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Abstract: Wheelchair users must use proper technique when performing sitting-pivot-transfers
(SPTs) to prevent upper extremity pain and discomfort. Current methods to analyze the quality of
SPTs include the TransKinect, a combination of machine learning (ML) models, and the Transfer
Assessment Instrument (TAI), to automatically score the quality of a transfer using Microsoft Kinect
V2. With the discontinuation of the V2, there is a necessity to determine the compatibility of other
commercial sensors. The Intel RealSense D435 and the Microsoft Kinect Azure were compared
against the V2 for inter- and intra-sensor reliability. A secondary analysis with the Azure was also
performed to analyze its performance with the existing ML models used to predict transfer quality.
The intra- and inter-sensor reliability was higher for the Azure and V2 (n = 7; ICC = 0.63 to 0.92)
than the RealSense and V2 (n = 30; ICC = 0.13 to 0.7) for four key features. Additionally, the V2 and
the Azure both showed high agreement with each other on the ML outcomes but not against a ground
truth. Therefore, the ML models may need to be retrained ideally with the Azure, as it was found to
be a more reliable and robust sensor for tracking wheelchair transfers in comparison to the V2.

Keywords: skeletal tracking; depth sensor; machine learning; activities of daily living; biomechanics

1. Introduction

In 2016 there were approximately 282,000 individuals in the United States living
with a spinal cord injury (SCI), with around 12,500 new cases occurring each year [1].
Individuals with SCI make up a portion of the over 3.6 million Americans over the age
of 15 who use a wheelchair in their daily life as their primary means of mobility [2].
As a direct result of SCI or other conditions, wheelchair users (WUs) rely a great deal
on their upper extremities, specifically the shoulders, arms, and the trunk, to complete
common but essential activities of daily living (ADLs). This involves tasks such as, but not
limited to: pushing their wheelchair, getting in and out of bed, cooking, cleaning, hygiene
tasks, and performing transfers to a toilet, shower chair, or car. Manual wheelchair users
(MWUs) will, on average, perform between 14–18 transfers each day; transfers are very
physically demanding and may lead to and cause various forms of upper extremity pain
and discomfort [3,4]. This is supported by research findings that 31–73% of MWUs have
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upper extremity pain, specifically in the shoulders [5]. This pain and discomfort force many
MWUs to lead sedentary lifestyles and have a decreased quality of life [6].

Proper sitting-pivot-technique (SPT) for independent transfers in MWUs is vital to
avoid predisposition to upper extremity pain and discomfort; therefore, proper training,
practice, and management of SPTs are integral to the quality of life and opportunities
for MWUs [4,7]. Methods to analyze the quality of SPTs include the Transfer Assessment
Instrument (TAI), a reliable and validated tool that monitors the biomechanical properties of
an individual while they perform an SPT [8]. A higher score on the TAI is indicative of better
technique and lower mechanical loading on the upper extremity joints. The TAI includes
components such as setup of wheelchair angle, hand grip, and body positioning. Proper
utilization of the TAI has been shown to lead to better technique and biomechanics [9,10];
however, there is a heavy reliance on clinician and user education, training on proper
technique, and subjective analysis of movement strategies [9,11]. Providing a system that
could aid in the automatic assessment of proper versus improper transfer technique could
increase TAI’s utility and the number of patients who could benefit from such an evaluation.

A large number of movement recognition and auto-technique classification applica-
tions have been described in the literature. These applications use a wide variety of sensors
to capture the spatial and temporal features of the motions of interest. One group of appli-
cations uses inertial measurement units (IMUs) for capturing the biomechanical features
of interest, which are used to classify the techniques [12–14]. Although these applications
provide a wireless solution, the setup entails the attachment of physical sensors to the body
as well as calibration procedures. Another group of applications uses an RGB camera and
deep learning techniques to identify body keypoints and classify human activity [15,16].
While this type of application is inexpensive and non-intrusive, real-time 3D body point
tracking is computationally intense and may not yet be accurate enough to allow for
discerning proper from improper transfer technique using only 2D planar images [17,18].

