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Abstract
In the rat testis, studies have shown that cell polarity, in particular spermatid
polarity, to support spermatogenesis is conferred by the coordinated efforts of
the Par-, Crumbs-, and Scribble-based polarity complexes in the seminiferous
epithelium. Furthermore, planar cell polarity (PCP) is conferred by PCP proteins
such as Van Gogh-like 2 (Vangl2) in the testis. On the other hand, cell junctions
at the Sertoli cell–spermatid (steps 8–19) interface are exclusively supported by
adhesion protein complexes (for example, α6β1-integrin-laminin-α3,β3,γ3 and
nectin-3-afadin) at the actin-rich apical ectoplasmic specialization (ES) since
the apical ES is the only anchoring device in step 8–19 spermatids. For cell
junctions at the Sertoli cell–cell interface, they are supported by adhesion
complexes at the actin-based basal ES (for example, N-cadherin-β-catenin and
nectin-2-afadin), tight junction (occludin-ZO-1 and claudin 11-ZO-1), and gap
junction (connexin 43-plakophilin-2) and also intermediate filament-based
desmosome (for example, desmoglein-2-desmocollin-2). In short, the
testis-specific actin-rich anchoring device known as ES is crucial to support
spermatid and Sertoli cell adhesion. Accumulating evidence has shown that the
Par-, Crumbs-, and Scribble-based polarity complexes and the PCP Vangl2 are
working in concert with actin- or microtubule-based cytoskeletons (or both) and
these polarity (or PCP) protein complexes exert their effects through changes in
the organization of the cytoskeletal elements across the seminiferous
epithelium of adult rat testes. As such, there is an intimate relationship between
cell polarity, cell adhesion, and cytoskeletal function in the testis. Herein, we
critically evaluate these recent findings based on studies on different animal
models. We also suggest some crucial future studies to be performed.
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Introduction
Spermatogenesis takes place in the seminiferous tubule, the  
functional unit of the testis. It is known that each pair of testes 
in mice and rats produces about 101 and 702 million spermatozoa  
per day in comparison with men, who produce about 200 million  
spermatozoa per day2,3 throughout their entire adult life. Thus, it is  
conceivable that there are enormous cellular activities in the sem-
iniferous epithelium to meet this substantial output. It is noted that  
developing germ cells are aligned in an orderly fashion in the sem-
iniferous epithelium so that they can be nurtured by Sertoli cells 
throughout their development without disruption. Studies have 
shown that germ cells, in particular developing spermatids, are 
highly polarized cells in the testis. For instance, spermatid heads 
from steps 8–19 in the rat (or steps 8–16 in the mouse) testis align 
almost perpendicularly toward the basement membrane whereas  
the tails point toward the tubule lumen. This alignment ensures that  

the maximal number of developing elongating/elongated sperma-
tids are packed in an orderly fashion in the limited space of the 
seminiferous epithelium to support this sperm output4–6. On the 
other hand, Sertoli cells are also highly polarized cells in the sem-
iniferous epithelium. For instance, tight junction (TJ) and basal  
ectoplasmic specialization (ES) are restrictively localized toward 
the base of the Sertoli cell, closest to the basement membrane; 
and nucleus, Golgi apparatus, and lysosomes are conspicuously 
located toward the base of the Sertoli cell (Figure 1). This morpho-
logical layout is also important to support spermatogenesis so that  
pertinent physiological and cellular events can take place in an  
orderly manner in the cellular compartments. Studies in the last 
decade have shown that the three polarity complexes that confer 
apico-basal polarity found in Drosophila, Caenorhabditis elegans 
and other mammalian cells7–10 are also present in the testis as they 
are also necessary to support spermatid and Sertoli polarity as 

