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Abstract: Red algae of the genus Plocamium have been a rich source of halogenated monoterpenes.
Herein, a new cyclic monoterpene, costatone C (7), was isolated from the extract of P. angustum collected
in New Zealand, along with the previously reported (1E,5Z)-1,6-dichloro-2-methylhepta-1,5-dien-3-ol
(8). Elucidation of the planar structure of 7 was achieved through conventional NMR and
(−)-HR-APCI-MS techniques, and the absolute configuration by comparison of experimental and
DFT-calculated ECD spectra. The absolute configuration of 8 was determined using Mosher’s method.
Compound 7 showed mild antibacterial activity against Staphylococcus aureus and S. epidermidis. The
state of Plocamium taxonomy and its implications upon natural product distributions, especially
across samples from specimens collected in different countries, is also discussed.
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1. Introduction

Red algae, found in marine habitats around the world, generate a huge range of structurally
diverse natural products. New Zealand is home to a large variety of red algal species, including the
genus Plocamium. This genus has been a prolific source of halogenated monoterpenes, often showing
antibacterial or cytotoxic bioactivity [1], and is therefore of interest for drug discovery.

P. angustum is found throughout the Pacific Islands and the length of New Zealand, and is also
very common around Australia, the origin of the alga for all previous published chemical investigations.
In 1979, Dunlop et al. reported the isolation of the novel bromodichloro monoterpene 1 alongside
the previously reported dienone 2 from an alga collected from South Australia [2]. Two separate
studies focusing on algae collected in Victoria, Australia, resulted in the isolation of three other highly
halogenated monoterpenes (3–5) (Scheme 1), where plocamenone (4) showed both antibacterial and
antifungal activity [3,4]. Thus far, there have been no reports of studies on P. angustum collected in
New Zealand.
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identification could explain some of the differences in natural product content, if such contents are 
species specific. Plocamium is a genus to which molecular taxonomic methods have been applied, 
revealing that morphological identification, especially of the commonly named entity P. 
cartilagineum, does not conform to evolutionary lineages [6,7]. In New Zealand, six named species of 
Plocamium have been reported [8], while a recent study indicates that at least eleven species are found 
in New Zealand, and that there are no morphological characters to distinguish among these species 
[9]. 

Costatone A (3) [10] and B (6) [11] are cyclic polyhalogenated monoterpenes, first isolated from 
different P. costatum samples collected in South Australia. The absolute configuration of costatone A 
was solved by X-ray crystallography, and has since been isolated from samples identified as P. 
angustum [4]. As part of our investigation into the secondary metabolites of common Rhodophytes 
collected from the coast of Wellington, New Zealand [12], it was observed using 1H NMR 
spectroscopy that an extract of an alga identified as “P. angustum” had many chemical shifts 
indicative of halogenated monoterpenes. A detailed analysis of the alga resulted in the isolation of 
the two major compounds that have not been previously reported from “P. angustum”, new 
compound 7 and known compound 8 (Scheme 1). Costatone C (7) is the first polyhalogenated 
monoterpene with a tetrahydropyran ring isolated from this species.  

 
 
 
 
 
 

 

 

 

 

 

 

Scheme 1. Chemical structures of previously isolated halogenated monoterpenes from Plocamium 
spp. 

2. Results and Discussion 

The methanolic extract of P. angustum (50.0 g wet weight) was partitioned over 
polystyrene(divinylbenzene) using increasing percentages of acetone in H2O. The 1H NMR spectrum 
of the 75% acetone in H2O fraction showed many resonances attributable to halogenated 
monoterpenes, and was consequently purified by size-exclusion chromatography, yielding two 
major components by TLC. Reversed-phase HPLC was then used to purify the resulting compounds. 

Scheme 1. Chemical structures of previously isolated halogenated monoterpenes from Plocamium spp.

Recent studies have shown that morphological species identification in algae is not accurate
in determining species status, i.e. independent evolutionary lineages, suggesting that only with
molecular data can morphologically similar but distinct species be determined [5]. Incorrect species
identification could explain some of the differences in natural product content, if such contents are
species specific. Plocamium is a genus to which molecular taxonomic methods have been applied,
revealing that morphological identification, especially of the commonly named entity P. cartilagineum,
does not conform to evolutionary lineages [6,7]. In New Zealand, six named species of Plocamium have
been reported [8], while a recent study indicates that at least eleven species are found in New Zealand,
and that there are no morphological characters to distinguish among these species [9].