A third group of applications entails the use of depth sensors which can provide
full-body three-dimensional (3D) motion capture with facial, hand/finger, and/or body
joint tracking capabilities while permitting total freedom of movement without holding or
wearing any sensors or markers. These sensors are also inexpensive (<USD 500), portable,
and easy to set up and use, making them an attractive option to consider for technical and
clinical applications. Ensuring the simplicity of system use and flexibility of system setup
is crucial to fit the needs of busy clinical professionals and to support the integration of
an auto-scoring system into the existing facilities and treatment processes. The Microsoft
Kinect V2 camera is a popular depth sensor that has been used in numerous studies to
successfully automate the scoring of various clinical tools using 3D body tracking (skeletal)
data [19–21].

Building upon the success of these prior studies, we developed TransKinect—a soft-
ware application used to make TAI scoring easier and less subjective, using a Microsoft
Kinect V2 depth camera to watch and auto-score the TAI. This is accomplished through
trained machine learning (ML) models that use biomechanical features to determine
if the SPT was conducted correctly or incorrectly in accordance with TAI principles [11].
The TransKinect application uses the sensor data to compute a large number of features,
including max, min, range of motion, and averages of joint angles, rotations, displacements,
velocities, accelerations, and jerk. These features, along with the ML models, are used to
auto-score each item of the TAI as well as compute a total overall technique score [11].
The models used in the current version of TransKinect were trained from data collected
from the Kinect V2; however, this sensor has since been discontinued.

Our research team has demonstrated that the Kinect V2 has the ability to recognize at-
risk body motions during independent sitting pivot transfers [11,22,23]. The Intel RealSense
D435 depth sensor could be a solution for Kinect V2’s discontinuation because its technical
specifications are similar, and there is a full-body tracking software development kit
(SDK) that provides similar 3D joint center locations as the V2. Similarly, V2’s successor,
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the Microsoft Azure, and a full-body skeletal tracking library in Python have recently
become available.

For the continued development of TransKinect and successful translation into clinical
practice, a new sensor must be identified. While there has been some research in com-
paring the performance of various depth sensors in their ability to track biomechanical
variables [24–27], none of the studies that we know of have focused on motions that occur
while in a seated position and for wheelchair transfer techniques specifically.

The overall goal of this study was to determine the potential for the RealSense and
Azure sensors to act as surrogate sensors for the TransKinect application. Specifically,
we aimed to determine the intra-rater (within sensor) reliability, inter-rater (between sensor)
reliability, and agreement of select key features between the Intel RealSense and V2 and
the Azure and V2. We hypothesized that the reliability within each sensor and between
each sensor pairing would be high (interclass correlation coefficients (ICC > 0.80) and that
the reliability would be similar between the sensors (ICC differences < 0.10). We further
expected high agreement between the V2 and RealSense and V2 and Azure features (i.e., 95%
of data falling within the mean ± (1.96 × STD) limits of agreement). A secondary goal of
the study was to determine the agreement between TAI scores auto-generated with the V2 to
those auto-generated with the Azure for proper and improper SPTs. We hoped to find that
the Azure TAI scores would have high agreement with the V2 TAI scores (>70%) and that
the Azure TAI scores would also have high accuracy with the ground truth scores (>70%).

2. Materials and Methods

Both phases of the study followed the proposed flowchart shown in Figure 1. The sec-
ond phase had an additional analysis step involved for the machine learning.

The first phase of the study comparing the RealSense to V2 sensors was conducted
pre-COVID-19 pandemic at the 2019 Annual National Veterans Wheelchair Games (NVWG)
in Louisville, Kentucky. The second phase comparing the Azure and V2 sensors was con-
ducted during the COVID-19 pandemic in the Human Engineering Research Laboratories.
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Figure 1. Experimental study flowchart for Phase 1 and Phase 2.

2.1. Participants

The inclusion criteria for Phase 1 (RealSense vs. V2) participants were: (1) have
a discernable neurological impairment affecting both lower extremities or persons with
transfemoral or transtibial amputation of both lower extremities and who do not use
prostheses during transfers, (2) at least one-year post-injury or diagnosis, (3) able to inde-
pendently transfer to/from a wheelchair without human assistance or assistive devices,
(4) use a wheelchair for the majority of mobility (over 40 h/week), and (5) over the age of
18 years. Participants were excluded if they had (1) current or recent history of pressure ul-
cers in the last year, (2) history of seizures or angina, or (3) were able to stand unsupported.

The Phase 2 (Azure vs. V2) participants were able-bodied research staff without
any upper or lower limb impairment who were knowledgeable on proper and improper
wheelchair transfer techniques.

