食品安全分离分析-功能性吸附材料专栏,研究论文

DOI: 10.3724/SP.J.1123.2022.03002

基于 SiO₂ @ Fe₃ O₄ 的磁性纳米材料分离富集 谷物中痕量黄曲霉毒素 B₁

李晓晗¹, 路莹莹¹, 董永贞¹, 江 丰², 范志勇², 潘 晖³, 刘明军³, 陈翊平^{1*}

(1. 华中农业大学食品科学技术学院,湖北 武汉 430070; 2. 湖北省食品质量安全监督检验研究院,湖北 武汉 430071; 3. 荆州市食品药品检验所,湖北 荆州 434000)

摘要:将 SiO₂ 包覆的 Fe₃O₄ 磁性纳米材料(SiO₂@ Fe₃O₄)表面偶联识别黄曲霉毒素 B₁(AFB₁)的抗体(Ab),用于 特异性分离富集谷物中的 AFB₁,进而与高效液相色谱-串联质谱法(HPLC-MS/MS)结合,用于大米、玉米和小麦中 AFB₁的高效准确检测。采用微波辅助水热合成法制备得到 Fe₃O₄ 磁性纳米颗粒,并用 100 µL 正硅酸乙酯 (TEOS)对其进行 SiO₂ 的包覆,得到 SiO₂@ Fe₃O₄ 磁性纳米材料,随后进行抗体的偶联得到 Ab-SiO₂@ Fe₃O₄;以 pH=7.4 的磷酸盐缓冲液(PBS)作为富集缓冲液,加入 8 mg Ab-SiO₂@ Fe₃O₄,在 37 ℃下反应 10 min 进行 AFB₁ 的分离富集,随后采用甘氨酸-盐酸(Gly-HCl)缓冲液对 Ab-SiO₂@ Fe₃O₄ 分离富集的 AFB₁ 进行洗涤,将洗涤液氮 吹后复溶,采用高效液相色谱-串联质谱法检测。在最佳条件下,方法检测 AFB₁ 的线性范围为 2~50 µg/L,相关系 数(R^2)>0.99,检出限为 0.04 µg/kg,定量限为 0.13 µg/kg。在 4 个不同加标水平下,AFB₁ 在 3 种谷物基质中的 加标回收率为 76.21%~92.85%, RSD < 5.29%。大米、玉米和小麦等实际谷物样品中 AFB₁ 的测定结果显示,在 1 个小麦样品和 2 个玉米样品中检出 AFB₁,其含量分别为 0.38、0.13 和 0.47 µg/kg,其他样品中并未发现 AFB₁。 方法将磁性纳米材料与 HPLC-MS/MS 相结合,实现了 AFB₁的高效分离富集,富集材料成本低廉,储存性能好,在 30 min 内即可完成前处理过程,可在较短的时间内实现大批量样品的实际分析,在谷物中真菌毒素的检测方面具 有良好的应用前景。

关键词:高效液相色谱-串联质谱;磁性纳米粒子;黄曲霉毒素 B₁;谷物;抗体 中图分类号:O658 文献标识码:A 文章编号:1000-8713(2022)08-0694-10

Separation and enrichment of trace aflatoxin B_1 in grains by magnetic nanomaterials based on $SiO_2@Fe_3O_4$

LI Xiaohan¹, LU Yingying¹, DONG Yongzhen¹, JIANG Feng², FAN Zhiyong², PAN Hui³, LIU Mingjun³, CHEN Yiping^{1*}

(1. College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;

2. Hubei Provincial Institute for Food Supervision and Test, Wuhan 430071, China;

Abstract: In this study, a magnetic nanomaterial antibody (Ab)-SiO₂@ Fe₃O₄ was synthesized, which was employed to absorb aflatoxin B₁ (AFB₁) in complicated grain matrices. The Ab-SiO₂ @ Fe₃O₄ material was then paired with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for subsequent accurate detection. The Ab-SiO₂@ Fe₃O₄ material has a specific adsorption capacity for AFB₁ because of the stable and specific biological binding between antigen and antibody. This process can achieve the identification between the material

^{3.} Jingzhou Institute for Food and Drug Control, Jingzhou 434000, China)

收稿日期:2022-03-03

^{*} 通讯联系人.E-mail:chenyiping@mail.hzau.edu.cn.

基金项目:教育部环境食品学重点实验室科研专项(2662020SPPY014);岭南现代农业实验室自主科研项目(NZ2021036).

Foundation item: Fundamental Research Funds for the Central Universities (No. 2662020SPPY014); Laboratory of Lingnan Modern Agriculture Project (No. NZ2021036).

