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Abstract

It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and
loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays
a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental
sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-
high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the
auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative
aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness
discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the
auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-
defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.562.1 dB in
the left ear and 6.561.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear:
1.660.22 dB; right ear: 1.760.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for
loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-
world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of
auditory cortex in intensity processing are reviewed.
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Introduction

By the close of the 20th century, it seemed reasonably well-

established on the basis of neuropsychology studies in patients and

selective-ablation experiments in animals that auditory cortex was

devoted to higher functions such as pattern recognition but played

little or no role in elementary functions involving discrimination of

a single acoustic feature and its corresponding percept (e.g., pure-

tone intensity and loudness; for review see [1,2]). However,

experiments with neurological patients employing rigorous

psychoacoustic methods and in vivo lesion localization have since

demonstrated that lesions of auditory cortex impair pure-tone

frequency processing and pitch discrimination, even when pure-

tone audiograms are within normal limits [3–6]. These observa-

tions suggest a dissociation between the effects of auditory cortex

lesions on auditory sensation (i.e., detecting the presence of

a sound) and auditory perception (i.e., determining whether and

how two sounds differ in one or more attributes).

The present study focuses on pure-tone intensity processing in

relation to tone detection and loudness perception. The loudness

of a sound source and its change over time conveys information

about its size, location, movement, significance, and identity.

Humans and animals modulate the loudness of vocal communi-

cation sounds to convey meaning and emotion, and musical

dynamics is a key ingredient of musical aesthetics. Normal adults

demonstrate remarkably high perceptual acuity for loudness

changes under optimal listening conditions: the just noticeable

difference (jnd) for two-tone loudness discrimination is less than

1 dB at moderate and higher intensities throughout almost the

entire audible spectrum (for review see [7]). Given recent evidence

that auditory cortex supports high perceptual acuity for pure-tone

pitch perception [3,6], we hypothesized that it also subserves fine-

grained loudness perception.

This idea is supported by recent studies utilizing functional

neuroimaging which showed increased fMRI activation in the

auditory cortex with increasing sound level (see, e.g., [8–11]),

particularly in posteromedial portion of the tranverse gyrus of

Heschl (TG) [8,11], the presumed core area of human auditory

cortex [12–14]. However, such correlational studies cannot

establish the necessity of a given structure for a particular function,

and psychoacoustic experiments with neurological patients who

have bilateral auditory cortex lesions provide strong tests of
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hypotheses about the functional role of human auditory cortex in

auditory sensation and perception. While the rarity of cases with

bilateral lesions limits the inferences one can draw about structure-

function correlates in the general population, single-case studies

provide an important means of establishing existence proofs.

This paper reports the results of a series of original experiments

examining loudness perception in a population of normal adults

and a middle-aged, mixed-handed man, Case A1+, with chronic,

bilateral middle cerebral artery (MCA) infarcts that include all of

left and right primary auditory cortex (A1) and much of auditory

association cortex (AA). We predicted that: 1) jnd’s for tone

loudness discrimination (‘‘louder’’-‘‘softer’’ judgments) would be

greater in Case A1+ than normals; 2) his jnd’s would be greater in

the ear contralateral to the larger (right MCA) lesion; and 3) his

tone loudness discrimination would be impaired out of proportion

to tone detection.

Materials and Methods

Ethics Statement
All procedures were approved by the Institutional Review

Boards at the Massachusetts General Hospital (MGH) and the

Massachusetts Institute of Technology (MIT), and written in-

formed consent was obtained from all participants prior to their

participation.

Participants
Case A1+. Case A1+ is a 46-year old mixed-handed man who

suffered ischemic infarcts in the distribution of the right middle

cerebral artery in 1980 and the left middle cerebral artery in 1981.

He has twelve years of education and is not trained in music

performance or theory. At the time of the present experiments, he

was the primary caretaker of his and his wife’s three young

children and was on warfarin anti-thrombotic therapy and

phenytoin anti-convulsant therapy.