For Phase 1 RealSense vs. V2 reliability and agreement analysis, 26 men and 4 women
with an average age of 56.6 years (standard deviation (STD) = 11.8) contributed a total of
150 transfer trials for the analysis. The group regularly performed, on average, 13 transfers
(STD = 10.9, self-reported) per day. Participants had 16.8 years (STD = 5.8) experience
in using wheelchairs and used their wheelchairs for 13.2 h (STD = 5.8) per day. Nine (30%)
were African Americans, twelve (40%) were Caucasian, three (10%) were Hispanic, two
were Asian, one denoted mixed race, and three did not answer the question. Twenty-three
participants (77%) used a manual wheelchair. Nineteen (63%) had a spinal cord injury, six
(20%) had an amputation, two (7%) had multiple sclerosis, and others included Guillain
barre (n = 1), traumatic brain injury (n = 1), and poliomyelitis (n = 1).

For Phase 2 Azure vs. V2 reliability and agreement analysis, seven (three men and
four women) with an average age of 29.4 years participated for a total of 70 transfers. Four
individuals were Caucasian, two were Asian, and one was Hispanic.

The analysis comparing the ML predicted TAI scores between the Azure and V2
involved three participants (1 man and 2 women) with an average age of 32.7 years. They
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conducted 10 transfers for each of the five different transfer types (150 trials total). One
participant was Asian, and the other two were Caucasian.

2.2. Equipment

In both phases of the study, participants transferred from a wheelchair to a height-
adjustable firm surface (transfer bench). Custom software programs were developed that
utilized existing SDKs for each sensor, allowing for visualization and recording of body
tracking data. For the V2, a graphical user interface (GUI) was programmed in C#, Visual
Studio 2012, .NET Framework 4.0 and used the Windows Kinect SDK for obtaining the joint
center coordinates. The RealSense D435 utilized a third-party SDK by Nuitrack, released
by 3DiVi Inc., to obtain the coordinates. A custom Python GUI was created to facilitate
data collection from the Kinect Azure, utilizing the pyKinectAzure library. Each individual
sensor was connected to its own laptop computer for the data collection. The joint center
data from all sensors were collected at 30 Hz and saved in *csv (comma-separated value)
files. The data were synchronized via timestamps. Specifications for each sensor are shown
in Table 1.

Table 1. Hardware specifications of depth sensors.

Sensor
Depth Camera

Resolution
(pixels)

Ideal Operating
Range (m)

Sampling
Frequency

(Hz)

Overall
Dimensions

(mm)
Images

Kinect
V2 512 × 424 0.5–4.5 ≤30 249 × 66 × 67
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2.4. Data Collection Protocol
2.4.1. Phase 1 RealSense vs. V2

Participants were asked to position their wheelchair to the right of a level-height
bench (70 cm × 55 cm) based on their transfer preferences (Figure 2 left). Data collection
from the sensors was started, then participants were asked to perform a transfer from
the wheelchair to the transfer surface using their habitual technique. Data collection was
stopped once participants were stable on the transfer surface. The participant then trans-
ferred back to their wheelchair to prepare for the next trial. The participant repeated
the transfers up to five times in each direction for a maximum total of 10 transfers. Approx-
imately 3 to 5 min of rest time was provided between trials, and they were allowed to take
more time to rest if needed.

2.4.2. Phase 2 Azure vs. V2

Participants were asked to position themselves to the right of the level-height bench
(same one as Phase 1) and prepare to perform a transfer (Figure 2 right). They were asked
to perform proper technique in accordance with the TAI (e.g., locking the brakes, removing
arm rests, positioning the wheelchair at the proper angle, placing feet on the ground,
using proper hand grips and arm positioning, flexing their trunk forward during the lift,
and landing smoothly). The quality of the SPT was closely monitored by the research staff
visually; if the SPT was not performed correctly, the participant was asked to perform
an additional transfer. Time was given in between transfers to rest. A total of 10 transfers
from the wheelchair to the bench were collected for each participant. Afterward, the par-
ticipants were asked to perform transfers using 4 different improper transfer techniques
(not leaning forward with the trunk, not placing feet on the ground, using a fist instead
of an open hand grip, and positioning the leading arm too far out/away from the body).
Each type of improper transfer was performed 10 times each. Rest time was provided
in between transfers.