Costatone A (3) [10] and B (6) [11] are cyclic polyhalogenated monoterpenes, first isolated from
different P. costatum samples collected in South Australia. The absolute configuration of costatone
A was solved by X-ray crystallography, and has since been isolated from samples identified as P.
angustum [4]. As part of our investigation into the secondary metabolites of common Rhodophytes
collected from the coast of Wellington, New Zealand [12], it was observed using 1H NMR spectroscopy
that an extract of an alga identified as “P. angustum” had many chemical shifts indicative of halogenated
monoterpenes. A detailed analysis of the alga resulted in the isolation of the two major compounds
that have not been previously reported from “P. angustum”, new compound 7 and known compound 8
(Scheme 1). Costatone C (7) is the first polyhalogenated monoterpene with a tetrahydropyran ring
isolated from this species.

2. Results and Discussion

The methanolic extract of P. angustum (50.0 g wet weight) was partitioned over
polystyrene(divinylbenzene) using increasing percentages of acetone in H2O. The 1H NMR spectrum of
the 75% acetone in H2O fraction showed many resonances attributable to halogenated monoterpenes,
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and was consequently purified by size-exclusion chromatography, yielding two major components by
TLC. Reversed-phase HPLC was then used to purify the resulting compounds.

Compound 7 was isolated as a yellow oil. A molecular formula of C10H14OCl2Br2 was established
from negative ion high resolution atmospheric-pressure chemical ionisation mass spectrometry
((−)-HR-APCI-MS) analysis. This molecular formula is indicative of a monoterpene, and requires
two degrees of unsaturation, one accounted for by an alkene as evidenced by the two downfield 13C
resonances (in CD3OD as CDCl3 had overlapping resonances) δC 138.5 and 117.5 (Table 1). The 13C
NMR and multiplicity-edited HSQC spectra also showed signals for a non-protonated carbon (δC 73.6),
three methines (δC 83.4, 73.8, 54.5), two methylenes (δC 39.1, 29.0) and two methyl groups (δC 28.9,
13.1), with the olefinic carbon C-1 (δC 117.5) also bearing one hydrogen (H-1 δH 6.28). The resonance
for H-1 appears as a quintet (J = 1.4 Hz) and shows a COSY correlation to the vinylic methyl, along
with an allylic coupling to H-3 (δH 4.22). Further COSY correlations from H-3 assigned the remainder
of the spin system, first to methylene H2-4 (δH 2.45, 2.15) and methine H-5 (δH 4.75). A second spin
system deduced from COSY correlations connected the other oxygenated methine H-7 (δH 4.29) to
methylene H2-8 (δH 3.94, 3.73). These two fragments are linked via non-protonated C-6 (δC 73.6),
based upon two- and three-bond HMBC correlations from H2-4, H-5, H-7 and H2-8. As the molecular
formula requires another degree of unsaturation, and H-3 correlates in the HMBC spectrum to C-7, the
molecule must be cyclic, containing a tetrahydropyran moiety (Figure 1).

Table 1. NMR data for costatone C (7), CD3OD.

Position δC
a δH

b COSY HMBC

1 117.5, CH 6.28 (quin, 1.4) 3, 9 2, 3, 9
2 138.5, C
3 73.8, CH 4.22 (dd, 11.7, 2.6) 1, 4, 9 1, 2, 4, 5, 7, 9

4 39.1, CH2
2.45 (dt, 12.9, 11.9) 3, 4, 5 2, 3, 5
2.15 (ddd, 12.9, 4.4,

2.7) 3, 4, 5 3, 5

5 54.5, CH 4.75 (dd, 12.0, 4.4) 4 3, 4, 6, 10
6 73.6, C
7 83.4, CH 4.29 (dd, 11.7, 3.9) 8 3, 5, 6, 8, 10

8 29.0, CH2
3.94 (t, 11.6) 7, 8 6, 7

3.73 (dd, 11.6, 3.9) 7, 8 7
9 13.1, CH3 1.84 (d, 1.4) 1, 3 1, 2, 3
10 28.9, CH3 1.70 (s) 5, 6, 7

a 150 MHz; b 600 MHz, (multiplicity, J (Hz)).
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Figure 1. Key HMBC and COSY correlations used to establish the planar structure of costatone C (7).

