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Abstract: Structurally characterizing new materials is tremen-
dously challenging, especially when single crystal structures are
hardly available which is often the case for covalent organic
frameworks. Yet, knowledge of the atomic structure is key to
establish structure-function relations and enable functional
material design. Herein, a new protocol is proposed to
unambiguously predict the structure of poorly crystalline
materials through a likelihood ordering based on the X-ray
diffraction (XRD) pattern. Key of the procedure is the broad
set of structures generated from a limited number of building
blocks and topologies, which is submitted to operando
structural characterization. The dynamic averaging in the
latter accounts for the operando conditions and inherent
temporal character of experimental measurements, yielding
unparalleled agreement with experimental powder XRD
patterns. The proposed concept can hence unquestionably
identify the structure of experimentally synthesized materials,
a crucial step to design next generation functional materials.

Introduction

The design of functional materials is instrumental for
advancing technological solutions to tackle pressing societal
problems,[1–7] such as combating climate change and creating

clean energy pathways. In the last few years, new materials
with particular functionalities have been proposed at a very
high pace, due to an in-depth microscopic understanding of
their functionality and the growing toolbox of synthetic
chemists. Within this toolbox lies the concept of reticular
design,[8] where judiciously chosen building blocks are assem-
bled in a predesigned topology, giving rise to materials such as
metal-organic frameworks (MOFs)[9] and covalent organic
frameworks (COFs).[10] Due to their extensive tailorability
and attractiveness for a vast range of applications, the
structural design of MOFs and COFs has formed a very
active field of research.[11–15] Thanks to a meticulous control
over synthesis conditions and an ever-expanding versatile set
of experimentally available building blocks, it has even
become possible to synthesize combinations of building
blocks in different structures. To fully explore the function-
alities of the enormous amount of potential structures that
can be formed from a given set of building blocks, an accurate
protocol is needed to systematically derive structural models
for these materials at realistic working conditions of temper-
ature and pressure.[16, 17] Such structural characterization is
a conditio sine qua non for the atomically guided design of
functional applications in the fields of catalysis, sorption, light
harvesting and more.

Reticular synthesis states that the atomic-level structure
of any framework material is defined by a structural model
containing three elements:[18] (i) the materialQs building
blocks, (ii) its topology, and (iii) the embedding of the building
blocks in this topology. When designing new experimental
materials, X-ray crystallography is typically adopted to
construct such a structural model. While single-crystal X-ray
diffraction (SCXRD) measurements allow for the direct
atomic-level determination of a materialQs bulk structure,[19] it
is notoriously difficult to obtain large single crystals for most
porous materials such as MOFs and COFs and one usually
resorts to powder X-ray diffraction (PXRD) measurements[20]

or electron crystallography.[21, 22] During a PXRD measure-
ment, however, the 3D reciprocal space is non-injectively
projected onto a 1D Bragg angle, making the determination
of the true structural model impossible without prior infor-
mation about the structural model. Given the need for such an
ad hoc model—which is absent in SCXRD—PXRD measure-
ments require a method to verify the validity of these
proposed structural models. Therefore, as discussed in more
detail in Section S1.1, whole powder pattern fitting (WPPF)
methods are used to either reject or accept a possible model
based on a visual analysis of the experimental and modeled
PXRD patterns, and on error measures such as the weighted
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profile residual.[23] However, when noisy PXRD patterns are
obtained, such as for structures that lack long-range order,
extracting any structural information becomes increasingly
difficult. As a result, classical methods that rely on the
diffraction data to refine initial structural parameters, such as
the WPPF methods or other popular top-down methods, fail
to accurately discern between multiple possible structural
models.[24–28]

To circumvent this ambiguity and ensure that no structural
models are overlooked when characterizing challenging func-
tional materials, we here present an automated protocol that
fully accounts for the dynamic averaging of structures taking
place at operating conditions. The procedure, schematically
illustrated in Figure 1, reverses the aforementioned exper-
imental PXRD approach by exhaustively exploring all
potential structures starting from the building blocks and all
possible topologies, and identifying the most likely structural
model upon comparing with an experimental PXRD pattern.
To that end, a large set of possible structural models is
generated from the provided building blocks, which are
assembled in various topologies in the first step of our
protocol. In the second step, PXRD patterns are derived,
using either a static or a dynamic approach in which the
inherent dynamic character of an experimental measurement
is introduced. In the third and final step, a heuristic is derived
and applied to order the proposed structural models as
a function of their likelihood to reproduce the experimental
diffraction pattern. Such a systematic computational protocol
has the added benefit of replacing the ad hoc visual analysis
by a well defined metric, allowing quantitative statements on
how well the model performs.