2.5. Data Processing

The specific joint centers identified by each sensor type are shown in Figure 3 [28–31].
Time-series joint center data (X, Y, and Z coordinates) were further analyzed using a custom
MATLAB script. This analysis was conducted on the raw data from the sensors with no fil-
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tering. Filtering was only used to determine the different phases of the transfer (see below).
Four key kinematic features important for describing wheelchair transfer biomechanics [4]
and detecting differences in TAI proper and improper technique [11] were used to assess
the reliability and agreement between the sensor types. All of these features were calculated
from the “lift phase” portion of the transfer [4]. The lift phase was determined in the same
manner for all sensors and in all phases by analyzing the x-axis position of the spine
base/waist/pelvis joint center. The raw positional data was filtered with a digital lowpass
Butterworth filter with a cutoff frequency of 15 Hz, and the start and end points of the lift
phases were determined. The start of the lift phase was determined by the end of the first
plateau region, as shown in Figure 4; the lift phase was the positive linear portion; and
the landing phase was the last plateau section. These points were determined by finding
the last minimum data point and first maximum data point. The four features included:
displacement of the spine base/waist/pelvis joint center (DSWP), average plane of eleva-
tion angle on the leading side shoulder (LPOE), average elevation angle on the leading
side shoulder (LE), and average trunk flexion angle (TF). These features, how they are
calculated, and their relevant joint centers are shown in Table 2 and explained below.

1. DSWP—the displacement of the spine base/waist/pelvis joint center along the x-axis,
calculated by taking the final position and subtracting the initial position. This value
is given in millimeters and converted to centimeters.

2. LPOE—the average plane of elevation angle on the leading side shoulder (the left
side). This angle is calculated between two vectors: a normal vector to the chest
and the upper arm (left shoulder to elbow), projected onto the transverse plane.
The normal vector is calculated by taking the cross product of the trunk vector (e.g.,
Azure pelvis to upper spine marker) and the shoulder across vector (left to right
shoulder markers). This value is given in degrees.

3. LE—the average elevation angle on the leading side shoulder (the left side). This an-
gle is calculated between two vectors: the trunk vector and the upper arm vector.
This value is given in degrees.

4. TF—the average flexion angle of the trunk calculated as the angle between the trunk
vector and the vertical y-axis. This value is given in degrees.
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Table 2. Key variables used in analysis of sensor reliability and agreement.

Feature Description Relevant Joint Centers

DSWP
Displacement of the SpineBase, waist,
or pelvis along the x-axis, measured

in millimeters.

V2 SpineBase

RealSense Waist

Azure Pelvis

LPOE

Average joint angle between a normal
vector orthogonal to the trunk and

shoulder vector projected onto
the transverse plane measured in degrees.

V2 SpineBase, SpineShoulder,
LeftShoulder, RightShoulder, LeftElbow

RealSense Waist, left and right collar, LeftShoulder,
RightShoulder, LeftElbow

Azure Pelvis, SpineUpper *, ShoulderLeft,
ShoulderRight, ElbowLeft

LE Average joint angle between the trunk and
the upper arm, measured in degrees.

V2 SpineBase, SpineShoulder, LeftShoulder,
LeftElbow

RealSense Waist, left and right collar, LeftShoulder,
LeftElbow

Azure Pelvis, SpineUpper *, ShoulderLeft,
ElbowLeft

TF
Average joint angle between the trunk and
the vertical y −axis, measured in degrees.

V2 SpineBase, SpineShoulder

RealSense Waist, left and right collar

Azure Pelvis, SpineUpper *

* The SpineUpper joint center on the Azure was approximated to match the SpineShoulder on the V2. This was
completed by taking the midpoint of the two collarbone markers.

A secondary goal of the study was to determine the agreement between TAI scores
auto-generated with the V2 to those auto-generated with the Azure for proper and improper
SPTs. Specific details concerning the development of the ML models used to predict
(auto-generate) TAI scores can be found elsewhere [11]. These models use features that
are generated from the V2 joint center data to predict if each TAI item is performed
correctly or incorrectly. As shown in Figure 3, the joint center locations are slightly different
between the two sensors. For the key feature calculations, the marker anatomical locations
between the two sensors aligned well, with the exception of the SpineShoulder marker
on the V2. Several different approximations were attempted, but the one that provided
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the most similar location to the V2 SpineShoulder marker was by taking the midpoint
between the two Clavicle markers on the Azure map. This new approximated marker was
named SpineUpper.