Details of the clinical history, neurological and audiological

examinations, and radiographic findings have been reported

previously [4,6,15,16]. In brief, the first cardioembolic stroke

presented with left hemiplegia and left hemisensory loss; the

second presented only with complete loss of hearing. Detection of

tones and natural sounds at moderate and high intensities returned

within a month, but perception of speech, music, environmental

sound, and sound source location remain impaired. At the time

the current study was conducted, Case A1+ had thresholds which

were within clinically-defined normal limits (Fig. 1).

Multi-planar MRI sections were acquired four months after the

present psychoacoustic experiments using a Siemens TIM Trio

3T. Lesion localization was analyzed on fluid-attenuated in-

version-recovery (FLAIR) sequences. Contiguous sections were

1.0 mm-thick with an in-plane resolution of 0.94 mm2

(TE=494 ms, TR=6000 ms, IT= 2100 ms, flip angle = 120u).
Selected parasagittal, coronal, and horizontal MRI sections

through superior temporal cortex are illustrated in Fig. 2.

Abnormal FLAIR signal involves all of the right TG, all of left

TG, all or almost all of right superior temporal gyrus (STG),

a portion of left STG posterior to TG, and underlying white

matter, including the geniculo-temporal radiation. The right-

hemisphere lesion extends into adjacent frontal, temporal, and

parietal areas; the smaller left-hemisphere lesion extends into

adjacent temporal and parietal areas. Comparison with previous

MRI sections through superior temporal cortex found no change

[4].

At the time of the present experiments, Case A1+ reported

difficulty perceiving speech - especially in noisy environments and

on the telephone – as well as difficulty localizing sounds. He was

alert, attentive, and without complaints throughout the psycho-

acoustic experiments.

Normal controls. Eleven age-matched right-handed adults

(7 female, 4 male) participated as normal controls (median

age = 41 years, range= 32–50 years). None reported a history of

neurological disease or hearing impairment, and none were

formally-trained musicians or actively performing music.

Stimulus Delivery and Data Collection
Participants sat in a double-walled sound-attenuated booth and

faced a computer monitor on which instructions, visual cues, and

feedback were given. Participants entered their responses using

a computer keyboard. All stimuli, except for pure tone audiometry

in normal control subjects, were generated digitally using

MATLAB (The Mathworks) and converted to analog waveforms

by a LynxOne (LynxStudio) 24-bit soundcard with a sampling

frequency of 32 kHz. The stimuli passed through programmable

attenuators (TDT PA4, Tucker Davis Technologies) and head-

phone buffers (TDT HB6, Tucker Davis Technologies) before

presentation to the subject via HD580 headphones (Sennheiser).

Pure-tone Detection
A two-interval, two-alternative, forced-choice (2I-2AFC) para-

digm with a 2-down, 1-up adaptive procedure was used to

measure the minimum intensity Case A1+ needed to detect the

presence of a 1-kHz, 500-ms pure tone with a response accuracy of

70.7% [17]. Each interval’s occurrence was indicated visually by

one of two boxes on the computer screen labeled ‘‘1’’ and ‘‘2’’; box

1 flashed during the first interval and box 2 during the second

interval. The target tone (duration = 500 ms, 20-ms raised-cosine

ramps) was randomly assigned to the first or second interval; no

stimulus was present in the other interval. The threshold for each

Figure 1. Case A1+ pure-tone audiogram for left-ear (filled
symbols) and right-ear (open symbols) presentation. Clinically-
defined normal limits extend 25 dB above the dotted line, which
indicates the average threshold from the ANSI standard.
doi:10.1371/journal.pone.0044602.g001
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run was defined as the mean dB SPL of the last six turnaround

points. Thresholds in normals were measured with an Inter-

acoustics Diagnostics Audiometer (AD229e) and Telephonics

headphones (TDH-39P) using a modified Hughson-Westlake

procedure.

Loudness Discrimination
On each trial, two 1-kHz pure tones were presented. Each tone

had a duration of 500 ms and was gated on and off with 20-ms

raised-cosine ramps. The two tones were separated by an inter-

stimulus interval (ISI) of 200 ms. The same 2I-2AFC procedure

used for pure-tone detection was used here. One tone was at the

reference intensity (I = 65 dB SPL for normal controls, I = 40 dB

SL for Case A1+). The intensity of the ‘‘test’’ tone (I+DI) differed
slightly in intensity from the reference by adding a 1-kHz, in-phase

tone to the reference tone. The order of the reference and test

tones was randomized on each trial. Listeners judged whether the

second tone was ‘‘louder’’ or ‘‘softer’’ than the first tone.