Figure 1. Distribution of the three polarity protein complexes (or modules) and the Van Gogh-like 2 (Vangl2)-based complex in 
the seminiferous epithelium of adult rat testes.  As discussed in the text and based on recently published findings, the Par-based 
and the Vangl2-based complexes are the only corresponding polarity protein and planar cell polarity (PCP) protein complexes found at or 
near the Sertoli cell–spermatid interface known as the apical ectoplasmic specialization (ES). However, all three polarity protein complexes 
and the Vangl2-based PCP complex are detected at the basal ES/blood-testis barrier. Studies have shown that all three polarity protein 
complexes and the Vangl2-based PCP protein complex exert their regulatory effects through the F-actin–based cytoskeleton by modulating 
the spatiotemporal expression of actin regulatory proteins (for example, Eps8, Apr3, and palladin) at the ES. Studies have also shown that the 
Vangl2-based complex is structurally linked to the Scribble16. Since the polarized microtubules (MTs)—as noted by the presence of the fast 
(+, plus) growing end versus the slow (−, minus) growing end—are intimately related to the actin microfilaments at the ES and since studies 
based on the three animal models have shown that the MT-based cytoskeleton is also involved in changes at the ES integrity induced by 
adjudin, F5-peptide, or formin 1 expression level, it is likely that MT is also one of the regulatory targets of the polarity protein complexes and 
Vangl2-based PCP protein complex. This possibility requires additional investigation in future studies.
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well as their adhesive function, including the Par-11–13, Scribble-14, 
and Crumbs-based15 polarity complexes. Furthermore, many of 
the partner proteins that are known to support the physiologically  
important functions of these three polarity protein complexes4,7,8 
also are found in the Drosophila testis11,14,15. Recent studies have 
shown that, besides these cell polarity proteins, planar cell polar-
ity (PCP) proteins, such as Vangl2 (Van Gogh-like 2), the mam-
malian homolog of Van Gogh, Vang, protein in Drosophila, are also 
found in the testis16. Unlike cell polarity proteins, PCP proteins are 
crucial to confer convergent extension during embryogenesis such  
as gastrulation so that tissue narrows (that is, convergent) along 
one axis concomitant with elongation (extension) along a perpen-
dicular axis as the result of polarized cell migration to generate  
antero-posterial axis17–19. In adult tissues, the most obvious PCP 
is seen in hair cells of the cochlear and cuticular hair cells of the  
insect as well as in developing spermatids, ensuring alignment of a 
field of polarized cells within the plane of the epithelium20–22.

Recent studies using several animal models have unequivocally 
demonstrated the significance of cell polarity proteins and also 
PCP proteins in spermatogenesis. Interestingly, these studies using 
different animal models have shown that, at least in developing 
spermatids, the ultrastructure that plays a crucial role to confer cell 
polarity and PCP is the testis-specific actin-rich adherens junction 
called ES23–28. The ES is found either at the Sertoli cell–spermatid 
interface (steps 8–19 in the rat testis or steps 8–16 in the mouse 
testis), known as the apical ES, or at the Sertoli cell–cell interface 
called the basal ES (Figure 1). Furthermore, disruption of either 
cell polarity or PCP protein function in the testis is often associated 
with a disruption of spermatid adhesion, leading to early release 
of spermatids from the seminiferous epithelium. Thus, cell polarity 
and PCP proteins are critical components of spermatid adhesion 
in the testis. More importantly, a disruption of either cell polarity  
or PCP protein function is often associated with a disruption of 
both actin- and microtubule (MT)-based cytoskeletal organization.  
These findings illustrate that cell polarity or PCP function is  
intimately related to the two cytoskeletal elements in the testis. In 
this review, we critically evaluate these recent findings and this  
information should provide a better understanding of spermatid  
development during spermatogenesis and may provide better 
approaches for non-hormonal male contraceptive development.  
Such data will also provide insightful information to assist in 
the management of some currently unexplained cases of male  
infertility.

Role of cell polarity in Sertoli and spermatid 
adhesion during spermatogenesis
Studies using different animal models have shown that changes 
in spermatid polarity often are associated with subsequent disrup-
tion of spermatid adhesion because of subtle changes in cytoskel-
etal organization in the seminiferous epithelium25,29–32. In several 
of these animal models, these observations have demonstrated 
unequivocally that spermatid polarity is supported by (i) the actin 
filament bundles at the Sertoli cell–elongating/elongated spermatid  
interface known as the apical ES and (ii) the adjacent MT  
network near the apical ES. Disruption of elongating/elon-
gated spermatid polarity is the result of apical ES degeneration 
(or its malfunction) and disorganization of the supporting actin  

