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Normal bone marrow (BM) homeostasis ensures consistent production of

progenitor cells and mature blood cells. This requires a reliable supply of

nutrients in particular free fatty acids, carbohydrates and protein. Furthermore,

rapid changes can occur in response to stress such as infection which can alter

the demand for each of these metabolites. In response to infection the

haematopoietic stem cells (HSCs) must respond and expand rapidly to

facilitate the process of emergency granulopoiesis required for the

immediate immune response. This involves a shift from the use of glycolysis

to oxidative phosphorylation for energy production and therefore an increased

demand for metabolites. Thus, the right balance of each dietary component

helps to maintain not only normal homeostasis but also the ability to quickly

respond to systemic stress. In addition, some dietary components can drive

chronic inflammatory changes in the absence of infection or immune stress,

which in turn can impact on overall immune function. The optimal nutrition for

the best immunological outcomes would therefore be a diet that supports the

functions of immune cells allowing them to initiate effective responses against

pathogens but also to resolve the response rapidly when necessary and to

avoid any underlying chronic inflammation. In this reviewwe discuss how these

key dietary components can alter immune function, what is their impact on

bone marrow metabolism and how changes in dietary intake of each of these

can improve the outcomes of infections.
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Introduction

Haematopoiesis is a tightly controlled process that occurs in the specialized bone

marrow (BM) niche, consisting of both haematopoietic cells and numerous support cells,

including BM stromal cells, adipocytes, endothelial cells, osteocytes and osteoblasts (1).

Not only does the environment support the maintenance of self-renewing

haematopoietic stem cells (HSCs) and the production of mature haematopoietic cells
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during normal haemostasis, but it is also required to rapidly

adapt and respond to local and systemic stressors. This includes

the rapid expansion of HSCs and progenitor cells and increased

production and mobilization of mature immune cells in

response to infection (2, 3). Bacterial infections, for example,

trigger the release of granulocyte stimulating factor (G-CSF)

from endothelial cells to drive emergency granulopoiesis in

order to meet the increased demand for neutrophils (4, 5). In

addition some bacterial infections drive production of monocyte

chemoattractant protein 1 (MCP-1), a chemokine that activates

the CCR2 receptor on monocytes and has been shown to be

essential for the mobilization of monocytes out of the BM (6).

Other chemokines and cytokines such as Interleukin 6 (IL-6)

and interferon gamma (IFN-g) have also been implicated in

driving the myeloid expansion in response to infections (7, 8).

Together, emergency myelopoiesis results in a neutrophilia, with

release of immature (left shifted) neutrophils and a monocytosis

in the peripheral blood (9). This forms part of the immediate

immune response to an acute infection and helps to compensate

for the increased consumption of myeloid cells at the site of

infection. The BM response to viral infections is less well

understood and may in some ways be more complex (10).

Lymphocytes, particularly T cells and natural killer cells are

often key to the clearance of viral infections and for many an

adaptive immune response is required for complete clearance of

the virus (11). Furthermore, viral infections can have more long-

term consequences for BM cell populations and HSC health (12)

and have been implicated in causing cytopenias, aplastic

anaemia as well as being associated with lymphoid BM

malignancies (13–15).

In order to facilitate this rapid and efficient expansion of mature

immune cells, HSC and progenitor cells require adequate metabolic

supplies and are able to utilise different pathways to maximise their

energy production. TheHSC niche is a hypoxic environment and in

the steady state HSCs primarily rely on glycolysis (16). However, in

response to stress they are able to rapidly switch to oxidative

phosphorylation (2, 17). This change in energy production is

partially driven by their individual requirements but also affected

by the energy sources available to the cells. Here we will discuss how

alterations in diet influence the metabolic processes involved in the

BM response to stress. Here we will focus on the macronutrients

including carbohydrates, fatty acids and protein as these have been

extensively studied.
Dietary components and their
impact on immune function

Fatty acids

Fatty acids can be classified by their structure (saturated or

unsaturated) or length (short-chain, medium-chain and long-
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chain). The different groups of fatty acids vary in their roles and