and food matrix quickly, thereby completing the separation and enrichment process. Then, high sensitivity and high accuracy HPLC-MS/MS were employed for signal readout and actual quantification, which can significantly increase the detection efficiency and enable high-throughput detection of numerous samples. In the pretreatment process, Fe_3O_4 was first synthesized by microwave-assisted hydrothermal synthesis within 1 h, and Ab-SiO₂@ Fe₃O₄ was then produced using the enhanced Stober's approach. This material with high adsorption performance was synthesized under relatively mild conditions and short time. To obtain Ab-SiO₂@ Fe₃O₄ materials with uniform particle size, magnetic properties, and dispersibility that met the requirements, synthesis conditions of Ab-SiO₂@ Fe₃O₄ and conditions for capturing the AFB₁ target were analyzed. The findings demonstrated that the best effect was obtained when the dosage of $FeCl_3$. $6H_2O$ was 10.0 mmol, the heating time was 40 min, and 100 μ L tetraethoxysilane was employed for SiO₂ coating. The AFB₁ antibody was then combined with the surface of SiO₂@ Fe₃O₄ under several conditions. The findings revealed that the best coupling efficiency of Ab could be obtained when the concentration of 2-morpholinoethanesulfonic acid monohydrate (MES) was 10 mmol/L, pH was 6.5, and the molar ratio of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC): N-hydroxysuccinimide substances (NHS) was 2:1. The coupling buffer was then selected as phosphate buffer (PBS) with pH=7.4, and 8 mg Ab-SiO₂@ Fe₃O₄ was employed to separate and enrich AFB_1 at 37 $^{\circ}C$ for 10 min. In the actual detection, acetonitrile-water-formic acid (85:10:5, v/v/v) was employed as the extraction solution. After ultrasonic extraction for 10 min, Ab-SiO₂@ Fe₃O₄ was employed to separate and enrich AFB₁ in the extract. The supernatant was dried with nitrogen and reconstituted with 1-mL acetonitrile. The solution was then filtered through a 0.22 µm filter and detected using HPLC-MS/MS, thereby realizing the quick and quantitative detection of AFB_1 . AFB_1 had an excellent linear relationship in the range of $2-50 \ \mu g/L$ under the optimal analytical conditions, and the correlation coefficient was less than 0.99. The LOD was 0.04 μ g/kg, and the LOQ was 0.13 μ g/kg. The spiked recoveries of AFB₁ in three grain matrices ranged from 76. 21% to 92. 85% with RSD \leq 5. 29% at four different spiked levels. The approach was applied to the determination and analysis of AFB_1 in 30 real grain samples of rice, corn, and wheat. The findings demonstrated that AFB_1 was detected in one wheat sample and two corn samples, and its content was 0.38, 0.13, and 0.47 $\mu g/kg,$ respectively, and no toxins were found in other samples. The approach combined Ab-SiO₂@ Fe_3O_4 magnetic nanomaterials with HPLC-MS/MS, which could obtain high-efficiency separation and enrichment of AFB₁. Furthermore, the low-cost Ab-SiO₂@ Fe₃O₄ could be stored for more than a week and complete the pretreatment process within 30 min. This effective pretreatment process combined with HPLC-MS/MS could realize the analysis of several samples within a short time, and had a promising application prospect in the detection of AFB_1 in grains. **Key words**: high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/ MS); magnetic nanoparticles; aflatoxin B_1 (AFB₁); grain; antibody (Ab)

引用本文:李晓晗,路莹莹,董永贞,江丰,范志勇,潘晖,刘明军,陈翊平. 基于 SiO₂@ Fe₃O₄ 的磁性纳米材料分离富集谷物中痕量黄曲霉毒素 B₁. 色谱,2022,40(8):694-703.

LI Xiaohan, LU Yingying, DONG Yongzhen, JIANG Feng, FAN Zhiyong, PAN Hui, LIU Mingjun, CHEN Yiping. Separation and enrichment of trace aflatoxin B_1 in grains by magnetic nanomaterials based on $SiO_2@$ Fe $_3O_4$. Chinese Journal of Chromatography, 2022,40(8):694–703.

谷物在生长、储存和运输过程中容易受到真菌 毒素污染。黄曲霉毒素作为真菌毒素的代表种类之 一,是迄今为止发现的最强致癌物^[1],其中黄曲霉 毒素 B₁(AFB₁)为 I 类致癌物,毒性极强,即使在低 水平下也可能导致肝脏受损,从而诱发癌症,危及生 命。由于 AFB, 的明显毒性效应, GB 2761-2017《食 品安全国家标准食品中真菌毒素限量》明确了粮油 谷物中黄曲霉毒素的限量,规定玉米、大米和小麦中 AFB, 分别不得超过 20、10 和 5 µg/kg^[2]。因此,即 使在谷物样品中以极微量存在的AFB,,其毒性也不 容忽视。目谷物中含有较多的淀粉和脂肪,这无疑 增加了样品提取富集的难度[3],对样品中的痕量 AFB, 进行充分、快速提取, 对检测准确性和检测效 率至关重要^[4]。因此建立一种基于高效前处理技 术的准确分析方法对谷物中痕量 AFB, 的检测具有 重要意义。

目前,谷物中AFB,的检测方法主要是薄层色 谱法、酶联免疫吸附法(ELISA)、高效液相色谱法 (HPLC)和高效液相色谱-串联质谱法(HPLC-MS/ MS)等^[5,6]。其中,薄层色谱法的灵敏度较低,实验 操作较为繁琐且重复性较差[7]:酶联免疫吸附法需 要重复洗涤,耗时较长^[8]; HPLC 多采用紫外检测 器,灵敏度较低,而 HPLC-MS/MS 将质谱作为检测 器,适用性非常广泛,其同时具备质谱的高灵敏度与 HPLC 的高分离性,能够实现 AFB, 的高效、准确、 灵敏的定量定性检测,从而弥补 HPLC 技术的不 足^[9]。郭芳芳等^[10]采用液相色谱-串联质谱法对小 麦粉中 AFB, 进行检测,结果显示线性良好,相关系 数(R^2)大于 0.999,定量限为 0.1 µg/kg,且加标回 收率可达 90.3%。目前对于黄曲霉前处理方法的研 究主要集中在固相萃取小柱和免疫亲和柱上,而对 于磁性纳米材料的研究则较少。赵颖等[11]采用核 酸适配体亲和柱进行净化,其柱容量可达(334.6± 18.2) ng,随后结合 HPLC 对莲子中的 AFB, 进行 定量分析;Zhao 等^[12]采用多毒素复合免疫亲和柱, 结合 HPLC-MS/MS 实现了中药中 6 种真菌毒素的 同时检测,检出限(LOD)为7 pg/mL,定量限 (LOQ)为20 pg/mL。虽然免疫亲和柱能够较好地 实现痕量 AFB, 的提取效果,但其成本很高,因此针 对谷物中的痕量 AFB₁ 亟须开发一种简单、快速、低 成本的前处理方法[13]。本方法合成了一种抗体 (Ab)-SiO₂@Fe₃O₄磁性纳米材料,其偶联的AFB₁