Intensity difference thresholds were expressed as DL=10lo-

g10[(I+DI)/I)] [18]. A 2I-2AFC, 2-down, 1-up adaptive procedure

tracked the 70.7% correct point on the psychometric function. In

order to maximize the number of observations made near

threshold, step size was decreased serially (DL=2.45, 1.48,

0.54 dB) over the course of the run. Threshold for each run was

defined as the mean DL of the last six turnaround points after the

smallest step size had been reached.

Normal listeners participated in three left-ear runs and three

right-ear runs. Contralateral noise at a level (per equivalent

rectangular bandwidth) of 20 dB below the target was presented in

order to prevent the use of the contralateral ear in performing the

task [19]. The start ear was pseudorandomized across subjects

such that an equal number of subjects started in each ear. Subjects

Figure 2. Case A1+ MRI FLAIR sequences. (A,B) Parasagittal sections through the left and right hemispheres. Left TG is atrophic and right TG is
replaced by encephalomalacia (low signal intensity). Ischemic demyelination and retrograde degeneration within adjacent white matter regions
appear as areas of high signal intensity. (C) Coronal section through the mid-portion of left and right TG and STG. (D) Horizontal section through left
and right TG and STG. See text for image acquisition parameters.
doi:10.1371/journal.pone.0044602.g002
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performed three or more practice runs until performance

plateaued.

Case A1+ participated in six runs for each ear. We did not

present contralateral masking noise. Blocks were counter-balanced

by ear using an ABBA paradigm: Right ear, left ear, left ear, right

ear, with three runs per block. The start ear was randomly chosen.

Case A1+ performed three or more practice runs until perfor-

mance plateaued.

Results

Intensity Thresholds for Pure-tone Detection
Fig. 3A shows pure-tone detection thresholds for Case A1+ and

the eleven normal controls. All were within normal clinical limits

[defined as 33 dB SPL at 1 kHz]. For Case A1+, the detection

threshold in the left ear, which is contralateral to the larger lesion,

was 18 dB SPL; the detection threshold in the right ear was 9 dB

SPL. His left-ear threshold was within one standard deviation (SD)

of the mean (M) of the control population (M 6

SD=14.466.0 dB SPL). His right-ear threshold was within 2

SDs of the control mean (M 6 SD=19.865.6 dB SPL), though

a Wilcoxian signed-rank test indicated that Case A1+’s threshold
was lower than our normal control population (signed-rank= 1,

p = 0.002). The absolute difference between the left and right ears

in Case A1+ (9 dB) was within a half SD of the control mean

(7.365.6 dB).

Intensity Thresholds for Pure-tone Loudness
Discrimination
Fig. 3B shows Case A1+ DL thresholds for individual runs in

chronological order from the first run through the last. A Kruskal-

Wallis test found no significant order effect across blocks for Case

A1+ (x2 = 5.21, p = 0.16).

Fig. 3C shows DL thresholds (M 6 SD) for left- and right-ear

loudness discrimination. Fig. 3D shows the individual run data;

box-and-whisker plots give the population median, interquartile

range, and estimated 95% confidence interval. For Case A1+, DL
thresholds averaged across the six runs for each ear were

6.562.1 dB in the left and 6.561.9 dB in the right. For normal

controls, DL thresholds were 1.660.22 dB in the left ear and

1.760.19 dB in the right ear. In each ear, Case A1+’s median DL
was above – with only one DL measurement within – the 95%

confidence interval of the control population. A Mann-Whitney

U-test using the DL for each run as the dependent variable

confirmed that Case A1+ thresholds were significantly higher than

those of normals in each ear [left and right ear: U= 216,

p,0.00001].

Inspection of Figs. 3B and 3C suggests no significant left-right

ear differences. A Mann-Whitney U Test using the threshold from

each run confirmed this for Case A1+ (U= 34, p= 0.48, N= 6 per

ear) and for controls (U= 1031.5, p = 0.35, N= 33 per ear).

