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Abstract

Aims/hypothesis Evidence from candidate gene studies
suggests that obesity may modify genetic susceptibility to
type 2 diabetes and dyslipidaemia. On an aggregate level,
gene—obesity interactions are expected to result in different
heritability estimates at different obesity levels. However,
this hypothesis has never been tested.

Method The present study included 2,180 British female
twins. BMI was used as an index of general obesity. Outcome
measures were insulin sensitivity (indexed by quantitative
insulin-sensitivity check index [QUICKI]) and fasting plasma
lipid profile. Structural equation modelling was used to test
whether BMI interacted with latent genetic and environmental
effects to impact on the outcome measures.
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Results Genetic influences on triacylglycerol increased
with BMI (p<0.001) whereas the unique environmental
influence on QUICKI decreased with BMI (p<0.001),
resulting in a higher heritability estimate for both measures
at higher BMI levels. This was further illustrated by
stratified analysis in twin pairs concordant for normal
weight and twin pairs concordant for overweight. Herita-
bility was 19 percentage points higher for triacylglycerol
(»<0.001) and 31 percentage points higher for QUICKI
(»<0.01) among twins concordant for overweight than
among twins concordant for normal weight. BMI had no
moderator effect on the latent genetic and environmental
factors for total cholesterol and HDL-cholesterol.
Conclusions/interpretation Our results suggest that the ex-
pression of genes influencing triacylglycerol and insulin
sensitivity can vary as a function of obesity status. The sub-
stantial increases in the genetic contribution to the total variance
in insulin sensitivity and triacylglycerols at higher BMIs may
prove extremely valuable in the search for candidate genes.

Keywords Gene—environment interaction - Heritability -
Insulin sensitivity - Lipid - Obesity

Abbreviations
AIC Akaike's information criterion
GWA Genome-wide association

HOMA-IR HOMA index of insulin resistance
QUICKI Quantitative insulin-sensitivity check index

Introduction

In the past decade the prevalence of overweight and obesity
has increased dramatically [1-4]. Currently in the United
States, 65% of adults are overweight and 31% are obese.
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Obesity is associated with significantly increased risk of
dyslipidaemia and type 2 diabetes [1, 2, 5]. Not surprising-
ly, the prevalence of dyslipidaemia and type 2 diabetes has
also increased in the last decade.

Although the association between obesity and dyslipi-
daemia or type 2 diabetes is well documented [1, 2, 5], the
exact nature of this relation remains unclear. The fact that
obesity and dyslipidaemia/type 2 diabetes show significant
heritability raises the possibility that common genetic
vulnerability may account for the association. It is of
interest to know whether the association between obesity
and dyslipidaemia/type 2 diabetes still exists after exclud-
ing common genetic influence. By comparing genetically
identical, monozygotic twins discordant for obesity, this
hypothesis has been confirmed with significant higher lipid
profile and lower insulin sensitivity identified in the obese
co-twins [6-9]. On the other hand, it is also possible that
obesity modifies genetic susceptibility to dyslipidaemia/
type 2 diabetes and that this gene—obesity interaction also
partly accounts for the association between obesity and
dyslipidaemia/type 2 diabetes. The current evidence is from
candidate gene studies. For example, it has been reported
that effects of polymorphisms in the apolipoprotein E,
apolipoprotein B100 and lipoprotein lipase genes on
lipoprotein and lipid levels may depend on obesity [10—
13]. Similarly, studies have also shown that BMI or obesity
status can modify the associations of interleukin-6, ectonu-
cleotide pyrophosphatase phosphodiesterase 1, angiotensin-
converting enzyme and insulin receptor substrate-1 geno-
types with insulin resistance or the risk of type 2 diabetes
[14-18]. On an aggregate level, gene—obesity interactions
are expected to result in different heritability estimates at
different BMI levels. However, this hypothesis has never
been tested. The large dataset of the Twins UK Registry,
which has measures on BMI, lipid profile and insulin
sensitivity, provides a unique opportunity to investigate this
hypothesis. We therefore investigated, using the data from
the Twins UK Registry, the extent to which obesity may
modify genetic susceptibility to dyslipidaemia and type 2
diabetes.

Methods

Participants The present study included 430 monozygotic
(215 pairs) and 1,750 dizygotic (875 pairs) British female
twins (mean + SD age 45.9+12.1; range 18.4-76.3 years)
from the Twins UK Registry, which comprises unselected,
mostly women volunteers from the general population,
recruited through national media campaigns in the UK
[19]. Means and ranges of quantitative phenotypes in Twins
UK are similar to the age-matched general population in the
UK [20]. Patients with diabetes and on lipid-lowering

medications were excluded from the current study. Zygosity
was determined by standardised questionnaire and con-
firmed by DNA fingerprinting. Written informed consent
was obtained from all participants before they entered the
study, which was approved by the local Research Ethics
Committee.