The 13C NMR signal for C-6 at δC 73.6 was split into an asymmetric doublet, with an intensity ratio
of ~3:1, a phenomenon known as the chlorine isotope effect [13], thus there must be a chlorine present
at this centre. The locations of the remaining halogens were then assigned on the basis of chemical shift
arguments. Motti et al. isolated costatols C–E (9–11) from P. costatum, (Scheme 1), where each also have
an E trisubstituted double bond, however 9 and 10 are chlorinated while 11 is brominated at position
C-1 [11]. Clearly, the 13C NMR data of C-1 and C-2 for 7 (δC 117.5 and 138.5) align with a chlorovinyl
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group (9 δC 116.1 and 138.8, 10 δC 116.2 and 138.7, 11 δC 105.6 and 141.7), thus the other chlorine was
assigned at C-1. As no other 13C signals were split, assigning the chlorine atom to a sp2 carbon is in
agreement with the note that the splitting decreases with increased s character of the carbon atom [13].
This necessitates bromine substituents to be at C-5 and C-8, which was further evidenced by their more
shielded 13C shifts (δC 54.5 and 29.0, respectively).

With the planar structure of 7 in hand, the geometry of the alkene and relative configuration of
the four chiral centres were deduced from through space 2D ROESY NMR correlations and 1H NMR
coupling constants. The double bond must have an E geometry on the basis of the through-space ROESY
correlation between H-1 and H-3, with 13C NMR data consistent with that of co-isolated compound
8 that also possess a similar E-chloroalkene [14,15]. H-3 and H-5 both show ROESY correlations to
the same proton H-4b (2.15 ppm), with smaller coupling constants (JH-3/H-4b = 2.6 Hz, JH-4b/H-5 = 4.4
Hz) indicative of axial/equatorial relationships, whereas no ROESY correlations were observed to
H-4a, but large coupling constants suggest axial/axial couplings (JH-3/H-4a = 11.7 Hz, JH-4a/H-5 = 12.0
Hz), therefore H-3 and H-5 are syn, corroborated by their shared nOe correlation. The through-space
ROESY correlations among H-5, H-8a and methyl H3-10 put these substituents on the same side of
the ring as well, further evidenced by H-8a’s correlation to H-3. Thus, the relative configuration 3R,
5R, 6S, 7R was deduced as depicted (Scheme 1). This favoured conformation minimises 1,3-diaxial
interactions of the chair by orientating most of the bulky groups in equatorial positions, consistent
with the observed scalar 1H coupling constants.

Where crystallographic data are unobtainable, computational chemistry can play a significant role
in establishing the absolute configuration of a compound if experimental electronic circular dichroism
(ECD) data are available. Computation of ECD data and their comparison to experimental data
can lead to the assignment of absolute configuration. For this purpose, the structure of 7 (Figure 2)
was optimised at the PBE0-D3BJ/aug-cc-pVTZ/SMDMeOH level of theory followed by a relaxed scan
by varying two key dihedrals (C4-C3-C2-C9 and C6-C7-C8-Br) in 24 steps of 15◦ each. After that,
the lowest energy conformations were selected from the resulting potential energy surface (PES) as
shown (Figure S24). After removal of duplicates, ten conformers were subjected to ECD computations
using time-dependent density functional theory (TDDFT) and the results were compared with the
experimental CD spectrum obtained in MeOH after summing based upon their Boltzmann weightings
(Figure 3). The computed ECD spectrum was scaled for its peak intensity and wavelength to match
with the experimental spectrum [16–18]. The computed ECD spectrum is in a very good agreement
to the experimental, which confirms the absolute configuration of compound 7 as 3R, 5R, 6S, 7R, as
shown in Figure 3.
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Figure 3. Experimental CD spectrum of 7 in MeOH compared with the Boltzmann averaged spectrum
computed at the PBE0-D3BJ/aug-cc-pVTZ/SMDMeOH level of theory.

The dichlorinated bisnor-monoterpene (1E,5Z)-1,6-dichloro-2-methylhepta-1,5-dien-3-ol (8) was
also isolated as the major metabolite. Terpene 8 was initially reported from P. cruciferum and was
identified here by comparison to the reported NMR and EI-MS data [14,15]. The absolute configuration
at C-3 was not determined originally, therefore Mosher’s ester analysis was used to derivatise the
secondary alcohol [19]. Both R- and S-MTPA esters were produced under Steglich conditions [20],
with subsequent NMR analysis leading to the conclusion that C-3 has an S configuration (Figure 4).
As the observed optical rotation (−22) agrees with that previously reported (−9.8), this established the
absolute stereostructure of the P. cruciferum metabolite [14,15].
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Figure 4. ∆δS-R values in ppm of the MTPA esters of 8.