抗体可以定向捕获谷物样品中的AFB₁,磁分离后可 实现目标分析物 AFB₁ 与样品复杂基质的快速分 离,大大提高了前处理效率。

基于此,本研究利用 Ab-SiO₂@ Fe₃O₄ 磁性纳 米材料对谷物样品中的 AFB₁ 进行免疫磁分离富 集,将该材料捕获的 AFB₁ 洗涤下来,结合 HPLC-MS/MS 对大米、玉米、小麦 3 种谷物样品中的 AFB₁ 进行高效准确检测。该磁性纳米材料具有合成方法 简单、与复杂基质分离快速的优点,且基于该材料分 离富集的前处理过程操作简单、方便、无需多次洗 脱,为谷物中痕量黄曲霉毒素的快速分离富集和准 确测定提供了简单高效的手段。

1 实验部分

1.1 仪器、试剂与材料

SiO₂@ Fe₃O₄ 磁性纳米材料的形貌通过 Zeiss Gemini300 透射电子显微镜(TEM)进行表征,粒径 通过 Nano ZS 动态光散射(DLS)进行表征,化学成 分通过 IS50 傅里叶变换红外光谱仪(FT-IR)进行 表征。SuperMag 磁性分离架购自美国 Ocean NanoTech 公司, MKX-H2C1 微波合成仪购自青岛 迈可威微波应用技术有限公司。Xevo TQ-S 液相色 谱-串联质谱联用仪、0.22 µm 有机滤膜购自美国 Waters 公司,实验用水为 Milli-Q 型超纯水,超纯水 机购自美国 Millipore 公司。MX-S 可调式混匀仪购 自南京润耀生物科技有限公司, BX 超声波清洗机 购自上海新苗医疗器械制造有限公司, NDK200-2N 型氮吹仪购自杭州米欧仪器有限公司。

AFB₁、赭曲霉毒素 A(OTA)、脱氧雪腐镰刀菌 烯醇(DON)、玉米赤霉烯酮(ZEN)标准品购自上海 源叶生物科技有限公司,纯度均大于 98%; Ab(2 mg/mL)由华中农业大学国家兽药残留实验室提 供。(3-氨基丙基)三乙氧基硅烷(APTES)、正硅酸 乙酯(TEOS)均购自上海阿拉丁生化科技股份有限 公司。甲醇、乙腈、甲酸均为色谱纯,购自德国默克 公司。使用的所有其他化学品和试剂均为分析纯。 大米、玉米和小麦 3 种谷物样本均从当地市场购买 并密封,置于-20 ℃保存使用。

1.2 Ab-SiO₂@Fe₃O₄的合成

1.2.1 Fe₃O₄ 磁性纳米颗粒的合成

采用微波辅助水热法^[14]合成 Fe_3O_4 磁性纳米颗 粒,将 10.0 mmol 六水合氯化铁($FeCl_3 \cdot 6H_2O$)、4.0 mmol 三水合醋酸钠($NaAc \cdot 3H_2O$)和 3.0 mmol

谱

• 697 •

十二烷基磺酸钠(SDS)溶解在 25 mL 乙二醇中。 搅拌后将混合物转移到 50 mL 微波合成反应容器 中,设置微波合成仪的加热参数。第一加热段为 150 ℃下加热 20 min,第二加热段为 200 ℃下加热 40 min,冷却至室温,用 10 mL 去离子水和无水乙醇 交替洗至中性,真空干燥,在常温下保存。

1.2.2 SiO₂@Fe₃O₄的合成

为了增加 Fe_3O_4 磁性纳米颗粒的亲水性,利于 后续基团修饰,采用聚乙烯吡咯烷酮(PVP)对 Fe_3O_4 磁性纳米颗粒的性状进行改良,随后进行二 氧化硅的包覆^[9,15]。取 10 mg Fe_3O_4 磁性纳米颗粒 与 1 g PVP 在 20 mL 纯水中反应 1 h,用 75% 乙醇 洗涤。加入 1 mL 氨水、100 μ L TEOS,用乙醇稀释 到 10 mL,搅拌 30 min。随后进行磁分离、干燥、研 磨,在常温下保存。

1.2.3 Ab-SiO₂@Fe₃O₄的制备

在上一步制得的 SiO₂@ Fe₃O₄ 磁性纳米材料中 加入 10% (v/v) APTES 水溶液使其氨基化,随后进 行抗体的偶联。在 SiO₂@ Fe₃O₄ 磁性纳米材料中加 入 40 μ L 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸 盐(EDC, 5 mg/mL)、20 μ L N-羟基琥珀酰亚胺 (NHS, 5 mg/mL)和 440 μ L 2-(N-吗啡啉)乙磺酸 (MES)溶液(10 mol/L, pH=6.5),混匀后加入 100 μ g AFB₁ 抗体,在 37 ℃下翻转混匀 60 min。最后 用磷酸盐缓冲液(PBS, 0.05 mol/L, pH=7.4)洗 涤除去未结合的抗体,于4 ℃下保存,待使用。

1.3 谷物中 AFB₁ 的提取

将 10 mL 乙腈-水-甲酸(85:10:5, v/v/v)溶液 加入大米、玉米、小麦 3 份谷物样品(均为 5 g)中涡 旋混匀,超声提取 10 min, 7 000 r/min 下离心 5 min,取上清液氮吹后采用 10 mL PBS(pH=7.4)复 溶,于4℃下储存。

1.4 Ab-SiO₂@Fe₃O₄的分离富集

向 1.3 节得到的 10 mL 提取液中加入 8 mg Ab-SiO₂@ Fe₃O₄ 磁性纳米材料,在 37 ℃下涡旋混 匀 10 min,磁分离后弃去上清液,采用 1 mL 甘氨 酸-盐酸(Gly-HCl)缓冲液(0.1 mol/L,含 2% Tween-20)^[16]对磁分离后剩余的 Ab-SiO₂@ Fe₃O₄ 磁性纳米材料进行洗脱,将其捕获的 AFB₁ 洗涤下 来。随后再次磁分离,将上清液氮吹至近干,用 1 mL 乙腈复溶,过 0.22 μm 滤膜待进样检测。