functions in different organs and consequently can influence the

immune system in different ways. For example imbalance

between saturated and unsaturated fatty acids has been shown

to contribute to the aetiology of allergic, autoimmune and

metabolic diseases (18–20). Western diets are rich in sugar,

trans and saturated fats, but low in complex carbohydrates, fiber,

micronutrients, polyphenols and omega 3 polyunsaturated fatty

acids (PUFA’s). This diet has been linked to an increased uptake

of LPS (lipopolysaccharide) from microbes in the gut due to

increased gut leakiness (21). LPS stimulates innate immune cells

and activates them via Toll-like receptor (TLR) 4) contributing

to chronic inflammation manifested by elevated serum levels of

proinflammatory cytokines (e.g. IL-1, IL-6, IL-8, IL-12, and

TNFa), chemokines (e.g. MCP-1, RANTES, and MIP-1) and

acute phase reactants (e.g. C-reactive protein, serum amyloid A,

and ferritin) (22, 23). On the contrary, omega 3 and PUFAs can

interfere with TLR4 activation through inhibition of COX-2

mediated prostaglandin release and thus ameliorate this

inflammatory signal (24, 25).

Furthermore, it has been shown that n=3 PUFA’s can

increase the phagocytic activity and inhibit apoptosis in

alveolar macrophages (26, 27).

PUFA’s also have an inhibitory effect on the pro-inflammatory

phenotype of dendritic cells (DC) and DC-mediated T cell

responses (28, 29). In contrast, saturated fatty acids increase DC

maturation, activation and T-cell stimulation properties (30). Thus,

whilst common fat components of the typical western diet can drive

an unwanted chronic inflammatory process, other fatty acids play a

key role in regulating the immune response and reducing tissue

inflammation (Figure 1).
Carbohydrates

Activation of the innate immune system requires metabolic

rewiring primarily to favor oxidative glucose metabolism to

activate macrophages and propagate their adhesion (31–34). In

this scenario glucose is the major source of carbon, however

increased blood levels of fructose present in Western diets (35)

metabolically rewire innate immunity. In the recent study

monocytes and macrophages exposed to fructose (main

component of broadly used corn syrup) have shown increased

activity of mTORC1 and expression of IL1B in response to LPS.

Furthermore, these cells have reduced metabolic flexibility in

response to glycolytic and mitochondrial inhibition,

underpinning the pro-inflammatory role of dietary fructose (36).

B and T cells constitute major pillars of adaptive immunity. It

has been shown that glucose is a major driver of B cell development

and function.Increasing glucose levels drive expansion of splenic

and mesenteric lymph node and Peyer’s patch B cells, which was

also linked with enhanced B-lymphopoiesis in the bone marrow.
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Importantly, these B cells had increased immunoglobulin-G

production after immunization and reduced apoptosis levels in

early development viamTOR activation (37). Interestingly, human

breast milk contains 7% carbohydrates (87% water, 1% protein, 4%

lipid), which therefore forms the biggest nutrient resource for breast

milk fed infants (38). As high carbohydrate intake has been shown

to drive B cell development it is possible that this is the driver for B

cell HSC skewing in infants (39). On the other hand, restriction of

carbohydrate intake leads to production of ketone bodies such as

beta-hydroxybutyrate (BHB), which can be utilized via

mitochondrial oxidative phosphorylation (40). In animal models,

BHB has been shown to attenuate caspase-1 activation and IL1B

production by inhibiting NLRP3 inflammasome in phagocytes thus

ameliorating low-level inflammation and associated

autoinflammatory diseases (41–43). Interestingly, in human

volunteers on a very-low-carbohydrate diet CD4+, CD8+ and

regulatory T-cell capacity was markedly enhanced and T memory

cell formation was increased. Molecular analysis of these cell subsets

revealed an immunometabolic reprogramming in response to

ketones favoring oxidative metabolism and conferring superior

cellular energy supply and reactive oxygen species (ROS)

signaling (44). The intake and availability of carbohydrates can

therefore not only alter the inflammatory profile associated with

both the innate and adaptive immune response but also the balance

between different leukocyte populations produced and how they

function (Figure 1).
Protein/amino acids

Activation of immune cells relies on specific amino acids,

which are signaling molecules or provide metabolites (for TCA)