Measurements Height was measured to the nearest 0.5 cm
using a wall-mounted stadiometer. Weight (light clothing
only) was measured to the nearest 0.1 kg using digital
scales. BMI was calculated as weight divided by height
squared (kg/m?). A venous blood sample was taken
between 08:00 and 10:00 hours after an overnight fast.
Plasma levels of total cholesterol, HDL-cholesterol and
triacylglycerol were measured using an analysing device
(Cobas Fara; Roche Diagnostics, Lewes, UK) [21]. Fasting
insulin was measured by immunoassay (Abbott Laborato-
ries, Maidenhead, UK) and fasting glucose was measured
on a multichannel analyser using an enzymatic colorimetric
slide assay (Ektachem 700; Johnson and Johnson Clinical
Diagnostic Systems, Amersham, UK). Based on fasting
glucose and insulin, quantitative insulin sensitivity check
index (QUICKI) was calculated to index insulin sensitivity
[22]. QUICKI is among the most thoroughly evaluated and
validated surrogate indices for insulin sensitivity. Studies
have demonstrated that as an index of insulin sensitivity,
QUICKI is reliable, reproducible, accurate and has excel-
lent predictive power [22]. In our cohort, the correlation
between QUICKI and HOMA index of insulin resistance
(HOMA-IR) was —0.99 [22].

Statistical analysis Structural equation modelling was the
primary method of analysis. It is based on comparison of
the variance—covariance matrices in monozygotic and
dizygotic twin pairs and allows separation of the observed
phenotypic variance into its genetic and environmental
components, i.e. additive (A) or dominant (D) genetic
components, and common (C) and unique (E) environmen-
tal components [23]. We focused on additive genetic,
common and unique environmental effects as previously
published twin literature [24—26] had found little evidence
for dominant genetic effects on dyslipidaemia and type 2
diabetes.

We first fit the basic gene—environment interaction
models as described by Purcell [27], using BMI as a
continuous moderator incorporating all the available twin
pairs. In this gene—environment interaction model (Fig. 1),
the phenotypic variance of the outcome variables (e.g. total
cholesterol, HDL-cholesterol, triacylglycerol and QUICKI)
was portioned into additive, common and unique compo-
nents (A, C, E as above), with the path coefficients
associated with each variable expressed as linear functions
of the moderator, e.g. A+TxM1, C+UxMI1, E+VxMI,
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Fig. 1 Partial path diagram for the basic gene—environment interac-
tion model. A, additive genetic effects; C, common environmental
effects; E, unique environmental effects; M, moderator; T, moderated
component of A; U, moderated component of C; V, moderated
component of E; B, linear effects of moderator on mean (forced entry)

where T represents the effects of the moderator on additive
genetic variance, and U and V represent the effects of the
moderator on common and unique environmental variance,
respectively. In addition, the effect of the moderate on the
mean was also modelled, e.g. u+BxM]I, where u repre-
sents the constant term, M1 represents the value of the
moderator and B represents linear effects on the outcome.
The mean structure encompasses any phenotypic correla-
tion between BMI and the outcome variables, permitting
analyses of gene-BMI interaction independent of any
gene-BMI correlation. As we were primarily interested in
the effects of BMI on variance components, we forced B in
the model to guard against the influence of gene—BMI
correlation. On the other hand, a significant compromise of
model fit when variables T, U or V are fixed to zero reflects
evidence of significant moderation of additive genetic,
common environmental or unique environmental variance
by BMI, respectively.

Next, for the outcome variables in which a significant
gene-BMI interaction was identified in the above model, we
further stratified the sample into normal weight (BMI <25
kg/m?) and overweight (BMI >25 mg/m?) to explore
differences in additive, common and unique components
(A, C, E as above). In this round of analyses, twin pairs who
were either concordant for normal weight or concordant for
overweight were included in the analysis.