Discussion

The results support our first working hypothesis: pure-tone DL
thresholds for louder-softer loudness judgments were 5 dB greater

in Case A1+ than normals. Contrary to our second a priori

hypothesis, DL thresholds were not significantly greater in the left

ear despite his larger right hemisphere lesion. Finally, consistent

with our third working hypothesis, intensity thresholds for tone

detection were within normal limits at all frequencies tested,

including the same frequency (1 kHz) used to test tone loudness

discrimination. These findings support the claim that brain

mechanisms mediating auditory sensation and perception are

neurologically dissociable. In addition, the fact that Case A1+ was

able to perform louder-softer judgments, albeit at much higher DL
thresholds, indicates that auditory structures spared by his strokes

– specifically left anterior auditory association cortex and/or the

auditory brainstem – can mediate coarse loudness perception.

It should be noted here that the test conditions for Case A1+
and normals were not identical (see Methods). However, based on

our review of relevant literature on the differences between one-

and two-interval forced-choice tasks [20] as well as the effects of

contralateral masking noise [21] and reference intensity level [7]

on loudness discrimination thresholds, it is unlikely the differences

affect our conclusions. In fact, the fact that we used contralateral

masking noise in our control population and not in Case A1+ may

have underestimated his deficit. It is also unlikely that the observed

deficits in Case A1+ are attributable to non-modality specific

effects of his lesions. First, we did not observe signs of fatigue

during testing, and there was no significant order effect across

blocks. Second, his intensity thresholds for pure-tone detection

were normal and were measured with an adaptive procedure that

was as demanding as the one used to measure loudness

discrimination. Lastly, previous psychophysical measurements

demonstrated that both duration discrimination thresholds (for

long-duration pure tones) and vibrotactile intensity discrimination

thresholds were only slightly impaired [6].

Lesion-effect Studies in Humans
While our single-case study establishes an existence proof for an

auditory-cortex role in loudness perception, the generalizability of

our findings must be assessed in the broader context provided by

previous rare cases with bilateral auditory cortex lesions as well as

cases with unilaterallesion cases studied with suitable psycho-

acoustic methods (summarized in Table 1).

Most patients with unilateral lesions showed little or no deficit

for intensity-discrimination thresholds [22,23] (but see [24,25]),

somewhat irrespective of whether the insult broached TG.

Conversely, both patients with bilateral lesions to the superior

temporal cortex had clear deficits [26,27], consistent with the

results from the present study. The single case in whom lesions

were localized precisely showed bilateral involvement of TG and

posterior STG [27]. Given the conflicting results of unilateral

lesion studies in temporal lobectomy patients, and the conclusions

from Baru and Karaseva’s review of the Russian and German

literature [28], we conclude that unilateral A1 and AA lesions have

little to no effect on either binaural or contralesional loudness

perception.

Lesion-effect Studies in Non-human Primates
We found only two Old-World monkey studies that examined

the effects of auditory cortex lesions on intensity processing [29,30]

in Old World monkeys. In one [29], Rhesus macaques were

trained to detect when a 1-kHz tone decreased in intensity from

80 dB to 60 dB SPL before bilateral ablation of the superior

temporal plane including primary auditory cortex. After ablation,

the subject did not reach the criterion level of performance of 90%

correct in 25 sessions, after which the comparison intensity was

decreased to 40 dB, for which the subject achieved criterion after

55 sessions. In the other [30]. Japanese macaques judged whether

a three-tone sequence was louder or softer than a three-tone

standard sequence presented at 65 dB SPL in quasi-free field. The

monkey with near complete bilateral ablations of A1 and AA had

elevated jnd’s, while none of three monkeys with extensive

unilateral A1 and AA lesions showed a deficit.