and are not only involved in protein synthesis.Activated T cells
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upregulate amino acid transporter expression (45–47) required

for rapid proliferation, translation of critical cytokines and

adhesion molecules. CD4 and CD8+ T cells have similar

repertoire of nutrient transporters, however differ in their

expression level, where CD4+ have less copies of them which

can underlie lower proliferative capacity compared to CD8+ T

cells (47, 48). In addition innate immune cells, particularly

activated macrophages, heavily depend on arginine uptake via

CAT2 (49), while resting macrophages likely rely on CAT1 (50)

and glutamine (51). LPS increases Slc7a5 transporter expression

and leucine uptake to support proinflammatory macrophage

cytokine production (52). NK cell activation depends on

glutamine acquisition (53), while glutamine metabolism

supports antibody production by activated B cells (54).

Glutathione (GSH) is a small molecule composed of glycine,

glutamate and cysteine and is detrimental for quenching ROS

upon T cell activation (55) or IL1B mRNA synthesis in

macrophages stimulated with LPS (56). Branched amino acids

(BCAAs)-leucine, isoleucine and valine provide coenzyme A

(CoA) derivatives, which support metabolic reprogramming of

immune cells (57), activate mTORC1 pathway (58) and

epigenetic modification (acetylation) in macrophages or CD8+

T cells (58–60). BCAA by stimulating glucose uptake can

promote glycolysis (61, 62).
Dietary components and their
impact on BM metabolism

Fatty acids

The BM has vast stores of adipocytes and the proximity of

these to the HSC niche is important as adipocytes store and
FIGURE 1

The impact of diet on the immune response. The balanced immune response is dependent on expansion of innate and adaptive immune cells
as well as an appropriate downregulation of the response. Some dietary components, particularly fructose, saturated fats and the typical
western diet have pro-inflammatory effects and if these persist this can drive chronic inflammation. Other dietary changes, such as reduction in
carbohydrate (CHO) intake and increased intake of polyunsaturated fatty acids can help to downregulate the immune response.
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provide free fatty acids (FFA), a crucial metabolite for HSCs and

progenitor cells. Fatty acid oxidation has been shown to be

essential for healthy HSC maintenance and implicated in self-

renewal divisions (63). In response to stress fatty acid oxidation

provides further substrates, in the form of acetyl coenzyme A, for

the TCA cycle to help facilitate the rapid switch of HSCs from

glycolysis to oxidative phosphorylation in response to infection

(17). Thus, an adequate and reliable supply of FFA and therefore

adipose tissue is required within the BM niche to drive healthy

haematopoiesis and support the BM response to infection

(Figure 2A). However, the adipocyte rich yellow bone marrow

expands significantly both in obesity and with increased age (64).

This accumulation of adipocytes can disrupt the normal

haematopoietic processes and therefore directly impact on the

production of mature blood cells in the steady state and the

response to infection (65, 66). Increased adipocyte frequency in

the BM metabolically reprograms megakaryocytes by active

transfer of fatty acids through CD36 and shifts their ploidy

towards 32 and 64N (67) and potentially has an impact on

platelet activation status (68). Furthermore, obesity does not

only drive local changes within the BM microenvironment but

the abundance of adipose tissue in other organs have systemic

implications, which in turn can alter immune function and BM

health. Obesity has been associated with systemic chronic low-

level inflammation (69), at least partially mediated by chronic

activation of toll TLR 4 (20, 70). This is driven by the secretion of

pro-inflammatory cytokines, adipokines and leptins and is

known to contribute to many obesity-associated diseases (65,

71). The consequences of this on the BMmicroenvironment and

immune function include increases in haematopoiesis affecting

both myeloid and lymphoid lineages (65, 69), and changes in the
Frontiers in Immunology 04
innate and adaptive immune responses, with disrupted

immediate responses observed in the BM (70) as well as

impaired memory T-cells responses (72). Together these

changes contribute to the increased morbidity and mortality

known to be associated with infections in obese people (73, 74).