The features used in the ML models (e.g., joint angles, joint center displacements,
velocities, accelerations, etc.) were then computed using the identified and approximated
Azure marker locations and separately using the equivalent V2 marker locations for each
transfer. The features generated from each of the sensors were entered into the ML models
to predict the TAI items scores. The TAI contains 15 items that break down the transfer
into components that are scored either a ‘1’ for properly executed technique or a ‘0’ for
improperly executed technique [32]. Only 11 items have been modeled to date using ML
methods (Items 1 and 2 and Items 7–15).

2.6. Statistical Analysis

All statistical analyses were performed in SPSS 27. Intra-rater reliability and reliability
within a sensor were calculated using ICC 3,1 (two-way mixed-effects model with absolute
agreement) for all the trials. Inter-rater reliability, reliability between sensors, was calculated
using ICC 2,1 (two-way random-effects model with absolute agreement). ICC values for
both analyses were characterized as excellent (ICC > 0.8), good (ICC 0.6–0.79), moderate
(ICC 0.4–0.59), fair (ICC 0.2–0.39), or poor (ICC < 0.2). Furthermore, agreement between
sensor features was evaluated using Bland–Altman plots. The “agreement” in this study
is the characteristic that describes how close the two measurements are. The infimum (inf)
and supremum (sub) of the agreement were set as:

in f inium = m − 1.96 × s

supremum = m + 1.96 × s

where “m” is the mean of differences of both sensors and “s” is the standard deviation.
Based on the Gaussian hypothesis, if 95% of the data are within the range between the inf
and sub, it is valid to affirm that the two methods are interchangeable [33].

A percent agreement was computed between the Azure, and V2 ML predicted TAI
scores across 150 transfers (3 participants × 50 trials). A confusion matrix was used to
determine the accuracy of the ML-predicted TAI scores for each sensor in comparison to
the ground truth scores for each transfer.

3. Results
3.1. RealSense vs. V2 Reliability and Agreement

The V2 showed higher intra-rater reliability (ICC = 0.60–0.82) than the RealSense
(ICC = 0.25–0.70) for the four key variables (Table 3). Both V2 and RealSense have high
reliability for the TF (ICC = 0.75 and 0.70). The DSWP has the largest difference in ICCs
between the two sensors (difference = 0.57).

Table 3. Intra-rater reliability ICC 3,1 within RealSense and V2.

RealSense V2

ICC
Confidence

Interval Lower
Bound

Confidence
Interval Upper

Bound
ICC

Confidence
Interval Lower

Bound

Confidence
Interval

Upper Bound
Diff.

DSWP 0.25 0.11 0.44 0.82 0.72 0.90 0.57

LPOE 0.60 0.44 0.75 0.81 0.71 0.89 0.21

LE 0.38 0.22 0.57 0.60 0.44 0.75 0.22

TF 0.70 0.56 0.82 0.75 0.63 0.85 0.05
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The LPOE and TF have moderate inter-rater reliability (ICC = 0.52 and 0.51) (Table 4),
while the DSWP and LE showed low reliability (ICC = 0.13 and 0.17). The Bland–Altman
plots for the agreement between sensors are shown in Figure 5. These show general
agreement between the sensors for the recorded trials. Most of the data points fall between
the infinium and the supremum for the four key variables, with a few outliers for each.
The number of outliers is relatively small compared to the total number of trials (150).
Lastly, since there is a general random distribution of the data points around the mean, it is
evident that there is no bias of one sensor over the other.

Table 4. Inter-rater reliability ICC 2,1 between RealSense and V2.

ICC Confidence Interval
Lower Bound

Confidence Interval
Upper Bound Mean Std

DSWP (cm) 0.25 0.11 0.55
RealSense 75.11 59.59

V2 86.31 54.18

LPOE (deg) 0.57 0.07 0.84
RealSense 79.28 9.96

V2 86.99 11.51

LE (deg) 0.13 0.10 0.40
RealSense 36.15 9.27

V2 45.77 8.67

TF (deg) 0.63 0.06 0.85
RealSense 21.86 8.22

V2 27.79 10.51
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3.2. Azure vs. V2 Reliability and Agreement

The ICC values for the Azure were higher (0.91–0.92) than those of the V2 (0.82–0.92)
for three of the key variables analyzed (Table 5). The TF angle had approximately the same
level of intra-rater reliability as the V2. Additionally, the Azure had a smaller 95% CI range
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compared to the V2. ICC values were all characterized as excellent. The largest difference
in ICC was found in the LPOE angle; however, all differences were less than 0.1.