1.5 Ab-SiO₂@Fe₃O₄的富集能力计算

Ab-SiO₂@Fe₃O₄ 磁性纳米材料对 AFB₁ 的捕

获能力由下式计算:

$$Q_{\rm e} = \frac{C_0 - C_{\rm e}}{m} \times V \tag{1}$$

式中, Q_e 为 Ab-SiO₂@ Fe₃O₄ 磁性纳米材料达到富 集平衡时的捕获能力(mg/g), C_0 为溶液中 AFB₁ 的初始质量浓度(μ g/L), C_e 为达到富集平衡时溶 液中剩余 AFB₁ 的质量浓度(μ g/L), *m* 为添加的 Ab-SiO₂@ Fe₃O₄ 磁性纳米材料的质量(mg), *V* 为 AFB₁ 溶液的体积(mL)。

1.6 高效液相色谱-串联质谱条件

色谱条件:色谱柱为 ACQUITY BEH C18 色谱 柱(50 mm×2.1 mm, 1.7 μm);柱温为 35 ℃;进样 量为 2 μL,流速为 0.3 mL/min;流动相为含 0.1% 甲酸的乙腈,等度洗脱,所有流动相在使用前通过 0.22 μm 滤膜过滤,并在超声中脱气。

质谱条件:离子源为电喷雾电离源;质谱扫描方 式为多反应监测(MRM)模式;喷雾电压为 4.5 kV, 喷雾电流为 8 μA; 鞘气 N₂(99.99%), 流量 35 L/min;辅助气体 N₂(99.99%), 流量 5 L/min;离子 传输毛细管温度 300 ℃;毛细管电压 16 V。

2 结果与讨论

2.1 Ab-SiO₂@Fe₃O₄合成条件的优化

2.1.1 SiO₂包覆条件优化

为了合成性能优异的 Fe_3O_4 磁性纳米颗粒,采 用3组单因素实验对FeCl₃·6H₂O的用量(温度为 200 ℃,时间为40 min)以及主加热阶段(第二加热 阶段)的时间(温度为200℃, FeCl₃・6H₂O的用量 为10.0 mmol) 和温度 (FeCl₃ · 6H₂O 的用量为 10.0 mmol,时间为40 min)进行了优化。采用 DLS 比较不同条件下合成的 Fe₃O₄ 磁性纳米颗粒的粒 径分布。结果表明, Fe_3O_4 的粒径随着 $FeCl_3$. 6H₂O用量和加热时间的增加而增加,这与之前的 研究结果相似[17],说明微波辅助水热合成法和经典 水热方法具有相同的促反应机理,并且当 FeCl, · 6H,O的用量为 10.0 mmol(见图 1a)、第二加热阶 段的加热时间为 40 min(见图 1b)时具有相对均匀 的粒径分布,峰宽较窄。而 Fe_3O_4 磁性纳米颗粒的 粒径随着第二加热阶段加热温度的增加出现先增加 后减小的趋势,这是由于较高的反应温度能够提高 反应速率,加快反应的进行,从而加速晶核的形成和 生长,但反应温度过高,会导致一些粒径较大的磁性 纳米粒子破裂或变为空心状态,从而导致产物不纯,

图 1 (a) FeCl₃ · 6H₂O 用量、(b) 时间和(c) 主加热阶段温度
 对 Fe₃O₄ 磁性纳米颗粒粒径分布的影响

Fig. 1 Effects of (a) $FeCl_3 \cdot 6H_2O$ dosage, (b) time and (c) temperature in the main heating stage on Fe_3O_4 magnetic nanoparticle size distribution

粒径不均(见图 1c)。因此选择 200 ℃作为合成温度,在这一条件下制备的 Fe_3O_4 磁性纳米颗粒粒径分布均匀、分散性好,有利于后续 SiO_2 的表面修饰, 实现更加有效的分离富集过程。

以 Fe₃O₄ 磁性纳米颗粒为原料进一步合成了 SiO_{2} @Fe₃O₄ 磁性纳米材料,其中SiO₂包覆层的厚 度对材料的磁性、分散性都有一定的影响。我们采 用动态光散射法得出不同 TEOS 溶液用量(60、80、 100、120 µL)下合成的 SiO,@ Fe,O4 的粒径分布曲 线,从而确定 SiO, 包覆层的厚度和材料均匀性;用 去离子水将一定质量的 SiO₂@ Fe₃O₄ 配制成 0.01 mg/mL的溶液,取10 mL SiO₂@Fe₃O₄溶液于量筒 中,采用溶液中的 SiO₂@ Fe₃O₄ 磁性纳米材料在量 筒底部外加磁场的存在下完全沉降到底部所需的时 间作为磁分离时间,用来反映磁性纳米材料的磁性 能。磁分离时间越短,说明磁性纳米材料的磁性能 就越强。由图 2 可知,随着 TEOS 用量的增加磁颗 粒的沉降时间逐渐增加,主要是因为 TEOS 的用量 与 SiO, 包覆层厚度成正相关,从而影响磁颗粒的沉 降时间。当采用 TEOS 的用量为 100 μL 时, 粒径分

图 2 TEOS 用量对(a)SiO₂@Fe₃O₄粒径分布和 (b)磁分离时间的影响(n=3)

V(TEOS) / µL

Fig. 2 Effects of tetraethoxysilane (TEOS) dosage on
(a) SiO₂ @ Fe₃O₄ particle size distribution and
(b) magnetic separation time (n=3)