microfilaments. This leads to spermatid exfoliation, which is lim-
ited to elongating/elongated spermatids that reside at or near the 
tubule lumen, regardless of the stages of the epithelial cycle. This 
is manifested by the release of elongating/elongated spermatids 
analogous to spermiation in stages other than stage VIII tubules. 
However, if the track-like structures conferred by MTs are also 
disrupted, elongating/elongated spermatids without functional  
apical ES are trapped deep inside the epithelium, and step  
19 spermatids are persistently detected in the seminiferous  
epithelium in stage IX–XIV tubules until they are phagocytosed 
and lysed by the Sertoli cells. These findings thus support the notion 
that spermatid polarity is intimately related to the functional status 
and organization of F-actin or MTs (or both) in the seminiferous 
epithelium.

For Sertoli cells, cell adhesion function can be readily assessed 
and quantified by monitoring the TJ-permeability barrier across the 
Sertoli cell epithelium by using cells cultured on Matrigel-coated 
bicameral units, as earlier described33–36. Studies that monitor  
the Sertoli cell–TJ barrier function have shown that the use of a 
loss-of-function approach by RNA interference (RNAi) has dem-
onstrated unequivocally that all three polarity proteins play a role 
in conferring the Sertoli cell–TJ barrier function. Furthermore,  
the cell polarity complexes (that is, the Par-, Scribble-, and 
Crumbs-based complexes) and the PCP protein complex (for 
example, Vangl2/Prickle complex) have recently been shown 
to modulate the F-actin- or MT-based (or both) cytoskeletal  
function4,5,11,14,15. For most of the discussion on cell polarity, we 
focus our attention on the cell polarity proteins since there is only a 
single report on PCP protein Vangl2 in the literature16. Herein, we 
evaluate these findings as follows.

Adjudin model
Adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide, 
is an indazole-based chemical synthesized in the late 1990s and  
shown to be a non-hormonal and reversible male contraceptive 
in rats37–39 and rabbits40 following its administration by oral gav-
age. Adjudin exerts its anti-fertility effects by disrupting the  
apical ES initially which takes just ~6–8 hr to occur, to be fol-
lowed by a disruption of the desmosome and gap junction 
which takes ~3–6 days to be seen. This causes extensive germ 
cell exfoliation, and virtually all tubules are eventually devoid 
of germ cells within about 1–2 weeks31,41,42. Since the popula-
tion of undifferentiated spermatogonia and Sertoli cells is not 
notably affected, spermatogenesis rebounds and germ cells 
of all classes gradually re-populate the entire seminiferous  
epithelium with a return of fertility43,44. Because of these observa-
tions, rats treated with a single dose of adjudin at 50 mg/kg body 
weight (b.w.) by inducing germ cell exfoliation, most notably  
elongating/elongated spermatids42, have been used to study the 
biology of spermiation by identifying the proteins, genes, and sign-
aling molecules and signaling pathways pertinent to the regulation 
of spermatid adhesion and de-adhesion45–51. However, it was noted 
that, within about 6–9 hours following a single dose of adjudin  
treatment, there was extensive disruption of spermatid polarity  
wherein spermatid heads no longer pointed to the basement  
membrane perpendicularly but deviated by as much as 90° from the 
normal orientation and often by 180°11,31,52, illustrating that spermatid  

