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RESEARCH NOTE

RBLOSUM performs better 
than CorBLOSUM with lesser error per query
Renganayaki Govindarajan*  , Biji Christopher Leela and Achuthsankar S. Nair

Abstract 

Objective:  BLOSUM matrices serve as standard matrices for many protein sequence alignment programs. BLOSUM 
matrices have been constructed using BLOCKS version5.0 with 27,102 BLOCKS, whereas the latest updated version14.3 
has 6,739,916 BLOCKS. We read with interest the research article by Hess et al. (BMC Bioinform 17:189, 2016) on Cor-
BLOSUM, wherein it is argued that an inaccuracy in the BLOSUM code affects the cluster memberships of sequences. 
They show that replacing the integer based clustering threshold to floating point arguably improves the perfor-
mances of CorBLOSUM over BLOSUM and RBLOSUM matrices. They compare BLOSUM6214.3 against RBLOSUM69, with 
relative entropies of 0.2685 and 0.2662 respectively. The present work attempts to repeat the computation to verify 
the respective analog matrices.

Results:  In our attempt to repeat the computation, we observed that the relative entropy of BLOSUM6214.3 is 0.2360 
and BLOSUM5014.3 is 0.1198. As only matrices of similar entropies can be compared, BLOSUM62 can be compared 
only with RBLOSUM66 and BLOSUM50 can be compared only with RBLOSUM56. We conducted experiments with 
Astral data sets, and demonstrated the improved accuracy in the coverage. Our results imply that RBLOSUM performs 
statistically better than CorBLOSUM and BLOSUM matrices.
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Introduction
Sequence alignment is at the center stage of bioinfor-
matics and amino acid substitution matrices play a 
major role in sequence alignment and homologous 
search. Alignment also serves as an initial method for 
de novo secondary structure prediction of proteins as 
well as knowledge based structure prediction. BLOSUM 
matrices [1] were developed more than two decades 
ago and were empirically derived from BLOCKS [2] 
database version 5.0. BLOSUM50 and BLOSUM62 are 
the two widely used matrices in all alignment programs 
[3]. With the increasing accumulation of sequences in 
public databases, the BLOCKS database has also been 
updated. The latest release of BLOCKS database is ver-
sion 14.3 comprising of 6,739,916 sequences. How well 
the BLOSUM matrix (computed in 1992) is effective in 
faithfully representing the available data is a significant 

question. New set of sequences with varying amino 
acid composition were introduced in different clusters 
of BLOCKS database, that would be either under-rep-
resented or over-represented in the BLOCKSv5 data-
base. Thus the increase in protein conserved regions 
in the BLOCKS database helps in deriving improved 
scoring matrices (see Additional file  1). Development 
and improvement of scoring matrices are crucial for 
identifying and aligning more distant homologs in 
similarity studies (see Additional file  2). Improvement 
in scoring matrices tends to increase the statistical sig-
nificance and accuracy of alignments. Many studies 
have been undertaken on BLOSUM matrices, related to 
recalculating clustering steps [4] and parametrization 
[5]. These studies are seen carried out using the initial 
BLOCKS release version5.0. Hess et  al. have recently 
proposed CorBLOSUM [6] by addressing an inaccu-
racy in the BLOSUM code. They relied on computing 
the matrices by changing the datatype threshold from 
integer to float. They claim that CorBLOSUM is per-
forming better than BLOSUM and RBLOSUM. The 
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expansion of BLOCKS database prompted us to recom-
pute BLOSUM and also RBLOSUM matrices, using the 
latest version of the BLOCKS database.

Main text
Methods
Different BLOSUM matrix variants were created using 
BLOCKS version5, version13+ and version14.3 which 
were obtained from http://block​s.fhcrc​.block​s/uploa​ds/
block​s.tar.gz. The BLOSUM matrices for the updated 
blocks were recomputed using the Henikoff and Henikoff 
[1] algorithm and the source code has been obtained 
from ftp://ftp.ncbi.nih.gov/repos​itory​/block​s/unix/blosu​
m/progr​ams/. Similarly RBLOSUM matrices were rec-
omputed using the algorithm developed by Styczynski 
et al. [4] and the respective programs were obtained from 
http://web.mit.edu/bamel​/blosu​m/revis​ed_blosu​m.c. 
CorBLOSUM [6] matrices were directly obtained from 
http://www.cbs.tu-darms​tadt.de/CorBL​OSUM/. BLO-
SUM50 and BLOSUM62, the most widely used BLOSUM 
matrices, were considered in the present study. In order 
to find the analog matrices in RBLOSUM, matrix com-
puting algorithms were executed for various percentage 
identity thresholds from 45 to 70. The RBLOSUM matrix 
with relative entropy closest to the BLOSUM matrices [4] 
were identified for BLOCKS release version5, version13+ 
and version14.3.