The antibacterial properties of 7 and 8 were assessed using Pseudomonas aeruginosa (Gram negative),
Staphylococcus aureus (Gram positive) and Staphylococcus epidermidis (Gram positive) (Figure S21).
Although no inhibitory activity was detected against P. aeruginosa, 7 showed mild activity against
both S. aureus and S. epidermidis, with minimum inhibitory concentrations (MIC) of 128 and 64 µM,
respectively. No antibacterial activity was observed for 8.

Although morphologically identified as P. angustum, phylogenetic analysis with the cytochrome
oxidase subunit 1 gene (Figure 5) and the ribulose bisphosphate carboxylase large subunit (data not
shown) confirmed that this alga is a cryptic species G [9]. Comparison with other available sequences
indicates that this species is found in the Wellington region and along the Wairarapa coast (southeast
North Island). This alga is distinct both from other New Zealand species and from Australian species
identified as P. angustum (Figure S22) [9]. The sample is most similar to sequences identified as
P. cartilagineum from New Zealand, however P. cartilagineum is a European species and therefore is
unlikely to be a correct identification. This indicates that additional interesting chemistries could be
discovered within the many cryptic species of Plocamium found in New Zealand and around the world.
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3. Conclusions

Red algae of the genus Plocamium continue today to be a rich source of new halogenated
monoterpenes. Through chromatographic techniques, the dibromo-dichloro-tetrahydropyran costatone
C 7 was purified, and its structure and relative configuration solved by MS and NMR. By comparison
of its theoretical and experimental ECD spectra, the absolute configuration was solved. As our study
focused on an alga collected in New Zealand, there is clearly a different chemotype relative to those
previously reported from Australia, and this is possibly due to the different species status of these
morphologically similar algae, warranting further investigation into the metabolomics and taxonomy
of these species.

4. Materials and Methods

4.1. General Procedures

Optical rotations were measured using a Rudolph Autopol II polarimeter. ECD spectra were
recorded on a ChiraScan CD spectrometer (Applied Photophysics, Surrey, United Kingdom). A 600 MHz
Varian Direct Drive spectrometer equipped with a 5 mm PFG dual broadband probe was used to
record the NMR spectra of 7, 8 and 8a,b (600 MHz for 1H nuclei and 150 MHz for 13C nuclei). The
residual solvent peak was used as an internal reference for 1H (δH 3.31, CD3OD; 7.26, CDCl3) and 13C
(δC 49.0, CD3OD; 7.16, CDCl3) chemical shifts [21]. High-resolution (APCI) mass spectrometric data
were obtained with an Agilent 6530 Accurate Mass Q-TOF LC-MS (Santa Clara, CA, USA) equipped
with a 1260 Infinity binary pump. IR (film) spectra were recorded using a Bruker Platinum Alpha FTIR
spectrometer (Leipzig, Germany). EI mass spectrometric data were acquired using a Shimadzu 2010
Plus gas chromatograph (Kyoto, Japan) operating with a GCMS-QP2010 MS detector.
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Reversed-phase column chromatography was achieved using Supelco Diaion HP20 (PSDVB)
chromatographic resin. Size exclusion chromatography was achieved using Sephadex LH20 resin.
HPLC purifications were carried out using either an Agilent Technologies 1260 Infinity HPLC equipped
with a diode array detector or an Agilent 380 evaporative light-scattering detector (ELSD), using an
octadecyl-derivatised silica (C18, 5 µm, 100 Å) HPLC column (Phenomenex; 4.6 mm × 250 mm, flow
rate: 1 mL/min). All solvents used for column chromatography were of HPLC grade and H2O was
glass distilled. Solvent mixtures are reported as per cent v/v unless otherwise stated. TLC was carried
out using Machery-Nagel Polygram Sil G/UV254 plates, run in 1:3 EtOAc:hexanes and developed using
a H2SO4 (5% in MeOH)/vanillin (0.1% w/v in EtOH) char.

4.2. Collection of Plocamium angustum

Specimens of Plocamium angustum were collected by hand using scuba at a depth of 3−10 m from
Moa Point, Wellington, New Zealand, in January 2017 and stored at −20 ◦C until extraction. A voucher
specimen (JB06_38) is held at the School of Chemical and Physical Sciences, Victoria University of
Wellington, New Zealand.