布均匀,峰宽最窄,47.18%的 SiO₂@ Fe₃O₄ 磁性纳 米材料的粒径分布在 270~290 nm 之间,且在 4 s 内就可以完成磁分离,具有较好的均匀性和磁性能。 2.1.2 抗体偶联条件优化

抗体的偶联是最为关键的一步,本实验通过 BCA蛋白浓度测定试剂盒对SiO,@Fe,O, 捕获的 抗体量进行测定,分别对偶联过程中 EDC 与 NHS 物质的量之比、MES 的 pH 值、MES 的浓度以及偶 联时间进行优化。如图 3a 所示, Ab 与 SiO, @ Fe₃O₄磁性纳米材料的偶联效率明显受到 EDC 与 NHS物质的量之比的影响,当EDC:NHS为2:1 时,偶联效率逐渐增加,即与SiO₂@Fe₃O₄磁性纳米 材料结合的抗体逐渐增加, 偶联率可达到 76.47%~ 90.58%。这是由于抗体上的羧基在较多 EDC 存在 的条件下可以形成不稳定的中间体,而 NHS 可以与 该中间体结合形成稳定的活性酯附着在磁性纳米粒 子表面,从而实现抗体的偶联^[18],如 EDC 占比过 低,会对中间体的形成造成一定影响,导致抗体与 $SiO_{2}@Fe_{3}O_{4}$ 的偶联效率下降。随后比较了 MES 溶液不同 pH 值(6.0、6.5、7.0)以及不同 MES 浓度

谱

(10、50、100 mmol/L)对抗体偶联率的影响。结果 表明,随着 MES 浓度的增加,偶联率逐渐降低,当采 用 pH=6.5、浓度为 10 mmol/L 的 MES 作为偶联缓 冲液时表现出最佳偶联效果,偶联率可以达到 88.79%(见图 3b)。最后对抗体的偶联时间做了优 化,如图 3c 所示,随着时间的延长,抗体在 SiO₂@ Fe_3O_4 上的偶联率逐渐增加,在 60 min 时增长变缓 慢,Ab 与 SiO₂@ Fe_3O_4 磁性纳米材料的结合趋于饱 和,因此选取 60 min 作为最佳偶联时间。

2.2 SiO₂@Fe₃O₄的表征

分别采用 TEM、DLS、FT-IR 对 SiO₂@ Fe₃O₄ 的 形貌、基团分布和粒径分布进行表征,证明材料的成 功合成。由图 4a 可知, SiO₂@ Fe₃O₄ 的分散性较 好,未发生团聚,粒径约为 280 nm, SiO₂ 包覆层的 厚度约为 25 nm。图 4b 为材料的粒径分布图,大约 68.3%的 Fe₃O₄ 磁性纳米颗粒的粒径分布在 260 nm 左右,所占比例较高,说明合成的 Fe₃O₄ 磁性纳 米颗粒分布较为均匀。约 44.6% 的 SiO₂@ Fe₃O₄ 的粒径分布在 275~285 nm 之间,进一步说明了 SiO₂ 在 Fe₃O₄ 磁性纳米颗粒上的成功包覆,包覆厚 度大约为 25 nm,与 TEM 的表征结果对应。图 4c 为 Fe₃O₄ 磁性纳米颗粒、SiO₂@ Fe₃O₄ 和 Ab-SiO₂@ Fe₃O₄ 的红外光谱图,SiO₂@ Fe₃O₄ 在 1 026 cm⁻¹、 1 098 cm⁻¹处出现了 Si-O 键的伸缩振动峰,Ab-SiO₂@ Fe₃O₄ 在 1 652 cm⁻¹处出现了抗体的酰胺键 的峰,属于酰胺 I 带,说明 SiO₂ 在 Fe₃O₄ 磁性纳米 颗粒上的成功包覆和抗体的成功偶联,成功合成了 Ab-SiO₂@ Fe₃O₄ 用于后续 AFB₁ 的分离富集。

2.3 Ab-SiO₂@Fe₃O₄ 对 AFB₁ 分离富集条件优化
 2.3.1 吸附条件的优化

Ab-SiO₂@ Fe₃O₄ 对于 AFB₁ 的分离富集条件 是影响材料应用效果的重要外部因素,本实验分别 考察了所用 PBS 的 pH、富集温度、Ab-SiO₂@ Fe₃O₄ 磁性纳米材料用量、富集时间对材料回收率的影响。

图 4 SiO₂@Fe₃O₄的(a)透射电子显微镜、(b)动态光散射和(c)傅里叶变换红外光谱表征 Fig. 4 (a) Transmission electron microscopy (TEM), (b) dynamic light scattering (DLS) and (c) fourier transform-infrared spectroscopy (FT-IR) characterizations of SiO₂@Fe₃O₄

取1 mL AFB,标准溶液(10 µg/mL,溶于 pH=7.4 的 PBS),在不同条件下按照 1.4 节所述步骤进行 AFB, 的分离富集,采用 HPLC-MS/MS 测定回收 率。如图 5a 所示, Ab-SiO₂@ Fe₃O₄ 对 AFB₁ 的回 收率随着缓冲液 pH 值的增加出现先增加后减小的 趋势,这主要归因于抗体与抗原在中性条件下具有 较好的结合效率,因此后续采用 pH=7.4 的 PBS 溶 液作为缓冲溶液。由图 5b 可知,富集温度为 37 ℃ 时回收率最高,这由于 37 ℃是免疫反应的最适温 度^[19]。图 5c 结果显示随着 Ab-SiO₂@ Fe₃O₄ 磁性 纳米材料用量的增加,AFB,溶液的回收率逐渐增 加,当用量达到8mg后,回收率不再发生明显变 化,因此选择 8 mg 作为最佳 Ab-SiO,@ Fe₃O₄ 用 量。图 5d 为达到富集平衡所需要的时间,富集 10 min 后回收率趋于平缓,表明已接近饱和状态,因此 选择 10 min 作为富集时间。