Prior to analysis, QUICKI and lipid profile measures
were log-transformed to obtain a better approximation of
normal distribution. Effect of age was regressed out for the
above outcome variables before using the residuals in
model fitting. The significance of variance components T,
U, V, A and C (as above) was assessed by testing the
deterioration in model fit after each component was
dropped from the full model. Standard hierarchic x* tests
were used to select the best fitting models in combination
with Akaike's information criterion (AIC) (AIC=x"—2d}).
The model with the lowest AIC reflects the best balance of
goodness of fit and parsimony [23]. Preliminary analyses
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were done using STATA 8.0 (Stata, College Station, TX,
USA). Genetic modelling was carried out with Mx, a
computer program specifically designed for the analysis of
twin and family data [28]. To avoid the potential influences
of participants with extreme obesity, we repeated all the
analyses after excluding 14 participants with BMI >40 kg/
m”. The results were virtually identical (data not shown).

Results

Table 1 presents the general characteristics of participants
by zygosity. The average age, BMI, mean QUICKI and
mean concentrations of total cholesterol, HDL-cholesterol
and triacylglycerol were very similar in these two zygosity
groups.

Comparative model fits testing the extent to which BMI
served as a moderator of QUICKI and lipid profile are
presented in Table 2. Each model includes the variable B,
representing linear effects of BMI on the mean of respective
outcome variables. The full model (ACETUVB), including
additive genetic (A), shared environmental (C), unique
environment (E) effects, as well as terms for the moderation
of each by BMI (T, U and V, respectively), is presented
first. Next, a backwards stepwise elimination procedure is
followed for the individual variables, testing the extent to
which the variable associated with the smallest change in
log-likelihood ratio contributes significantly to the model.
Moderation terms are tested first, followed by variance
components with no evidence of moderation by BMI. In the
final model, each variable contributed significantly to
model fit.

The best fitting model for QUICKI was AEVB, in which
moderation of the unique environment component by BMI
(V) contributed significantly to the model (»<0.001). As
shown in Fig. 2a, the unique environmental influence on
QUICKI decreased with BMI. This resulted in a higher
heritability estimate for QUICKI at higher BMI levels

Table 1 General characteristics of study participants by zygosity

Variables Monozygotic twins  Dizygotic twins
n 430 1,750

Age (years) 46.1£13.7 45.9+11.6
BMI (kg/m?) 24.1+3.8 25.0+4.6
QUICKT* 0.24+0.03 0.24+0.03
Triacylglycerol (mmol/1)°® 1.16+0.66 1.20+0.73
Total cholesterol (mmol/l)®  5.54+1.27 5.45+1.23
HDL-cholesterol (mmol/l)°  1.53+0.37 1.53+0.39

Values are means + SD
Data available on 135 monozygotic and 685 dizygotic pairs

®Data available on 193 monozygotic and 826 dizygotic pairs
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Table 2 Comparative models

fits for BMI as a continuous Variables Comparative model fit
moderator of insulin sensitivity
and lipid profile Model A-2LL df p value Test
QUICKI
1. Full ACETUVB
2.U=0 ACETVB 1.52 1 0.22 2vs 1
3. T=0 U=0 ACEVB 0.44 1 0.51 3vs2
4. V=0 T=U=0 ACEB 25.2 1 <0.001 4vs3
5.C=0 T=U=0* AEVB 0.42 1 0.52 5vs3
Triacylglycerol
1. Full ACETUVB
2.U=0 ACETVB 0.01 1 0.96 2vs 1
3. V=0 U=0 ACETB 0.04 1 0.82 3vs2
4. T=0 U=V=0 ACEB 14.7 1 <0.001 4vs3
5. C=0 U=V=0* AETB 0.00 1 1.00 5vs3
Total cholesterol
*The best fitting model 1. Full ACETUVB
A-2LL, log likelihood; A, 2.U=0 ACETVB 2.27 1 0.13 2vs1
additive genetic variance; B, 3. V=0 U=0 ACETB 0.01 1 0.96 3vs2
linear effects of BMI on 4. T=0 U=V=0° ACEB 3.59 1 0.06 4vs3
Ee:ﬁ:rzg t::V?fotgfnfithrlableS; 5.C=0 T=U=V=0 AEB 4.40 1 0.04 5vs 4
variance; df, degrees of freedom; HDL-cholesterol
E, unique environmental 1. Full ACETUVB
\{ariance; T, mo.deration of addi- 2 U=0 ACETVB 0.12 1 0.73 2 vs 1
tive genetic variance by BMI;
U, moderation of shared 3. V=0 U=0 ACETB 0.18 1 0.67 3vs2
environmental variance by BMI; 4. T=0 U=V=0* ACEB 3.09 1 0.08 4vs3
V, moderation of unique 5.C=0 T=U=V=0 AEB 9.60 1 0.002 5vs 4

environmental variance by BMI
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Fig. 2 Change of (a) additive genetic (continuous line) and unique
environmental (dashed line) variance of QUICKI with increasing level
of BMI, and (b) heritability of QUICKI with increasing level of BMI