Page 4 of 10

F1000Research 2017, 6(F1000 Faculty Rev):1565 Last updated: 25 AUG 2017



polarity is grossly affected. These changes usually occur at the 
time spermatids begin their detachment from the Sertoli cell in the 
seminiferous epithelium11. In fact, studies have shown that adjudin 
perturbs the distribution of polarity proteins Par611 and Scribble14  
in the seminiferous epithelium of adult rat testes following  
treatment with a single dose of adjudin (50 mg/kg b.w.) adminis-
tered by oral gavage. For instance, within 12 hours of treatment with 
adjudin, Scribble is no longer highly expressed at the blood-testis  
barrier (BTB) in the epithelium14. Scribble is considerably dimin-
ished at the BTB by 2 days, and by 4 days, the expression of Scrib-
ble was virtually non-detectable at the BTB14. On the other hand, 
Par6 is expressed predominantly at the basal ES/BTB but also at 
the apical ES and co-localizes with occludin at the BTB, and nec-
tin-3 is also expressed at the apical ES11. Treatment of rats with 
adjudin for 12 hours considerably downregulated Par6 expression 
at the basal ES/BTB but upregulated Par3 expression at the api-
cal ES, and Par6 is no longer tightly associated with the elongated 
spermatid heads but appeared as aggregates that moved away from 
the apical ES site11. In this context, it is of interest to note that a 
knockdown of Par3, Par6, or Crb3 by RNAi using corresponding 
specific small interfering RNA (siRNA) duplexes perturbs the Ser-
toli cell–TJ barrier function, making it “leaky” because of an inter-
nalization of either TJ or basal ES proteins at the Sertoli cell–cell  
interface11,15, thereby failing to support the barrier function. In 
contrast, a triple knockdown of Scribble and its partner proteins 
Dlg 1 (Discs large 1) and Lgl2 (Lethal giant larvae 2) by RNAi 
promotes the Sertoli cell–TJ barrier function, making it “tighter”14.  
Furthermore, triple knockdown of Scribble, Dlg1, and Lgl2 by 
RNAi in the testis in vivo promotes the Sertoli cell–TJ barrier func-
tion by recruiting more occludin to the basal ES/BTB through an  
increase in F-actin distribution at the site14. Collectively, these find-
ings illustrate that the Par- and Crb3-based polarity complexes  
promote the Sertoli cell–TJ barrier function by making it “tighter” 
in normal testes but that Scribble promotes the Sertoli cell–TJ  
barrier by making it “leaky” in normal testes. In short, the Par/
Crb3- and the Scribble-based complexes serve as molecular 
switches to make the TJ barrier either “tight” or “leaky”. This 
notion is in agreement with the function of these three polar-
ity complexes in other mammalian cells or tissues (or both) in 
which the Par- and Crumbs-based polarity complexes are usu-
ally working in concert but their localization or function or 
both are mutually exclusive (that is, antagonizing) with the  
Scribble-based polarity complex to control apico-basal  
polarity4,7,8. Nonetheless, the adjudin-mediated downregulation 
on the steady-state protein levels of Par6 and its associated pro-
teins such as JAM-C11, and also Scribble and its partner proteins 
Dlg1 and Lgl214, compromises the intriguing spatiotemporal 
functional relationship between these three polarity complexes in 
the seminiferous epithelium to support cell polarity function and 
spermatogenesis. This adjudin-induced loss of polarity proteins in 
the testis also perturbs the ability of Sertoli cells to support sper-
matid polarity through the only anchoring device at the Sertoli  
cell–spermatid interface (from step 8 to step 19 spermatids in  
the rat testis) called apical ES. It is noted that the most remark-
able feature of the apical ES is the array of actin microfilament  
bundles found in the Sertoli cell that are sandwiched in between the 
cisternae of endoplasmic reticulum and the apposing Sertoli–sper-
matid plasma membranes (Figure 1). Thus, it is logical to speculate 

that spermatid polarity is dependent mostly on the F-actin–based 
cytoskeleton, which is likely the regulatory target of the cell polar-
ity proteins. In fact, findings from several studies have supported 
this concept. First, a knockdown of Par3 or Par6 by RNAi using 
specific siRNA duplexes versus non-targeting negative control 
duplexes in Sertoli cells has shown that a loss of either Par3 or 
Par6 leads to mis-localization of both TJ proteins (for example, 
JAM-A and ZO-1) and basal ES proteins (for example, N-cadherin 
and α-catenin), which are known to use F-actin for attachment11,  
supporting the notion that the F-actin organization has been 
disrupted. Second, a knockdown of Crb3 by RNAi in Sertoli  
cells also grossly perturbs the organization of actin microfila-
ments across the cell cytosol, wherein actin microfilaments no  
longer stretch across the entire cell but become extensively  
truncated15. Furthermore, Crb3 knockdown Sertoli cells are 
shown to have considerable reduction in their capability to induce 
actin bundling based on a biochemical assay15. In contrast, a tri-
ple Scribble/Dlg1/Lgl2 knockdown in a Sertoli cell epithelium  
promotes re-organization of F-actin at the cell cortical zone to bet-
ter support tighter TJ barrier function14. Taken collectively, these 
findings demonstrate unequivocally that one of the targets by which  
polarity protein complexes exert their regulatory function is the 
cytoskeleton. Perhaps this is mediated by recruiting actin or MT 
regulatory proteins (or both) to the corresponding cytoskeletal  
network to modify its organization through the binding partners  
of the cell polarity complex. Consistent with these findings, a recent 
study by silencing PCP protein Vangl2 in Sertoli cells using  RNAi 
also impeded the organization of F-actin across the Sertoli cell  
cytosol wherein actin microfilaments were grossly truncated, and 
the ability of the Vangl2-silenced Sertoli cells to induce actin fila-
ment bundles was also considerably perturbed16. Thus, the PCP 
protein Vangl2/Prickle complex also exerts its regulatory effects 
through changes in F-actin–based cytoskeletal organization.