Database
To evaluate the performance of each matrix, ASTRAL 
[7–9] database was used. ASTRAL is a benchmark data 
set, created based on SCOP, which classifies proteins into 
a hierarchical structure of classes, folds, superfamilies, 
and families based on their structure and functionality 
[10, 11]. In ASTRAL40 subset, sequences with more than 
40% identity were eliminated and remaining were used 
for further study. This subset aids in identifying the abil-
ity of the substitution matrix to detect remote homologs. 
This non-redundant set numbering 13761 was obtained 
from http://scop.berke​ley.edu/downl​oads/scope​seq-2.06/
astra​l-scope​dom-seqre​s-gd-sel-gs-bib-40-2.06.fa.

The data set was classified into training and test data 
set, based on folds. The training set consisted of 629-
fold, 1004 super families and 7238 sequences, whereas 
the test set consisted of 626-fold, 1002 super families and 
6522 sequences. Homologous search was performed on 
the training set with different gap opening and extension 
penalty. Gap parameter giving highest coverage was used 
to evaluate the test set. 20,95,25,616 pairwise alignments 
were performed using the training set and it was evalu-
ated for further study.

Search methods
In order to evaluate the effectiveness of the matri-
ces computed based on the Astral subset, homologous 
search study was conducted using Smith-Waterman [12] 
local alignment algorithm. We used the SSEARCH imple-
mentation of the Smith-Waterman algorithm by Pear-
son. SSEARCH [13] has been shown to possess higher 
accuracy than BLAST in assessing the performance of 
different substitution matrices [14]. In addition to gap 
penalties, other parameters were set to default values for 
conducting similarity search. Previous works [15] have 
shown that optimizing gap penalties will boost the per-
formance [16]. These penalties correspond to commonly 
used parameter settings in homology search tools such as 
BLAST [17] and SSEARCH [13]. Homologous search was 
performed for each combination of matrix, gap open and 
gap extension penalties. The best performing gap param-
eter for each matrix, on each of the tested ASTRAL data-
base, was further studied.

Performance evaluation
Pairwise sequence comparison and evaluation method 
(PSCE) developed by Price et al. [18] was used to evaluate 
the statistical significance of the substitution matrices, 
using the Bayesian bootstrap. Bayesian bootstraping is a 
resampling procedure which is operationally similar to 
the standard non-parametric bootstrap [19]. Sequences 
were assigned varying weights drawn from a Dirichlet 
distribution, in the case of Bayesian bootstraping [18]. 
PSCE uses coverage vs. errors per query (CVE) as a 
means to evaluate the effectiveness of the substitution 
matrices. The ability of amino acid substitution match to 
identify true homolog sequence matches were balanced 
against its ability to exclude false positives or unrelated 
sequences. Similar to previous studies [4, 14], coverage 
at 0.01 errors per query (CVE) was used as a means to 
evaluate the effectiveness of substitution matrices.

Results and discussion
Difference in the entropy level
RBLOSUM matrices identified as analogs to BLOSUM 
matrices are displayed in Table 1. For BLOCKS version 5, 
the entropy values are identical to those reported by Hess 
et al. and it is highly similar to verison13+. However, the 
entropy values differ largely for matrices computed using 
version 14.3.

Previous studies have shown that the most appropri-
ate way to compare two family of matrices is via entropy 
analogues. By comparing matrices with the same relative 
entropy, we can better assess the value or the correctness 
of the information encoded in the matrices [4, 20]. There-
fore, different matrices can be compared and analyzed 
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only if the difference of the entropy is relatively smaller 
between the matrices. Table 1 shows the similarities and 
differences of matrix entropies observed in the present 
study and reported by Hess et al.

BLOSUM5014.3 was compared with RBLOSUM59 
(having entropies of 0.1509 and 0.1477 respectively) and 
BLOSUM62 was compared with RBLOSUM69 (having 
entropies of 0.2685 and 0.2662 respectively) reported by 
Hess et al. This comparison has revealed that the entropy 
of BLOSUM5014.3 is 0.1198 and the closest entropy 
observed is that of RBLOSUM56 (entropy of 0.1234). 

Similarly, the entropy for BLOSUM6214.3 is 0.2360 and we 
found RBLOSUM66 as the analog matrix (with entropy 
of 0.2445). Change in entropies clearly lead to different 
analog matrices. The RBLOSUM matrix variants dis-
cussed in this study and reported by Hess are shown in 
Additional file 3: Figure S4.

Hess et  al. report that CorBLOSUM performs better 
in case of Astral data sets > 2.01. Changes in entropy lead 
to different analog matrices, with a few differences in the 
substitution score. In Additional file 4: Figure S5, shows 
the difference between RBLOSUM matrices of the pre-
sent study and the matrix reported by Hess et al.