Table 5. Intra-rater reliability ICC 3,1 within Azure and V2.

Azure V2

ICC
Confidence

Interval Lower
Bound

Confidence
Interval

Upper Bound
ICC

Confidence
Interval Lower

Bound

Confidence
Interval

Upper Bound
Diff.

DSWP 0.92 0.79 0.98 0.84 0.58 0.97 0.08

LPOE 0.92 0.78 0.98 0.82 0.54 0.96 0.09

LE 0.92 0.79 0.98 0.89 0.71 0.98 0.03

TF 0.92 0.78 0.98 0.92 0.79 0.98 0.01

The DSWP had excellent between-sensor reliability (ICC = 0.91) and all other variables
(LPOE, LE, and TF) had good reliability (ICCs = 0.67, 0.63, 0.75) (Table 6). The Bland–
Altman plots for the agreement between sensors are shown in Figure 6. These plots show
high agreement between the trials between the two sensors. There were a few data points
outside of the upper and lower bounds; however, this is a relatively small amount compared
to the 70 total trials. With a random distribution of data points around the mean, there did
not appear to be bias associated with the errors.
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Table 6. Inter-rater reliability ICC 2,1 between Azure and V2.

ICC Confidence Interval
Lower Bound

Confidence Interval
Upper Bound Mean Std

DSWP (cm) 0.91 0.51 0.98
Azure 47.75 5.38

V2 49.76 6.63

LPOE (deg) 0.67 −0.16 0.94
Azure 84.38 5.49

V2 90.74 4.92

LE (deg) 0.63 −0.89 0.94
Azure 44.83 5.20

V2 47.41 7.29

TF (deg) 0.75 −0.67 0.96
Azure 30.58 7.35

V2 31.54 7.49

3.3. ML Predicted TAI Scores for the Azure and V2

The percent agreement between the two sensors for the predicted TAI scores across
all the trials and items was 85.9% (STD 12.8%) (Table 7). The TAI items with the lowest
agreement were Items 7 and 11. These items are the position of the feet during the transfer
and the hand grip of the leading arm during the transfer, respectively. The items with
the highest agreement were Items 2, 14, and 15, related to the angle between the wheelchair
and transfer surface, if the transfer was performed in one smooth motion, and if the landing
was smooth, respectively.

Table 7. Agreement between Azure and V2 ML outcomes from 150 transfers.

TAI Items Description AZ == V2 AZ =/= V2 Percent
Agreement

1 Distance Transferred 135 15 90.0

2 Angle of Approach 149 1 99.3

7 Feet
Position 89 61 59.3

8 Scoot
Forward 135 15 90.0

9 Leading Arm Before Transfer 117 33 78.0

10 Push-off Hand Grip 133 17 88.7

11 Leading Hand Grip 107 43 71.3

12 Leading Arm After Transfer 119 31 79.3

13 Trunk Lean 134 16 89.3

14 Smooth Transfer 149 1 99.3

15 Stable
Landing 150 0 100.0

Average 128.8 21.2 85.9

STD 19.2 19.2 12.8

Both the V2 and Azure sensors showed a high level of accuracy (>77%) for predicting
the TAI scores of ‘properly’ executed transfers. Neither of the sensors did well at detecting
when improper transfer technique was being used (Table 8). For example, for the transfer
that involved not placing the feet on the ground (Item 7), the V2 only detected the issue for
10% of the transfers (3 out of 30 transfers), and the Azure detected it for 7 of the 30 transfers.
The V2 did a better job at detecting when the arm was placed in the wrong location (66.7%)
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compared to the Azure (20%). The Azure did better at predicting when the trunk was not
leaned forward enough (40.0%) versus 0% for the V2.

Table 8. Percent accuracy of ML outcomes from Azure (AZ) and V2 compared to ground truth
(30 trials of each transfer type). The shaded cells indicate the items that were targeted for each
improper transfer type and results.