(Fig. 2b). At the mean BMI level (25 kg/m?), the
heritability of QUICKI was estimated to be 0.61 (95% CI
0.54-0.68). With regard to the lipid profile, the best fitting
model for triacylglycerol was AETB, in which moderation
of the additive genetic component by BMI contributed
significantly to the model (p<0.001). As shown in Fig. 3a,
the genetic influence on triacylglycerol increased with BMI,
also resulting in a higher heritability estimate for triacyl-
glycerol at higher BMI levels (Fig. 3b). At the mean BMI
level (25 kg/m?), heritability of triacylglycerol was esti-
mated to be 0.57 (95% CI 0.49-0.64). The best fitting
model for total cholesterol and HDL-cholesterol was
ACEB, which showed that BMI had no moderator effect
on the latent genetic and environmental factors for these
two outcome variables. The estimated heritability from the
best fitting model was 0.48 (95% CI 0.28-0.66) for total
cholesterol and 0.50 (95% CI 0.33-0.65) for HDL-
cholesterol, respectively.

The increased heritability of QUICKI and triacylglycerol
with increased BMI was further illustrated by stratified analysis
in twin pairs concordant for normal weight (BMI<25 kg/m?)
and twin pairs concordant for overweight (BMI>25 kg/m?).
As shown in Table 3, heritability was 19 percentage points

@ Springer
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Fig. 3 Change of (a) additive genetic (continuous line) and unique
environmental (dashed line) variance of triacylglycerol with increasing
level of BMI, and (b) of heritability of triacylglycerol with increasing
level of BMI

higher for triacylglycerol (p<0.001) among twins concordant
for overweight (h*=0.67; 95% CI 0.52-0.78) relative to twins
concordant for normal weight (h*=0.48; 95% CI 0.36-0.60).
Similarly, heritability was 31 percentage points higher for
QUICKI (p<0.001) among twins concordant for overweight
(h*=0.81; 95% CI 0.65-0.90) relative to twins concordant for
normal weight (h*=0.50; 95% CI 0.37-0.60).

Discussion

The important findings in this study are that the additive
genetic influence on triacylglycerol levels and the unique
environmental influence on QUICKI vary as a function of
obesity. The influence of genetic factors on variation of tri-
acylglycerol was more important and the influence of unique
environmental factors on variation of QUICKI was less
important in obese participants, resulting in a higher

heritability estimate for triacylglycerol and QUICKI in
participants with higher BMI levels.

These findings are in line with most previous candidate
association studies [10—13, 15—18], which report that obese
individuals in particular display the greatest genetic
vulnerability to risk of dyslipidaemia and type 2 diabetes.
For example, Gerdes et al. [12] showed that only in
participants with BMI above the mean of the sample
(26 kg/m?) carriers of the N9 allele of the lipoprotein lipase
gene DN variant had significantly higher plasma triacyl-
glycerol levels than non-carriers. A study by Muthumala
et al. [16] showed that only in obese participants did
carriers of the deletion allele of the angiotensin-converting
enzyme gene insertion/deletion polymorphism have a sig-
nificantly higher risk of developing type 2 diabetes than
non-carriers. Stolerman et al. [15] showed that the effect of
the Q allele of the ectonucleotide pyrophosphatase phos-
phodiesterase 1 gene K12Q polymorphism on HOMA-IR
was stronger in individuals with a higher BMI. Using a
twin design, the current study not only for the first time
confirmed the existence of gene—obesity interaction on
triacylglycerol and QUICKI on an aggregate level, but also
demonstrated that the mechanism behind this interaction
might be different for these two traits. For triacylglycerol,
expression of genes influencing triacylglycerol levels can
vary as a function of obesity status, which indicates that
new genes may be expressed at different BMI levels. These
genes can only be detected by testing gene-BMI inter-
actions in genetic association studies. On the other hand,
our model suggests that no new genes are expressed in
connection with QUICKI levels, because the increased
heritability at higher BMI values is solely due to decreased
unique environmental influences. In this case, although the
genetic variants responsible for QUICKI can be detected in
normal weight participants, the power to detect these
variants will be larger if obese participants are used instead.
These findings may prove extremely helpful in efforts to
look for genes. Recently, the hypothesis-free genome-wide
association (GWA) approach has successfully located many
genes for dyslipidaemia and type 2 diabetes [29, 30].
However, these new discoveries only represent a small

Table 3 Twin pair correlations

and univariate twin structural Variables Number of pairs Correlations h? (95% CI) é* (95% CI)
equation model variable esti-
mates for QUICKI and triacyl- MZ DZ Fmz Tdz
glycerol for normal weight and
overweight participants QUICKI

Normal weight 73 282 0.48 0.31 0.50 (0.37-0.60) 0.50 (0.40-0.63)

ight 2 154 0.90 0.2 0.81 (0.65-0.90 0.19 (0.10-0.

