dibben et al., 2012;
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Figure 4. Summary of mechanisms of lung cancer plasticity, heterogeneity and the correlated therapeutics. This model
illustrates the guidance of lung cancer plasticity and heterogeneity in clinical use, especially in drug resistance upon target therapies.
Different therapeutic strategies depend on the unique mechanisms. Histologically, transition from ADC to SCC and switch from
NSCLC to SCLC have been found broadly. Complete transition leads to the using of transited tumor therapy while combinational
treatment is applied to partial transformation. EMT is a special aspect of phenotype alteration. It shows morphological plasticity of lung
cancer with the switch of biological markers. Interfering EMT process can be a bright way to inhibit certain kind of drug resistance. In
addition to histological transition, genetic adaption provides an evident proof for lung cancer heterogeneity. As the intensive study of
cell and molecular mechanism, gene alteration and abnormal activation have been revealed in the drug-surviving cancer cells. More
target-pointed drugs are needed, substitutionally or combinationally. Intratumor heterogeneity reinforces the composition of lung
cancer that changes for adapting to the environment. A typical illustration is the acquirement of stem cell-like property, against which
ATRA is an effective therapy. In terms of targeting genetic heterogeneity, identification of advantageous clones and application of
combinational therapy could provide a better outcome for lung cancer patients.

Gerlinger et al., 2012). Heterogeneity may also partly con-
tribute to the failure of personalized medicine. This highlights
the need for biomarker studies, macro-dissections, and
increased number of biopsies per patient (Dibben et al.,
2012). Although no consensus has been reached, optimized
biopsies may lead to better-targeted therapies or combined
treatments (Fig. 4).

CONCLUSION

In the clinical treatment of lung cancer, drug resistance
remains a frustrating issue. In this review, we attribute this
problem to lung caner plasticity and genetic heterogeneity at
both the histological and genetic levels. More specifically,
these mechanisms include secondary mutations, bypass

signaling pathway, histological transformation from NSCLC
to SCLC, transdifferentiation from ADC to SCC, cancer stem
cell differentiation, and the EMT program. Cancer cell plas-
ticity and genetic alterations further contribute to the tumor
heterogeneity of lung cancer, serving as selective material
under restrictive conditions, such as drug exposure, tumor
microenvironmental and metabolic stress. In these situa-
tions, only more adaptive cells can survive and accumulate
in a tumor. As a result, drug resistance eventually develops.
However, we can hope to be inspired by understanding and
exploiting the mechanisms of plasticity. For instance, we can
utilize oxidative stress scavengers to inhibit transdifferenti-
ation, apply oxidative stress-inducing agents to ROS sensi-
tive tumors, and use certain agents to limit the process of
EMT and cancer stem cell differentiation. Moreover,
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plasticity-induced heterogeneity emphasizes the importance
of the collection of more representative biopsies and the
discovery of more optimized biomarkers for pathological
diagnosis. Lung cancer plasticity and heterogeneity remains
a significant challenge, but there is a real potential to exploit
it in the fight against drug resistance.
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