Improper Transfers

Good Feet Trunk Arm Fist

Items V2 AZ V2 AZ V2 AZ V2 AZ V2 AZ

1 100.0 93.3 100.0 96.7 100.0 86.7 100.0 90.0 100.0 83.3

2 100.0 100.0 100.0 96.7 100.0 100.0 100.0 100.0 100.0 100.0
7 90.0 80.0 10.0 23.3 83.3 60.0 93.3 63.3 80.0 73.3
8 96.7 100.0 70.0 100.0 93.3 96.7 96.7 100.0 100.0 96.7
9 80.0 96.7 86.7 100.0 100.0 100.0 66.7 20.0 80.0 100.0

10 96.7 96.7 93.3 93.3 100.0 83.3 96.7 93.3 90.0 100.0
11 83.3 83.3 96.7 63.3 73.3 90.0 90.0 100.0 23.3 20.0
12 76.7 96.7 80.0 100.0 100.0 100.0 33.3 0.0 76.7 100.0
13 100.0 96.7 100.0 93.3 0.0 40.0 100.0 100.0 100.0 96.7
14 100.0 100.0 96.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0

15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

4. Discussion

A recent application was developed to auto-score the quality of wheelchair transfer
techniques (TransKinect); however, the sensor that is central to capturing the movement
strategies (Microsoft Kinect V2) is no longer being produced. A comparative study was
conducted to determine if another sensor could be interchanged with the obsolete one.
Overall, the results show that Microsoft’s successor to V2, the Azure, showed even better
reliability compared to the V2 and Intel’s RealSense for measuring the key variables
important for evaluating the quality of transfer techniques. The Azure also showed high
levels of agreement with the V2 in relation to the magnitude values of these variables,
and the two closely agreed with each other on the auto-generated scoring of proper and
improper transfers. However, when looking at how each of these sensors did in detecting
proper from improper technique compared to ground truth, both sensors were good at
predicting when ‘proper’ technique was used, but both fell short in predicting when
improper technique occurred. These results suggest that the ML models of the TransKinect
application may need to be further examined, refined, or retrained to improve their accuracy
in predicting improper technique. The results of this study provide important information
for the next steps of TransKinect application development.

The quality of wheelchair transfer techniques can be evaluated by multiple com-
ponents related to wheelchair setup, body setup, and flight movements using the latest
version of the TAI 4.0 [8]. The kinematic variables related to the upper extremities and
trunk motion have a high correlation with joint force and moment at the shoulder, elbow,
and wrist during the transfer [4,34]. Learning to align the upper limb and trunk motions
with TAI principles can reduce upper limb joint forces and moments [10]. In our previous
studies, we applied kinematic variables as the features of machine learning classifiers to
predict TAI scores [11]. The DSWP is a feature that is important for identifying if the person
uses the correct wheelchair distance between transfer surfaces (TAI 4.0 item 1), scoots
forward to the edge of the sitting area before transfer (item 8), and has good body balance
during flight (item 14, 15). The DSWP is also useful for detecting when the lift phase of
the transfer process occurs, which is required for the application of the TAI prediction
classifiers. The LPOE and LE are important for identifying the correct technique related
to the positioning of the arm (items 9, 11, 12). The TF is a key feature for measuring
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correct trunk leaning motion (item 13). Using this movement pattern can reduce the upper
extremities joint loading during transfer [4,8,11].

We examined the intra-rater reliability of the sensors by analyzing repeated trials
performed by the same participant. Some intra-trial variability is expected because the indi-
viduals could have varied their technique for each transfer. However, because both sensors
are watching the same transfers, the variation from the participants would have been
controlled for in the analysis. Thus, the intra-rater reliability from the repeated transfers
provides an indication of how reliable the sensors are relative to each other in detecting
the motions.

The reliability analysis comparing RealSense to the V2 shows that the RealSense would
not be a viable substitute for the V2 in the TransKinect application. The RealSense had
worse intra-sensor reliability than the V2, with only two of the key variables scoring a good
ICC (the other two being fair). On the other hand, the V2 had two excellent and two good
ICC values. Additionally, the RealSense had broader 95% confidence intervals than the V2.
Furthermore, the inter-sensor reliability analysis showed that the RealSense and V2 have
moderate ICC for only two of the key variables (LPOE and TF). The sensors had a very low
agreement for DWBW and LE, the former being the variable used to identify the different
phases of the transfer. These results indicate that the V2 is much more reliable for repeated
data collection than the RealSense, and that the RealSense should not be substituted into
the TransKinect application due to its lower intra- and inter-sensor reliability than the V2.