With the assumption that even slight variation in 
the matrix value may affect performance, authors have 
further done the performance analysis using pairwise 
sequence comparison and evaluation algorithm (PSCE) 
by Price et al. [14, 18].

Evaluation of the matrices
Three different matrix families computed using 
BLOCKSv14.3 were compared and evaluated using dif-
ferent gap opening and extension parameters ranging 
from 11 to 16 and 1 to 2. The highest coverage obtained 
for different tested gap parameter are shown in Addi-
tional file 5: Table S1. The highest coverage was obtained 
for the gap opening and extension penalty of 12 and 1 
respectively. Three matrix families were further evaluated 
on test database with the gap opening and extension pen-
alty of 12 and 1 respectively, [21] using Bayesian boot-
strapping to distinguish statistically. These search results 
were analyzed using CVE plots generated using PSCE 

Table 1  Matrices with  respective entropy values (i) 
reported by Hess et al., (ii) present study

Matrix (i) Hess et al. (ii) Present study

Entropy Bit units Entropy Bit units

BLOSUM505.0 0.4808 1/3 0.4808 1/3

RBLOSUM525.0 0.4918 1/3 0.4918 1/3

BLOSUM62 5.0 0.6979 1/2 0.6979 1/2

RBLOSUM645.0 0.7003 1/2 0.7003 1/2

BLOSUM5013+ 0.2430 1/4 0.1922 1/5

RBLOSUM5913+ 0.2410 1/4 0.2411 1/4

BLOSUM6213+ 0.3672 1/3 0.3173 1/3

RBLOSUM6913+ 0.3601 1/3 0.3601 1/3

BLOSUM5014.3 0.1509 1/5 0.1198 1/6

RBLOSUM5914.3 0.1477 1/5 0.1537 1/5

BLOSUM6214.3 0.2685 1/4 0.2360 1/4

RBLOSUM6914.3 0.2662 1/4 0.2773 1/4

Fig. 1  CVE plot showing the performance difference between the matrices for entropy level 50 and 62 using PSCE under linear normalization. 
a Performance difference between three matrix families for 50 entropy level using PSCE under linear normalization. b Performance difference 
between three matrix families for 62 entropy level using PSCE under linear normalization



Page 4 of 5Govindarajan et al. BMC Res Notes  (2018) 11:328 

tool. Figure 1 reports the CVE plot of different BLOSUM 
families. We reiterate the fact that even slight variation 
in matrix values can influence the performance [22] of 
RBLOSUM than CorBLOSUM. For instance, for entropy 
level 62, the graph in Fig. 1b clearly indicates that RBLO-
SUM66 finds more true homologs with minimum error 
per query than CorBLOSUM and BLOSUM matrices. 
In the case of entropy level 50 (see Fig. 1a), there is not 
much significant difference between the performance of 
RBLOSUM and CorBLOSUM matrices. Though the dif-
ference between the CVE lines are smaller, statistically 
they are significant (see Additional file 6). With quadratic 
normalization, we observed RBLOSUM66 as the best 
scoring matrix with a coverage of 0.451182, as shown in 
Table 2. Thus we argue that RBLOSUM outperforms the 
CorBLOSUM.

In addition to the Astral v2.06, a few more Astral data 
set versions were also included in the analysis to recon-
firm the performance of the matrices. RBLOSUM66 has 
been identified as the matrix with higher coverage and 
lesser error per query, from the inferred results of addi-
tional analysis (see Additional file 7).

Conclusion and recommendation
In this paper, we have highlighted the entropy differences 
observed in RBLOSUM matrices as computed by us with 
that reported by Hess et al. The RBLOSUM matrices cre-
ated in our study are substantially different from RBLO-
SUM of Hess et  al. We have shown that it outperforms 
the CorBLOSUM and BLOSUM matrices. In a few cases 
tested by us, RBLOSUM and CorBLOSUM counterparts 
at the entropy level 50, performed almost equally with 
statistical significance. We emphasize that, with Astral 
dataset 2.06 and a few additional ASTRAL versions of 
dataset, RBLOSUM performs better than CorBLOSUM 
in terms of finding true homologous with less error per 
query. RBLOSUM performs statistically significant for 
the release of Blocks database version14.3. This differ-
ence in result reported by Hess et al. is due to selection 

of analog matrix with non-comparable entropy levels. We 
therefore refute the conclusion of Hess et al.

In a broader canvas, our work points to the need for 
reviewing the cardinal tools and techniques in science, tak-
ing into consideration the high quality data that is emerging 
with the advent of sophisticated instrumentation systems. 
Such investigations may reconfirm or correct existing tools 
and techniques.

Limitation
The main limitation of the study is, different gap param-
eter tests were performed only on Astral v2.06 data set. 
Remaining additional data sets were evaluated using gap 
opening and extension penalty of 12 and 1 respectively, 
which was identified as the best gap parameter in the pre-
sent study.
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