Auditory Cortex and Loudness Perception
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Chronic vs. Acute Lesions
The aforementioned lesion-effect studies all examined the

impact of chronic lesions of auditory cortex on sound detection

or intensity discrimination, where long-term compensatory

mechanisms are likely to have occurred. Indeed, Case A1+’s
second infarct left him profoundly deaf for at least a month, after

which he slowly recovered the ability to detect high- and

Figure 3. Comarison of detection and discrimination thresholds for Case A1+ vs. controls. (A) Detection thresholds in dB SPL for 1kHz
pure tones measured in Case A1+ (x) and each normal control (circles, N = 11). Left-ear thresholds are plotted on the x-axis, right-ear thresholds on the
y-axis. The dashed lines at 33 dB SPL correspond to 25 dB Hearing Level (HL), the upper limit of the clinically normal range. (B) Case A1+ monaural
discrimination thresholds (DL) from individual runs in chronological order. Blocks of three runs were counterbalanced across ears (right ear =white;
left ear = black). Error bars show 61 SD of the last six turnaround points. (C) Monaural discrimination thresholds (DL) for louder-softer judgments of
1 kHz pure tones for Case A1+ (x) and each normal control (circles) averaged across runs. Left-ear thresholds are plotted on the x-axis, right-ear
thresholds on the y-axis. Error bars show 61 SD. (D) Monaural discrimination thresholds (DL) for Case A1+ (black, x) and normal controls (gray, o).
Each box shows the median and upper and lower quartiles of DL for each run; whiskers mark the 95% confidence intervals.
doi:10.1371/journal.pone.0044602.g003
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moderate-intensity sounds. In contrast, acute lesion studies (e.g.,

using inhibitory agonists or reversible cooling) have the unique

ability to reveal the brain areas which normally support a given

function whilst ruling out compensatory reorganization. Such

studies, mostly carried out in non-primate mammals, have

produced mixed results regarding whether auditory cortex is

normally involved in the detection and/or discrimination of sound

[31–34], although it seems likely that acute inactivations of

auditory cortex can produce disruption of both frequency

discriminaticomon and sound localization [35,36] as well as more

complex functions [37]. In any case, the fact that Case A1+’s
deficit in intensity discrimination persists years after his last infarct

suggests that in healthy humans, fine-grained intensity processing

is (i) supported by auditory cortex and (ii) cannot be completely

restored by post-infarct compensatory mechanisms, although such

mechanisms could play a role in restoring sound detection and

coarse loudness discrimination.

Neuroimaging Studies of Intensity Processing
The coarse neural representation of sound level has been

investigated extensively using auditory-evoked potentials, PET,

and fMRI [8–11,38–49]. These studies have consistently demon-

strated that increases in intensity correlates with increased activity

in auditory cortex. The most relevant study for the present

discussion measured sound-evoked BOLD activation as a function

of intensity while subjects detected occasional changes in duration

[8]. Increases in sound level produced non-linear increases in both

magnitude and spatial extent of activation, with stronger increases

in TG (vs. STG) and contralateral (vs. ipsilateral) to the ear of

stimulation. Other fMRI studies have also demonstrated high

correlations between intensity and TG activation, particularly its

posterior-medial portion [10,38], the presumed core of human

auditory cortex [12,13]. The one study which examined sub-

cortical structures also found activation which increased with

increasing intensity [10].

Conclusions

The present findings in Case A1+, in line with previous

neuroimaging and neuophysiological studies not reviewed here

[50–55], advance the claim that auditory cortex plays a critical

role in basic auditory functions, particularly with respect to the

fine-grained analysis of spectral information [56]. Although

auditory cortex plays a critical role in fine-grained loudness

discrimination, sensation per se and course loudness discrimination

in the chronic state remain after complete bilateral lesions of A1

and near-compete bilateral lesions of AA. We therefore hypoth-

esize that intensity processing is organized hierarchically: the

auditory cortex (most likely A1) is necessary for fine-grained

loudness discrimination (though an explanation in terms of top-

down effects due to loss of descending projections from the

auditory cortex to subcortical structures cannot be ruled out, see

e.g. [57,58]), while the auditory brainstem may be sufficient for

detection of sound after cortical insult. It remains unclear whether

the auditory brainstem, auditory association cortex, or both are

sufficient for coarse loudness discrimination and subsequent

response mapping after bilateral auditory cortex lesions.

As a consequence of his chronic bilateral A1 and AA infarcts,

Case A1+ needed tones to be twice as loud to discriminate

increases from decreases in loudness. Given the importance of

musical and speech dynamics to aesthetics, prosody, and semantic

processing, these deficits in basic auditory functions would likely

have profound effects at cognitive and emotional levels [59,60].
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