F5-peptide and NC1 peptide models
In adult rat testes, cellular events that take place across the  
seminiferous epithelium during the epithelial cycle are known 
to be coordinated by a local functional axis known as the apical  
ES-BTB-basement membrane axis53,54. This axis functionally  
connects different major structural components across the epi-
thelium to coordinate cellular events involving autocrine-based 
factors generated locally. For instance, during the release of 
sperm transformed from step 19 spermatids at spermiation at 
stage VIII of the epithelial cycle, a surge in matrix metallopro-
tease 2 (MMP-2) expression at the apical ES facilitates the cleav-
age of the apical ES adhesion protein complex α6β1-integrin/ 
laminin-α3β3γ355–58. This generates biologically active fragments 
of laminin chains59 (such as F5-peptide, a 50–amino acid peptide 
derived from domain IV of laminin-γ3 chain60), which are capable 
of inducing further apical ES breakdown to promote its degenera-
tion in order to facilitate spermiation61. More importantly, studies 
have shown that these biologically active fragments such as F5-pep-
tide are also capable of inducing remodeling of the Sertoli cell BTB 
near the basement membrane both in vitro and in vivo59–61. Addi-
tionally, these biologically active peptides are able to modulate the 
basement membrane function by downregulating the expression of  
β1-integrin, a component of hemidesmosome at the Sertoli  
cell–basement membrane interface59. In the testis, the basement 
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membrane is a modified form of extracellular matrix62,63, and  
the observation that biologically active peptides derived from 
the apical ES could modulate the basement membrane function 
prompted us to examine whether a manipulation of β1-integrin, a 
hemidesmosome protein, could modify the BTB function. Indeed, 
a knockdown of β1-integrin in Sertoli cells cultured in vitro with 
an established TJ-permeability barrier by more than 80% by RNAi 
was found to considerably downregulate the steady-state level  
of TJ adaptor protein ZO-159. This impeded the localization of 
TJ-integral membrane protein occludin and basal ES-integral mem-
brane protein N-cadherin, failing to support the BTB function59. 
These findings are physiologically significant since they illustrate 
the presence of a local functional loop between the BTB and the  
basement membrane to modulate local cellular events essential to 
spermatogenesis. Subsequent studies have also demonstrated that 
non-collagenous 1 (NC1) domain released from collagen α3 (IV) 
chain64, likely via the action of MMP-9 which is highly expressed 
in the basal region of the seminiferous epithelium65, in the base-
ment membrane is capable of modifying BTB dynamics64. It is 
through this local regulatory axis, involving locally produced and 
biologically active peptides such as the F5-peptide and the NC1 
domain peptide, that the three ultrastructures across the seminifer-
ous epithelium, namely the apical ES, BTB/basal ES, and basement 
membrane/hemidesmosome, are functionally connected and coor-
dinated. This supports the cellular events of spermiation and BTB 
remodeling that take place concurrently but at opposite ends of the 
seminiferous epithelium. Interestingly, it was noted that overexpres-
sion of F5-peptide by transfecting testes in vivo with a mammalian 
expression vector pCI-neo containing the full-length F5-peptide 
cDNA (or through direct administration of the synthetic F5-peptide 
into the testis), this led to extensive germ cell exfoliation besides 
reversible disruption of the Sertoli cell BTB integrity60,61. Thus, 
besides perturbing the apical and basal ES function, the F5-peptide  
is capable of disrupting desmosome, the major anchoring junc-
tion between step 1–7 spermatids/spermatocytes and Sertoli cells. 
More importantly, following overexpression of F5-peptide in the 
testis, many elongating/elongated spermatids displayed defects 
of polarity since these spermatids had their heads pointing more 
than 90° away from instead of aligning perpendicular to the base-
ment membrane, and some spermatid heads even pointed toward 
the tubule lumen60. Since the transfection efficiency based on the 
use of a Polyplus in vivo-jetPEI as a transfection medium was esti-
mated to be about 60–70%, which is almost twice as high when 
compared with a conventional transfection medium, the number of 
tubules that were shown to be affected was also about 70% in the 
study61. This loss of spermatid polarity eventually led to germ cell  
exfoliation, and up to about 70% of the tubules were found to 
be devoid of spermatids, illustrating that the F5-peptide has the  
potential to become a male contraceptive peptide if the transfec-
tion efficacy can be further improved. Nonetheless, F5-peptide can 
be used to improve the bioavailability of adjudin when it can be 
co-delivered with adjudin using a multidrug nanoparticle-based 
approach66. More importantly, F5-peptide was found to induce 
extensive disruption of the F-actin- and MT-based cytoskeletons  
in the seminiferous epithelium of rat testes following its  
overexpression in vivo. Most notably, the track-like structures  
conspicuously conferred by MTs and also some by F-actin that 
laid perpendicularly against the basement membrane, and stretched 
across the seminiferous epithelium were largely disrupted in the 