2.3.2 洗涤条件的优化

查阅文献^[16]可知, Gly-HCl 酸化液可促进抗原 抗体复合物的解离, 且添加一定浓度的去垢剂可进 一步提升解离效果。因此选择在 0.1 mol/L 的 Gly-HCl 缓冲溶液中加入 1%、2%、5%、10% 的 Tween-20 或 0.5%、1%、2%、5% 的 SDS, 探究不同溶液对 AFB₁ 的洗涤效果。取 1 mL AFB₁ 标准溶液(10 μg/mL, 溶于 pH=7.4 的 PBS)在不同条件下按照 1.4 节所 述步骤进行 AFB₁ 的分离富集, 采用 HPLC-MS/MS 测定回收率。结果表明, 在 Gly-HCl 缓冲溶液中添 加 2% 的 Tween-20 时, 可以达到最佳洗涤效果, 回 收率为 96.57%, 因此采用含有 2% 的 Tween-20 的 Gly-HCl 缓冲液将 Ab-SiO₂ @ Fe₃O₄ 分离富集的 AFB₁ 洗涤下来, 进行后续试验。 谱

色

2.4 Ab-SiO₂@Fe₃O₄的性能验证

2.4.1 分离富集能力验证

采用相同的偶联方法将 AFB₁ 抗体分别偶联到 氨基化的裸 Fe₃O₄ 磁性纳米颗粒和 SiO₂@ Fe₃O₄ 磁性纳米材料上,合成了 Ab-Fe₃O₄ 和 Ab-SiO₂@ Fe₃O₄^[20]。取1 mL AFB₁ 标准溶液(10 μ g/mL,溶 于 pH = 7.4 的 PBS),分别采用 Ab-Fe₃O₄ 和 Ab-SiO₂@ Fe₃O₄ 按照 1.4 节所述方法进行分离富集, 采用 HPLC-MS/MS 进行定量,做出两种材料对 AFB₁ 的富集曲线。如图 6a 所示,随着时间的增 加,Ab-SiO₂@ Fe₃O₄ 相对于 Ab-Fe₃O₄ 具有更高的 回收率,且对 AFB₁ 具有更强的捕获能力。由公式 (1)计算结果可知,在最佳的富集条件下,Ab-SiO₂ @ Fe₃O₄ 磁性纳米材料对 AFB₁ 的最大富集容量为 68.283 mg/g,这种高富集能力归因于该材料对 AFB₁ 抗体富集量的增加,导致单位质量材料中含 有更多的 AFB₁ 结合位点^[21]。

选择 OTA、DON、ZEN 3 种真菌毒素作为干扰 物来验证 Ab-SiO₂@ Fe₃O₄ 磁性纳米材料对 AFB₁ 的特异性结合性能。如图 6b 表明,在相同的加标浓 度下,该磁性纳米材料对 AFB₁ 的回收率大大高于 其他 3 种真菌毒素,说明该材料对 AFB₁ 具有出色 的选择性富集效果,说明免疫反应体系在分离富集 过程的利用可以大大减少其他真菌毒素的干扰,实 现目标物的准确检测。

为评价 Ab-SiO₂@ Fe₃O₄ 磁性纳米材料在复杂 谷物基质中的应用和重复使用性能,在5g小麦样 品提取液中分别加入 0.1、0.5、1.0 ng/mL AFB₁ 标 准溶液,分离富集后,采用酶联免疫吸附法测定洗涤 液中的 AFB₁ 含量,重复5次。结果表明,该材料在

图 5 (a)缓冲液 pH、(b)富集温度、(c)材料用量和(d)富集时间对 AFB₁ 回收率的影响(n=3) Fig. 5 Effects of (a) buffer pH, (b) enrichment temperature, (c) material dosage and (d) enrichment time on the aflatoxin B₁ (AFB₁) recoveries (n=3)

图 6 (a) Ab-SiO₂@Fe₃O₄ 与 Ab-Fe₃O₄ 的富集能力 和(b) 材料特异性(n=3)

Fig. 6 (a) Enrichment capacities of Ab-SiO₂ @ Fe₃O₄ and Ab-Fe₃O₄ and (b) specificities of Ab-SiO₂ @ Fe₃O₄ materials (n=3)

OTA: ochratoxin A; DON: deoxynivalenol; ZEN: zearalenone.

复杂样品中依然保持优异的富集能力,回收率为 81.34%~89.96%(见表1),并且经多次使用后的 Ab-SiO₂@Fe₃O₄ 磁性纳米材料对 AFB₁ 的回收率 变化不大,RSD \leq 4.96%,说明材料的重复使用性能 良好。因此,Ab-SiO₂@Fe₃O₄ 磁性纳米材料具有较 好的分离富集能力和显著的特异性,在复杂的谷物 基质中也有令人满意的表现。

2.4.2 储存性能验证

为验证 Ab-SiO₂@ Fe₃O₄ 磁性纳米材料在4 ℃条 件下的储存期限,分别在第 1、3、5、7、9、11 d 按照 1.4 节所述步骤对 1 mL AFB₁标准溶液(10 µg/mL,溶于 pH=7.4 的 PBS)进行分离富集,探究储存不同天数 后材料对 AFB₁ 的富集效果变化。最后采用 1 mL PBS 溶液(pH=8.0)对材料进行洗涤,从而保持材料 表面抗体活性以供下次测定。如图 7 显示,第 1~7 d 内,材料的回收率有轻微波动,吸附效果整体处于较 为稳定的水平,而在第 9 d 和 11 d 均出现明显的降低 趋势,推测是 Ab-SiO₂@ Fe₃O₄ 磁性纳米材料偶联的 抗体活性随着时间的延长逐渐下降。因此,该材料可 在至少 7 d 内保持良好的富集效果。