The reliability analysis between the V2 and the Azure, however, showed an opposite
trend. While all the key variables showed excellent intra-sensor reliability, the ICC values
for the Azure were even higher than those of the V2. The 95% confidence intervals for
the Azure were also narrower than the V2, indicating greater stability of the calculated
features. The inter-sensor reliability between the V2 and the Azure also showed ICC values
in the good and excellent range. The Bland–Altman plots also showed that the magnitude
differences between the two sensors for the key variables are small and that most of the data
lie within the 95% limits of agreement with the exception of a few outliers. These results
suggest that the Azure could be a viable substitute for the V2 in the TransKinect application.

Before full integration of the Azure into the TransKinect application, a proper valida-
tion and compatibility test of the ML models used to predict the TAI item scores is necessary.
The results showed that the Azure and V2 had high levels of agreement on most TAI items,
indicating that the Azure should be compatible with the existing ML models. All but two
items scored an agreement over 75%, Item 7 and 11 (59.3% and 71.3%) (feet position and
leading arm-hand grip). It should be noted that the V2 has very low accuracy in body
tracking with the lower extremities for individuals in wheelchairs. Often, the sensor would
confuse the wheelchair frame or headrest as part of a body and interfere with the data
collection. It was specifically seen in this analysis that the pelvis marker on the V2 would
consistently lag behind the actual body; additionally, there were times when the V2 lost
sight of several segments during the transfer. This problem was not seen in the Azure
data collection; all joints were tracked accurately, and there was no data loss for any of
the joints. These differences between the actual body position and the skeletons of the two
sensors are shown in Figure 7. However, while the two sensors agreed well with each other
on the ML-predicted TAI scores for most items, we felt it was also important to assess how
their predicted scores compared to ground truth.
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Figure 7. Skeletal approximation differences between Azure and V2 sensors compared to the real
body positioning.

The accuracy of the ML-predicted TAI scores using both Azure and V2 sensor data
tested against the ground truth scores for proper and improper transfer techniques showed
high accuracy in detecting proper technique when proper technique was used but tended
to assign proper technique when improper technique was used. Thus, the current ML
models appear to over predict good quality transfers, regardless of the sensor used. There
are several possible reasons this could have occurred. The ML models were developed
using 100 unique wheelchair users who each contributed multiple transfer trials (up to
five) to the analysis. All the trials were randomized and split into a 70/30 training and
testing set. It is possible that some of the same subject’s trials were part of both the training
and testing sets. While this is a relatively common practice in ML, this method can lead
to overfitting [35]. Therefore, while the original ML validation showed moderate to high
accuracy for the prediction of TAI items, they are seeing ‘new’ data in this study that may
look different than that contained in the original dataset. Furthermore, the initial training
and testing dataset had more proper than improper technique data. To overcome these
obstacles in the future, the ML models should be retrained, ideally with the Azure, as it is
a more reliable and robust sensor compared to the V2, with a proper balance of proper and
improper transfer technique.

5. Conclusions

The TransKinect application offers a promising opportunity to automate the evaluation
of SPTs and support clinical decision making. The use of commercial hardware, beginning
with the low cost, marker-less Kinect V2 sensor, makes the system more accessible to clinics
and easier to use. However, using commercial hardware may also lead to the inevitable
possibility of discontinued production leading to the need to find an acceptable substitute
depth sensor for future use. The Intel RealSense, while an affordable commercially available
device, unfortunately, does not demonstrate the necessary reliability and agreement with
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the V2 to justify it as a viable substitute sensor. On the other hand, the Azure demonstrates
sufficiently high inter- and intra- rater reliability when compared to the V2, which suggests
it may be an adequate replacement within the TransKinect system. The final, and most
clinically relevant, finding from this analysis is the true accuracy of the ML algorithms
used to produce TAI scores from the collected data. The results of this analysis suggest
that while the Azure and Kinect V2 are tracking body movement throughout the transfer
process precisely, the predicted ML TAI scores did not match the ground truth scores for
transfers that were performed using improper technique.

The future steps for this application are to retrain the ML models with the new Azure
sensor, placing an emphasis on identifying incorrect technique, using a more balanced
dataset, and performing testing validation on a new batch of subjects.
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