affected tubules61. These track-like structures were either broken, 
considerably diminished or laid at right angles to the longitudinal 
axis of the tubule. This illustrates that the tracks that supported 
spermatid transport (and other organelle transport such as residual  
bodies, phagosomes, and endocytic vesicles) in the Sertoli cell  
were grossly perturbed. As such, even though the anchoring 
device—the apical ES—was grossly disrupted, many elon-
gated spermatids were embedded deeply inside the seminiferous  
epithelium, even in stage IX, X, XI, XII, and XIII tubules61. They 
failed to be emptied into the tubule lumen versus other elongated 
spermatids because there were no tracks to support their transport  
to the tubule lumen for spermiation. These spermatids were eventu-
ally phagocytosed and eliminated by Sertoli cells61. Furthermore, 
many multinucleated round spermatids were noted in affected 
tubules, and these multinucleated spermatids were surrounded 
by MTs, destined to be degenerated via lysosomal degradation61. 
This observation confirms the disruption of intracellular trafficking 
events due to a failure in endocytic vesicle transport mechanisms, 
resulting from the loss of the MT- and actin-based track-like struc-
tures as noted in other mammalian cells or tissues67–70. In short, the 
MT- and F-actin–based cytoskeletons as the target of the F5-peptide  
and their disruption leads to changes in spermatid polarity and  
adhesive function, causing either their eventual premature release 
from the epithelium or their failure to be transported across the epi-
thelium to support spermatogenesis. These findings also illustrate 
that the cytoskeleton networks, which connect the infrastructures of 
cell junctions across the epithelium and which also support multi-
ple cellular events along the length of the epithelium, are the target 
to the F5-peptide. However, it remains to be investigated whether 
the F5-peptide is working in concert with the Par-, Crumbs-,  
Scribble-, or Vangl2-based complexes to modulate spermatid  
polarity and adhesion through changes in the cytoskeletal function 
in the testis.