表 1	$Ab-SiO_2@Fe_3O_4$ 磁性纳米材料在小麦样品中的	J
	回收率和重复使用性	

 Table 1
 Recoveries and reusabilities of Ab-SiO₂@Fe₃O₄

 magnetic nanomaterials in wheat samples

Repeat	Spiked/	Detected/	Recovery/	RSD $(n=5)/$
time	$(\mu g/kg)$	$(\mu g/kg)$	%	%
1	0.1	0.086	85.86	4.36
	0.2	0.165	82.73	4.07
	0.5	0.446	89.26	3.95
2	0.1	0.094	83.95	2.98
	0.2	0.166	82.92	3.01
	0.5	0.444	88.73	3.62
3	0.1	0.087	86.82	4.18
	0.2	0.163	81.51	4.29
	0.5	0.450	89.96	4.32
4	0.1	0.085	84.57	3.15
	0.2	0.163	81.34	3.67
	0.5	0.448	89.61	4.96
5	0.1	0.085	84.61	3.75
	0.2	0.161	80.58	2.84
	0.5	0.4382	87.64	3.08

magnetic nanomaterials under different storage days (n=3)

2.5 谷物中 AFB_1 的提取条件优化

在现有文献报道的基础上,研究了提取溶剂比 例和提取条件对提取效果的影响^[22,23]。本实验考 察了不同比例的乙腈-水-甲酸对 AFB₁ 提取率的影 响,通过高效液相色谱-串联质谱对添加 AFB₁ 标准 品 5 ng 后的空白样品中提取出的 AFB₁ 进行定量 检测来确定提取率。由图 8 可知,一定量的水可以 促进 AFB₁ 在实际样品中的提取,而随着水的比例 逐渐升高,提取液的提取效果逐渐减弱,推测是过量 的水对甲酸产生了稀释作用,从而降低了甲酸对真 菌毒素萃取效率的正向影响。另外,对比了颠倒混 匀和超声两种方式的提取效果,颠倒混匀方法对谷

物中 AFB₁ 的提取率为 56.80%, 而超声方法的提取 率为 92.63%, 因此后续采用乙腈-水-甲酸(85:10: 5, v/v/v)溶液作为提取剂, 超声 10 min 的条件对 样品中的 AFB₁ 进行提取。

2.6 方法评价

2.6.1 线性范围和检出限

将一定浓度梯度的标准 AFB₁ 溶液(0.1、1、2、 5、10、20、40、50、60 µg/L)加入空白大米样品中,分 离富集后进入高效液相色谱-串联质谱测定。以峰 面积(Y)为纵坐标,AFB₁的质量浓度(X, µg/L)为 横坐标进行线性回归分析,AFB₁在2~50 μg/L范 围内具有良好的线性关系,相关系数(R^2)=0.999。 信噪比(S/N)分别为3和10时确定检出限(LOD) 和定量限(LOQ),分别为 0.04 µg/kg 和 0.13 μg/kg,远低于国家标准中规定的10 μg/kg;而采用 国标 GB 5009.22-2016 第三法高效液相色谱-柱后 衍生法在同样条件下的检出限和定量限分别为 0.038 μg/kg 和 0.145 μg/kg,说明本方法提出的基 于SiO₂@Fe₃O₄的磁分离富集过程结合高效液相色 '谱-串联质谱法可以达到与标准方法相当的检测效 果,且前处理方法更加简单高效,可满足实际样品中 痕量检测的需求。

2.6.2 回收率和精密度

为验证该方法在复杂谷物基质中检测的准确性和可靠性,选取3种常见谷物(大米、玉米和小麦)的空白样品,加入不同浓度的AFB₁标准溶液,经1.3节提取和1.4节分离富集步骤后进样检测,计算加标回收率,每种水平重复测定5次。结果如表

表 2 AFB₁ 在 3 种谷物基质中 4 个水平下的加标回收率(n=5) Table 2 Spike recoveries of AFB₁ at four levels in three grain matrices (n=5)

Food	Spiked/	Detected/	Recovery/	RSD/%
matrix	(µg/kg)	(µg/kg)	%	
Rice	0.1	0.089	88.75	4.88
	0.2	0.164	82.06	2.86
	0.5	0.393	78.57	3.16
	1.0	0.892	89.15	5.19
Corn	0.1	0.083	83.25	4.55
	0.2	0.152	76.21	3.28
	0.5	0.434	86.71	2.81
	1.0	0.818	79.45	4.94
Wheat	0.1	0.093	92.85	3.69
	0.2	0.172	86.03	5.29
	0.5	0.454	90.87	4.21
	1.0	0.886	88.56	3.95

2.6.3 实际样品测定

从超市随机购买 30 份谷物样品,包含大米、玉 米和小麦各 10 份,按照所建立的方法对该 30 份实 际谷物样品中的 AFB₁ 进行检测。结果显示,在 1 个小麦样品和 2 个玉米样品中检出了 AFB₁,含量分 别为 0. 38、0. 13、0. 47 μg/kg,均未超过国家标准所 规定的限量指标,其余样品均未检出 AFB₁。采用 GB 5009. 22-2016 第三法高效液相色谱-柱后衍生法 对上述阳性样品中的 AFB₁ 含量进行复测,测得 AFB₁ 的含量分别为 0. 37、0. 11、0. 48 μg/kg,说明 该方法具有较好的准确性。