The mechanisms behind these changes are likely multifactorial

with both local and systemic factors manipulating the HSC

niche, and therefore influencing HSC maintenance, output,

and immune overall function. It is possible that the increase in

BM cellularity and haematopoiesis reflects an attempt to

compensate for the reduced function of immune cells in the

obesity-associated environment. A clearer understanding of how

the obesity associated pro-inflammatory environment disrupts

normal haematopoiesis and the immune response to infection

will help inform future treatments of obese patients to promote a

better and regulated response to infection.
Carbohydrates

Dormant HSCs are thought to have low energy consumption

when compared to actively dividing cells (75, 76). They reside in

the hypoxic BM niche, which is thought to limit oxidative

respiration and favor glycolysis (Figure 2B) (77). This helps to

reduce ROS levels in quiescent HSCs and promotes long-term

HSC health. High availability of glucose has been shown to

stimulate nucleotide biosynthesis and enhances HSC

commitment to erythroid lineage (78). Fasting can exhibit a

positive effect on regenerative potential of HSC via inhibition of

insulin growth factor 1 (IGF1) signaling and decreased their

mobilization potential in patients with diabetes type 2 (79).
FIGURE 2

How diet influences haematopoesis. (A) Adipocytes are found in close proximity to HSCs and provide free fatty acids, which play a role in HSC
maintenance and self-renewal and are an important energy source for HSC expansion. With ageing there is an accumulation of adipocytes
which disrupt the normal regulation of haematopoiesis and overall drives the expansion of HSCs and progenitor cells. (B) In the steady state
HSCs primarily rely on glycolysis for the production of ATP and normal haematopoietic maintenance. High levels of glucose also enhance HSC
commitment towards the erythroid lineage. (C) The amino acid valine has been shown to be vital for HSC maintenance and self-renewal whilst
threonine can disrupt this. Glutamine promotes erythropoiesis. The amino acids cell content varies between different progenitors with MEPs
having reduced levels and GMPs the highest levels, particularly of branched amino acids (BRAA), cysteine and methionine.
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Amino acids

Although HSCs have low rates of protein translation suggesting

lower amino acid requirement (80), a recent study found that in

vivo HSC maintenance depends on valine (Figure 2C). Dietary

depletion of this amino acid in recipient mice for 2 weeks permitted

BM transplantation and donor HSC engraftment without

irradiation conditioning (81). For ex vivo HSC maintenance

depletion of threonine (or downstream metabolites) had a

positive effect. So far the metabolic function of valine and

threonine for HSC maintenance are yet to be determined.

Furthermore, HSC commitment to erythroid lineage has been

attributed to increased glutamine levels (78). mTor complex 1

(mTORC1) is a central node in metabolic sensing and signaling

(82) including essential amino acid leucine, which in turn regulates

its activity through GTPase RagA (83). In a recent study RagA was

found to be dispensable for HSC function (84), suggesting HSC are

resilient to deprivation of certain nutrients.

A comprehensive proteomics study of BM progenitor -

lineage- cKit+Sca1+ stem and progenitor cells (LSK), common

myeloid progenitors (CMP), granulocytic and monocytic

progenitors (GMP) and myeloerythroid progenitors (MEP) -

showed differential content of amino acids, with lowest levels

detected in MEPs and highest in GMP (in particular BRAA,

cysteine, methionine), suggesting their highly proliferative

nature compared to other analyzed cell types. On the contrary

the global arginine bioavailability ratio (GABR), defined as the

ratio between arginine and its major metabolites (ornithine and

citrulline), was higher in the LSK and GMP populations. Ex vivo

cultures of LKS supplemented with arginine and citrulline were

able to expand the proportion of TMRM low cells (85). These

metabolites may have a potential to improve in vivo HSC

function (86, 87). Thus, different amino acids are key to the

normal function, maintenance and homeostasis of HSCs and all

progenitor cell populations.
Modulating diet to improve
outcome of infection

Both steady state and stress hematopoiesis are dependent on a

reliable and easily scalable energy supply. In order to support their

varying energy demands, HSCs and progenitor cells are able to

adapt and draw upon multiple different metabolites to generate

ATP, thus not relying on one sole source of energy within the BM

niche.This also means that the source of energy and therefore

individual macronutrient dietary components may not necessarily

have a direct impact on immune function. For example, it has long

been believed that high fat diet content drives not only obesity but

also all its associated diseases such as diabetes and heart disease,

however more recently this concept has been contested. Studies

have demonstrated that high fat diets can be associated with
Frontiers in Immunology 05
health benefits, these include anti-inflammatory and immune-

supportive changes (88, 89). Debates may continue over which

macronutrient is superior and drives better health outcomes,

however, it is becoming increasingly apparent that a balance of

each dietary component is required and that it is not the relative

proportions of fat and carbohydrates that drive obesity, disease

and immune dysregulation but any tendency to over-eating and

excessive calorie intake (90).