Formin 1 model
Formin 1, a 180-kDa polypeptide, is a member of the formin  
family of proteins which are known to nucleate actin, resulting in 
the development of long stretches of actin microfilaments rapidly, 
and also to stabilize MTs71–75. A functional formin 1 nucleator is 
a dimeric protein, besides serving as the major actin nucleator 
that promotes formation of linear actin filament from the barbed 
end (also the fast growing plus (+) end) of an existing filament, 
is also capable of bundling actin filaments through its F-actin  
bundling domain76,77. This makes it also an actin bundler by 
organizing actin filaments into bundles such as those found at the  
apical and basal ES. More importantly, each formin 1 polypeptide 
chain contains an MT-binding domain (MTB) near its N-terminal  
region74,76, which is known to play a role in stabilizing MTs in  
mammalian cells. Since the F-actin- and MT-based networks are 
closely localized to support apical and basal ES function23,78,79, the 
predominant presence of formin 1 at the basal ES/BTB in stage  
VI–VII, but not VIII, tubules80 thus supports the notion that formin 
1 is nucleating actin microfilaments while being involved in the 
assembly of actin filament bundles and the stabilization of the  
MT network at the ES in stage VI–VII tubules. The absence 
of formin 1 at both the apical and basal ES sites in the seminif-
erous epithelium at stage VIII of the epithelial cycle80 is also  
necessary to support the release of sperm at spermiation and the 
transport of preleptotene spermatocytes across the BTB in stage VIII 
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tubules by downregulating actin nucleation processes at both sites.  
Furthermore, formin 1 in stage VI-VII tubules co-localizes with 
MTs81, confirming the notion that formin 1 is crucial to MT dynam-
ics besides its role as a nucleator of actin microfilaments. In the 
testis, a knockdown of formin 1 in the testis in vivo by RNAi was 
found to induce premature release of spermatids from the epithelium 
in stage VI, VII, and early VIII tubules80,81. This is likely due to the 
loss of the ability of the apical ES to maintain its adhesion function 
because of a failure in actin nucleation activity conferred by formin 1.  
However, in many stage IX tubules, numerous elongated sperma-
tids remained embedded deep inside the epithelium, and many of 
these step 19 spermatids had defects in polarity as noted by their 
heads pointed toward the tubule lumen, at least 90° deviated from 
the basement membrane80,81. Furthermore, phagosomes that should 
have been transported to the base of the tubules for their eventual 
degradation via the lysosomal pathway in stage VIII tubules82 as 
noted in control testes were found to be conspicuously present in 
the epithelium near the tubule lumen in stage IX-X tubules fol-
lowing the knockdown of formin 1 in the testis80,81. Subsequent 
studies have shown that such defects, namely the loss of sper-
matid polarity and defects on spermatid adhesion and spermatid/
organelle transport, were the result of disruptive changes in the 
organization of F-actin and MTs. In brief, the track-like structures 
conferred by F-actin and also MTs were considerably diminished 
following formin 1 knockdown in the testis81, so that spermatids, 
even in the absence of functional apical ES to support spermatid 
adhesion, failed to be transported to the tubule lumen to undergo 
spermiation due to the lack of track-like structures to sustain 
their support. These findings also demonstrate unequivocally that  
spermatid polarity is a cytoskeleton-dependent cellular function, 
supported by both the actin- and MT-based cytoskeletons. It remains 
to be investigated whether formin 1 knockdown would perturb the 
spatiotemporal expression of the Par-, Crumbs-, or Scribble-based 
polarity complexes (or a combination of these) or the Vangl2-based 
PCP protein complex.

Concluding remarks and future perspectives
As briefly reviewed herein, cell polarity is intimately related to the 
underlying actin- and MT-based cytoskeletons that support cell 

adhesion protein complexes and the three cell polarity modules 
plus the Vangl2-based PCP protein complex. However, except for 
the adjudin model, changes in the spatiotemporal expression of the 
three cell polarity complexes have yet to be examined, even though 
there are obvious defects in spermatid polarity in both animal  
models. Furthermore, it is now known that the PCP protein complex 
Vang/Prickle exerts its effects to modulate F-actin organization by 
inhibiting polymerization of actin microfilaments83–85, and Vangl2 
is also known to be highly expressed at the basal ES/BTB and  
localized also in the track-like structures conferred by either  
F-actin- or MT-based cytoskeleton in the seminiferous epithelium 
of adult rat testes16. However, it remains to be examined whether 
the Vangl2/Prickle signaling pathway is involved in the three  
animal models, contributing to the phenotypes summarized  
herein. Much work is needed in the next few years to precisely 
identify the mechanism(s) and also the participating molecules by 
which polarity complexes or PCP protein complexes (or both) exert 
their effects to modulate the organization of F-actin and MTs in 
the testis.
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