4.3. Extraction and Isolation

Frozen P. angustum (50.0 g wet weight) was extracted in MeOH (200 mL) twice overnight. The
second extract, followed by the first, were passed through a HP20 column (30 mL), pre-equilibrated in
H2O and combined following elution. The eluent was then diluted with an equal volume of water and
passed back through the column twice, followed by a 100 mL H2O wash. The column was then eluted
with 100 mL portions of: (1) 30% Me2CO/H2O; (2) 75% Me2CO/H2O; and (3) Me2CO (fractions A1−A3,
respectively). Fraction A2 (300 mg) was then partitioned on Sephadex LH20 with 100% MeOH, and
the resulting fractions were pooled together on the basis of TLC, resulting in two major fractions B1
(test tubes 36–43) and B2 (test tubes 44–51). A portion of sample B1 (20 mg) was subjected to silica gel
chromatography (5:1 EtOAc:hexanes) to afford 8 (6.8 mg) as a pale yellow oil. A portion of sample B2
(10 mg) was further purified on a semipreparative C18 HPLC column (80% MeOH/H2O), yielding
compound 7 (4.8 mg, tR = 13.0 min) as a colourless oil.

Costatone C (7): pale yellow oil, [α]20
D −7.2 (c 0.05, CHCl3); IR υ (thin film): 2930, 1642, 1434, 1382,

1102, 1080, 782, 738, 587, 519 cm-1; 1H and 13C NMR data, see Table 1; (-)HR-APCI-MS m/z 376.8719
[M − H]− (calcd. for C10H13OCl2Br2, 376.8716).

Compound 8: colourless oil, [α]20
D −22 (c 0.1, CHCl3); NMR and MS data consistent with

published [14,15].

4.4. Preparation of MTPA esters 12a and 12b

A solution of EDC.HCl (12 mg, 64 µmol), S-(+)-α-methoxyphenylacetic acid (15 mg, 64 µmol),
and DMAP (14.8 mg, 120 µmol) was stirred in dry CH2Cl2 (0.5 mL) under Ar at 0 ◦C for 10 min after
which 8 (4 mg, 12 µmol) in CH2Cl2 (0.5 mL) was added. The solution was allowed to come to room
temperature and stirred under Ar for 48 h. CH2Cl2 (10 mL) was added and the mixture was washed
in turn with 10% HCl (10 mL), H2O (10 mL), sat. NaHCO3 (10 mL) and H2O (10 mL) before being
dried under reduced pressure. The sample was purified by flash silica gel chromatography (10:1
hexanes:EtOAc) to yield the crude product 12a, analysed without further purification. The procedure
was repeated with R-(-)-α-methoxyphenylacetic acid to yield product 12b (see Figure S17–S20 in the
Supplementary Materials).

Compound 12a: 1H NMR (CDCl3, 600 MHz) δH 7.48–7.40 (5H, m, aromatics); 6.25 (1H, s, H-1); 5.50
(1H, dd, H-3); 5.18 (1H, t, H-5); 3.51 (3H, s, OMe); 2.56 (2H, m, H-4); 2.03 (3H, s, H-7); 1.75 (3H, d, H-8).

Compound 12b: 1H NMR (CDCl3, 600 MHz) δH 7.48–7.40 (5H, m, aromatics); 6.16 (1H, s, H-1); 5.48
(1H, dd, H-3); 5.32 (1H, t, H-5); 3.55 (3H, s, OMe); 2.60 (2H, m, H-4); 2.09 (3H, s, H-7); 1.64 (3H, s, H-8).
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4.5. Computational Data

All computations were performed using Gaussian 09 (Revision D.01) [22]. Density functional
theory (DFT) was used for all the calculations utilising Adamo’s hybrid [23] version of Perdew, Burke
and Ernzerhof functional (PBE0) [24,25] along with the application of Grimme’s empirical dispersion
correction (D3) with Becke–Johnston damping (D3BJ) [26–28]. All calculations were performed with
Ahlrich’s triplet ζ basis set def2-TZVP [29] supported by the Polarisable Continuum Model (PCM)
with the integral equation formalism variant (IEFPCM) [30–36] for solvation modelling. The solvent
for optimisation and ECD calculation was MeOH which was modelled with the SMD parameter set by
Cramer and Truhlar [37] (as implemented in Gaussian 09) [22]. Calculated ECD spectra were scaled for
both intensity and frequency to the experimental data (Figure S23). Frequency calculations at the same
level of theory were used to confirm all the optimised structures to be true minima on the potential
energy surface with the absence of imaginary frequencies. The 3D images of optimised molecules were
drawn using CYLview [38] program.