DZ, dizygotic twins; ¢?, vari- Qvemelg 6 > ? 3 81 (0.65-0.90) 2 ( 35)
ance explained by unique envi- Triacylglycerol
ronment; h*, variance explained Normal weight 99 342 0.52 0.21 0.48 (0.36-0.60) 0.52 (0.40-0.64)
by additive genetics (heritabili- Overweight 42 186 066 035 0.67 (0.52-0.78)  0.33 (0.22-0.48)

ty); MZ, monozygotic twins
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proportion (5-10%) of the genetic variation underlying
susceptibility to these two disorders [29, 30]. Scrutiny of
the most recent crop of GWA studies shows only a modest
increment in new loci over the 2008 GWA for lipids and
type 2 diabetes, indicating that the ‘low-hanging fruit’ has
been harvested [29, 30]. Investigators have begun to realise
the importance of gene—environment interactions. The
identified gene—obesity interaction for triacylglycerol and
QUICKI on an aggregate level shows strong support for
gene—obesity interaction to be fully considered in the next
wave of GWA studies on dyslipidaemia and type 2
diabetes.

We failed to detect gene—obesity interactions for total
cholesterol and HDL-cholesterol. There could be several
explanations for this. One explanation is gene—obesity
correlation, which could be induced by pleiotropic genes
influencing both BMI and the outcome of interest, i.e. total
cholesterol or HDL-cholesterol. In our analysis, BMI (the
moderator) was entered into the model to allow for a main
effect on total cholesterol or HDL-cholesterol. However,
this effectively removes all genetic effects that are shared
between trait and moderator from the covariance model.
Thus, any interactions detected cannot be due to gene—BMI
correlation. Such an approach would fail to detect gene—
BMI interaction in the presence of gene—BMI correlation,
which could be the case here. However, after additionally
fitting the extended gene—environment interaction model
suggested by Purcell et al. [27] to allow for gene—
environment correlation, we still did not observe gene—
BMI interactions for total cholesterol and HDL-cholesterol
(data not shown). A second explanation is that interaction
effects are generally small and hence difficult to identify
[31], suggesting that a larger sample might be required. In
our study, the moderation effect of BMI (T) on the genetic
component of total cholesterol and HDL-cholesterol was
borderline significant (p=0.06 for total cholesterol, p=0.08
for HDL-cholesterol) (Table 2). By forcing T (effects of the
moderator on additive genetic variance) into the model, we
observed that the moderation effect of BMI on the genetic
influence of total cholesterol and HDL-cholesterol followed
the same pattern as that for triacylglycerol, i.e. the genetic
influence on total cholesterol and HDL-cholesterol in-
creased with BMI. Studies with larger sample sizes might
be able to confirm this finding. Finally, it is also possible
that there were no gene-BMI interaction effects for total
cholesterol and HDL-cholesterol, at least not large enough
to detect on an aggregate level.

Some limitations of the study warrant discussion. First,
the model used to test for interaction including a continu-
ously measured environmental variable is relatively new.
However, the same pattern was found when the sample was
split into overweight and normal weight groups, further
supporting our conclusion. Second, our twin sample

included only women and only whites; the generalisability
of these results to men and to other ethnic populations
remains to be determined. Third, BMI may affect the
expression of different sets of genetic factors. To explore
this possibility, we fitted another gene—environment inter-
action model as suggested by other investigators (M. C.
Neal, M. C. Keller, unpublished results) for triacylglycerol
and QUICKI. In this extended model, two sets of genetic
factors are modelled. One represents those that contribute to
constant heritability, while the second changes linearly with
effect of the moderator. These two components are allowed
to correlate freely. Using this model, we did not find any
evidence to support the above possibility. However, with
the current sample size, we might not have had sufficient
power to detect this complex interaction.

In conclusion, the current twin study confirms the
existence of gene—obesity interaction for triacylglycerol
and QUICKI on an aggregate level. The substantial
increases in the genetic contribution to the total variance
in QUICKI and triacylglycerol may prove extremely
helpful in gene-finding efforts.
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