In addition to carbohydrates and fat content, there are of course

other essential dietary components required for a healthy immune

response. These include amino acids, which play a vital role in HSC

maintenance and differentiation (78, 85) as well as presenting a

further metabolite for oxidative phosphorylation both during

emergency haematopoiesis (91) and normal immune cell

maintenance (92). For example, glutamine, the most abundant

and versatile amino acid, can be used as a substrate for numerous

pathways including nucleotide and NADPH synthesis (93) and has

also been shown to regulate HSC differentiation (32). During

infection or times of stress demand for amino acids increases and

inadequate amino acid stores or complete depletion of existing

stores, due to longer periods of increased consumption, have been

associated with adverse outcomes (36). In contrast to this however,

it is becoming increasingly apparent that a low protein diet can have

a beneficial impact on the immune response (94) and it is therefore

clear that a fine balance is needed to ensure sufficient stores are

present to be used when required but any excess is limited to

promote long term BM health.

Another factor to consider in the context of diet and the

immune response is the effect of the microbiome on

haematopoeisis and immune cell production, Previous work has

suggested that the absence of commensal microbes can result in

defective immune function. This can drive both failure of

appropriate immune responses and immune suppression as well

as autoimmune conditions (95, 96). Furthermore, there are

numerous micronutrients which are key to a healthy immune

response and appropriate immune regulation by providing

building blocks, modulating cytokine expression and regulating

immune cell activity. These include vitamins, some key

micronutrients such as vitamins (97, 98), polyphenols, which

have been shown to impact on immune cells function and alter

expression of pro-inflammatory cytokines (99), and minerals, in

particular zinc, where even minor deficiencies result in impaired

immune responses which has been shown to be vital for both

innate and adaptive immune cell function (100, 101).

An adequate supply of each of the major dietary components,

including fat, carbohydrate, and protein, as well as the numerous

micronutrients, is required to achieve a sufficient immediate

immune response, mount an adaptive immune response with

memory components and downregulate or resolve the immune

response at the appropriate time to prevent chronic inflammation.

In the absence of this the finely regulated BM microenvironment

and its ability to mount an effective immune response is disrupted

and this will only impact on how the body can respond to an acute
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infection but will also have long term consequences, with

impaired long-term adaptive immunity as well as potentially

prolonged periods of inflammation. Deficiencies in the required

nutrients can result from any cause of malnutrition, however,

when considering the effect of diet on the immune system it is

particularly important to consider the aging population. Not only

do dietary deficiencies increase with advanced age (102) but it is

also known that immune function declines with age (103). It is

therefore important to ensure adequate intake of all dietary

components for older patients and to consider supplementation

of some vital vitamins or minerals, as these have been shown to

reduce infections, support the immune response and improve

outcomes (104).
Conclusion

Any immune response is delicately orchestrated to drive the

immediate innate reaction, the long-term adaptive response but

eventually also to downregulate and control the inflammatory

process. This fine balance is controlled by the BM, the BM niche

and the circulating mature immune cells. Any disruption of this

process will either result in an ineffective immune response,

impaired future immune surveillance or state of chronic

inflammation which in turn can lead to a number of

pathologies. In this review we have demonstrated how different

dietary components can impact on each step involved in the

immune process. Dietary components are not only important

metabolites required for an effective immune response but they

also have a number of regulatory functions and therefore can have

a much broader systemic impact, which in turn can affect immune

function. Nutrition has the potential to effectively treat immune

deficiencies related to poor intake, there is a great interest in

whether specific dietary interventions can further enhance

immune function in sub-clinical situations, and thus prevent the

onset of infections or chronic inflammatory diseases.
Frontiers in Immunology 06
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