4.6. Antibacterial Bioassay

Pseudomonas aeruginosa (PAO1) or Staphylococcus aureus (ATCC 25923) were used to inoculate
100 µL of Mueller Hinton broth (Formedium; Hunstanton, UK) amended with 100 µg/mL of the test
compounds in a 96-well plate (control wells contained an equivalent volume of DMSO). Cells were
incubated at 37 ◦C, shaking at 600 RPM, for 24 h (Incumix, Select Bioproducts; Edison, NJ, USA). The
optical density was measured at 600 nm (Enspire 2300 Multilabel Reader, Perkin Elmer; Waltham, MA,
USA) and the absorbance value of the media-only controls were averaged and subtracted from all
measurements. Values were calculated from three replicates.

S. aureus and S. epidermidis (ATCC 35984) were then tested with 7 to determine the strength of
inhibition in Gram-positive bacteria. Similar to the previous experiment, S. aureus and S. epidermidis
were used to inoculate 100 µL of Mueller Hinton broth, amended with a 2-fold dilution series of 7 from
0.5 µg/mL to 128 µg/mL in a 96-well plate (control wells contained an equivalent volume of DMSO).
Cells were incubated at 37 ◦C, shaking at 600 RPM, for 24 h. The optical density was measured at
600 nm and the absorbance value of the media-only controls were averaged and subtracted from all
measurements. Values were calculated from three replicates.

4.7. Molecular Analysis

DNA extraction, PCR amplification, and sequencing of the cytochrome oxidase genes followed
previously described method [9]. Various sequences of Plocamium were downloaded from Genbank or
were gained directly from [9]. Phylogenetic trees were made using RAxML 8 [39] to construct
maximum-likelihood trees (ML) to show the most likely tree from the dataset. RAxML was
performed using the GTR+gamma model. The reliability of the ML topologies was evaluated
based on 1000 nonparametric bootstrap replicates [40].

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/7/418/s1,
Table S1: NMR data (600 MHz for 1H, 150 MHz for 13C, CD3OD) of 7, Figure S1: 1H Spectrum (600 MHz, CD3OD)
of 7, Figure S2: 13C Spectrum (150 MHz, CD3OD) of 7, Figure S3: COSY Spectrum (600 MHz, CD3OD) of 7, Figure
S4: HSQC Spectrum (600 MHz, CD3OD) of 7, Figure S5: HMBC Spectrum (600 MHz, CD3OD) of 7, Figure S6:
ROESY Spectrum (600 MHz, CD3OD) of 7, Table S2: NMR data (600 MHz for 1H, 150 MHz for 13C, CDCl3)
of 7, Figure S7: 1H Spectrum (600 MHz, CDCl3) of 7, Figure S8: 13C Spectrum (150 MHz, CDCl3) of 7, Figure
S9: COSY Spectrum (600 MHz, CDCl3) of 7, Figure S10: HSQC Spectrum (600 MHz, CDCl3) of 7, Figure S11:
HMBC Spectrum (600 MHz, CDCl3) of 7, Figure S12: NOESY Spectrum (600 MHz, CDCl3) of 7, Figure S13:
(-)HR-APCI-MS Spectrum of 7, Figure S14: IR Spectrum (film) of 7, Figure S15: 1H Spectrum (600 MHz, CDCl3) of
8, Figure S16: 13C Spectrum (150 MHz, CDCl3) of 8, Figure S17: 1H Spectrum (600 MHz, CDCl3) of S-MTPA ester
of 8 (12a), Figure S18: COSY Spectrum (600 MHz, CDCl3) of S-MTPA ester of 8 (12a), Figure S19: 1H Spectrum
(600 MHz, CDCl3) of R-MTPA ester of 8 (12b), Figure S20: COSY Spectrum (600 MHz, CDCl3) of R-MTPA ester of 8
(12b), Figure S21: Antibacterial bioassay results for 7 against S. aureus and S. epidermidis, Figure S22: Phylogenetic
analysis of Plocamium species based on COI data.
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