基于 $SiO_2@Fe_3O_4$ 的磁分离富集过程结合高效 液相色谱-串联质谱法与 GB 5009.22-2016 第三法 高效液相色谱-柱后衍生法相比.优势主要体现在以 下几个方面:一是检测快速,免疫亲和柱的净化过程 需要 2.5 h 以上, 而基于 Ab-SiO₂@ Fe₃O₄ 的分离富 集过程在 30 min 内即可快速完成,可节省 80% 以上 的时间:二是操作简单方便,利用材料的磁性可以与 复杂基质快速分离,无需多次洗脱和其他繁杂操作; 三是成本较低, Ab-SiO₂@ Fe₃O₄ 的合成原料成本 低,合成条件较为温和,且对 AFB,具有较强的特异 性吸附能力,可达到良好的分离富集效果,而免疫亲 和柱价格昂贵,难以满足大批量样品的检测需求;四 是结果更加准确,采用 Ab-SiO,@ Fe,O4 不仅可以 达到较高的富集效率,实现更加充分的富集过程,且 与 HPLC-MS/MS 结合可以达到较高的准确性,可 实现谷物样品中痕量 AFB₁ 的高效分析。

谱

3 结论

本文采用微波辅助水热法合成了 Fe₃O₄ 磁性 纳米颗粒,进一步合成了 Ab-SiO₂@ Fe₃O₄,采用该 材料对 3 种谷物样品中的 AFB₁ 进行分离富集,结 合 HPLC-MS/MS 定量检测,建立了一种高效检测 AFB₁ 的方法。该方法将基于免疫反应的高效分离 富集材料 Ab-SiO₂@ Fe₃O₄ 与灵敏度高的 HPLC-MS/MS 结合起来,线性关系、检出限和重复性等方 法学指标均能满足不同谷物中 AFB₁ 的实际测定, 且材料合成过程简单、成本低廉,前处理过程简单快 速,检测过程高效准确,可满足大批量检测要求,对 于谷物安全监管、真菌毒素风险评估和守护人类健 康具有重要意义。

参考文献:

- [1] Zhang S B, Deng C J, Zhang H T, et al. Grain Science and Technology and Economy, 2021, 46(6): 80 张少波,邓常继,张海涛,等. 粮食科技与经济, 2021, 46 (6): 80
- Yang Y H, Lin J L, Rao Z C, et al. China Animal Health Inspection, 2021, 38(12): 45
 杨勇环,林甲凌,饶中程,等.中国动物检疫,2021,38(12): 45
- [3] Yang Z R, Li L, Li C Y, et al. Journal of Instrumental Analysis, 2021, 40(12): 1779
 杨卓燃,李龙,李超逸,等. 分析测试学报, 2021, 40(12): 1779
- [4] Ye Z H, Srivastava P K, Xu Y S, et al. ACS Appl Nano Mater, 2019, 2(12): 7577
- [5] Wu Q, Chen Y Y, Zhang H T, et al. Journal of Heilongjiang Bayi Agricultural University, 2021, 33(6): 35 吴倩,陈媛媛,张弘弢,等.黑龙江八一农垦大学学报, 2021, 33(6): 35
- [6] Wang S Y, Lü B, Shen F, et al. Journal of Food Safety Quality, 2021, 12(22): 8643
 王韶颖, 吕波, 沈飞, 等. 食品安全质量检测学报, 2021, 12 (22): 8643
- [7] Xue L, Zheng L, Zhang H, et al. Sens Actuators B, 2018, 265(19): 318

- [8] Wang Q, Yang Q L, Wu W, et al. Food Science, 2021, 42 (24): 318
 王琦,杨庆利, 吴薇. 食品科学, 2021, 42(24): 318
- [9] Wen X X. China Modern Educational Equipment, 2021, 18 (24): 29
 温霄潇. 中国现代教育装备, 2021, 18(24): 29
- [10] Guo F F. Flour Milling, 2020, 34(1): 53 郭芳芳. 现代面粉工业, 2020, 34(1): 53
- [11] Zhao Y, Wang N, Gao H L, et al. Chinese Journal of Analytical Chemistry, 2020, 48(5): 662
 赵颖, 王楠, 高华龙, 等. 分析化学, 2020, 48(5): 662
- [12] Zhao D T, Gao Y J, Zhang W J, et al. J Chromatogr B Anal Technol Biomed Life Sci, 2021, 1178(9): 56
- [13] Qiao C Y, Liu J H, Zhang B X, et al. China Animal Husbandry & Veterinary Medicine, 2022, 49(2): 765
 乔春雨, 刘家和, 张博熙, 等. 中国畜牧兽医, 2022, 49(2): 765
- [14] Han L L, Cheng L, Yang X L, et al. Modern Food Science and Technology, 2022, 38(1): 11
 韩露露,程玲,杨祥龙,等.现代食品科技, 2022, 38(1): 11
- [15] Shao Y N, Duan H, Zhou S, et al. J Agric Food Chem, 2019, 67(32): 9022
- [16] Yang R, Long R X, Li H, et al. Cellular & Molecular Immunology, 2012, 28(7): 620
 杨蓉, 龙润乡, 李华, 等. 免疫学杂志, 2012, 28(7): 620
- [17] Yu Y, Zhong Y C, Xie D, et al. ACS Appl Mater Interfaces, 2021, 13(10): 10999
- [18] Shen Q H, Liu M, Lu Y, et al. ACS Omega, 2019, 4(7): 11888
- [19] Guo Y C, Meng T T, Deng Z W, et al. Journal of Wuhan University (Natural Science Edition), 2021, 42(6): 12 郭盈岑, 蒙婷婷, 邓字巍, 等. 武汉大学学报(理学版), 2021, 42(6): 12
- [20] Yang L, Meng L, Song J, et al. Chem Sci, 2019, 10(31): 7466
- [21] Wei Z W, Ma X D, Zhang Y Y, et al. J Hazard Mater, 2022, 422(14): 126948
- [22] Huang Z M, Wu X Y, Huang J F, et al. Modern Food Science and Technology, 2021, 18(5): 26
 黄周梅, 武旭悦, 黄金发, 等. 现代食品科技, 2021, 18(5): 26
- [23] Liu M Z, Cheng Y Q, Wang Y H, et al. Journal of Food Safety Quality, 2022, 13(2): 443 刘明珠,成亚倩, 王永辉, 等. 食品安全质量检测学报, 2022, 13(2): 443