COFs are ideal materials to test our protocol, as their
structural characterization is challenging due to often noisy

PXRD patterns, owing to a lack of long-range order and
crystallinity in most experimental samples. These promising
materials are made up from light, covalently bound, organic
constituents, combining low mass densities with a high
stability. Potential applications are situated in the field of
drug delivery,[29–31] (photo-)catalysis,[32–34] sensing,[35–37] (opto)-
electronics[38–40] and gas/liquid storage and separation.[41–43] In
general, one can distinguish between 3D COFs, which are
completely connected by strong covalent bonds, and 2D
COFs, which form layered structures whose stacking order is
determined by much weaker forces, such as dispersion and
Coulomb interactions.[44] Only a handful of SCXRD patterns
are available for COFs, which are limited to the strongly
connected 3D COFs.[45] Up to now, it is therefore common
practice to propose initial structural COF models by choosing
a topology based on the size of each of the building blocks,
their point symmetry, and their connectivity with neighboring
building blocks (see Figure 2 for representative examples),
favoring the most symmetric topology when multiple possi-
bilities arise.[46] However, with over 500 different COFs being
synthesized,[47] accurate and systematic characterization tech-
niques are crucial to enable rational functional material
design.

Results and Discussion

Material Generation

The general applicability of the in silico protocol is
illustrated for materials being built from seven different
building blocks, illustrated in Figure 2, giving rise to at least
five different experimentally characterized COFs. These

Figure 1. The proposed three-step structural characterization workflow. For each of the hypothetical structural models (generated in step 1),
representative PXRD patterns are derived via either a static or a dynamic approach (step 2), which are then ranked according to their likelihood to
reproduce the experimental reference PXRD pattern (step 3).
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building blocks were chosen based on their varying sizes,
symmetries and connectivities. The two 3D COFs, COF-103
and COF-108, were among the first 3D COFs to have ever
been synthesized[48] and exhibit the ctn and bor topology,
respectively. The bottom panel shows the three 2D COFs.
Similar to the chosen 3D COFs, COF-5 was one of the first
ever synthesized COFs,[10] adopting the hcb topology. TP-
COF[49, 50] was chosen as an isoreticularly expanded equivalent

of COF-5, whereas TA DBC-COF[51] was chosen due to its
unique kgm topology.

Due to the modular nature of COFs, the seven building
blocks of Figure 2 can be assembled in a combinatorial
amount of structural models and hence hypothetical COF
structures. When considering the five different combinations
of two building blocks each that give rise to the five COFs in
Figure 2, almost 700 unique structural models can be con-

Figure 2. Building blocks and experimentally derived structural models in which they assemble for five experimentally synthesized COFs. The
atomic structure and name of each building block (see Table S1 for the abbreviations) are reported, next to their size, symmetry, and connectivity,
as expressed by the van der Waals volume, the point group, and number of extension points, respectively.
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structed by only looking at the possible topologies for the co-
condensation of each building block combination. In Table 1,
this number is broken down for each building block combi-
nation.

Most building block combinations give rise to only
a tenfold of structural models due to the assumed rigidity of
the building blocks. However, the building block combination
that assembles TA DBC-COF can synthesize in 19 and 513
distinct 2D and 3D topologies, even though only a 2D
structural model was resolved experimentally. This huge
number of hypothetical models can be attributed to two
factors. First, the slight non-planar character of the DBCTA
building block accommodates both 2D and 3D topologies, in
contrast to all other building blocks considered here. Second,
removing the TA building block would preserve the original
topology, similar as for any other twofold connected building
block. Consequently, the TA DBC-COF can hypothetically
synthesize in any of the large subset of topologies that contain
only fourfold coordinated building blocks. By filtering out the
most strained of these structural models, 19 2D and 55 3D
hypothetical models are retained for the TA DBC-COF. For
the five building block combinations of Figure 2, step 1 of our
protocol hence generates a total of 210 structural models. For
each of these models, a fully flexible ab initio based force field
was derived using the QuickFF[52,53] protocol (see Section S2)
to characterize and validate them with respect to the
experimental PXRD patterns.

Automated Model Selection Protocol via Heuristics

An ideal PXRD pattern consists of discrete Bragg
reflections, where each peak j is defined by its position qj,
intensity Ij and shape,[23] as illustrated in Figure 3a. These
components are uniquely defined for each structural model;
deviations between experimental and representative compu-
tational PXRD patterns (see Section S1.2) can hence help
localize model inaccuracies through these three components.
To assess the correspondence among PXRD patterns, a quan-
titative measure is required, which, in our protocol, relies on
the similarity index SI and the weighted profile residual Rwp. A

detailed explanation and alternative figures of merit are
outlined in Section S1.4. To understand how they penalize
differences between two patterns, it is instructive to consider
their variations for different types of deviations in either peak
or trough regions. To this end, Figure 3b visualizes four
hypothetical PXRD patterns (colored) that are compared to
a given reference profile (in gray). Pattern 1 has a low
deviation in both the experimental peak and trough regions,
whereas pattern 4 has a high deviation in both regions. Pattern
2 exhibits a high deviation in the peak regions of the
experimental PXRD pattern but a low deviation in the
trough regions, whereas the opposite is true for pattern 3.

From Figure 3 b, it is clear that the similarity index SI

mainly focuses on the overlap of the peaks, but is largely
insensitive to deviations in the trough regions. This results in
comparable similarity indices for PXRD patterns 1 and 3, and
2 and 4, which differ only in the trough regions. As SI is
normalized to one (see Eq. S1.10), direct comparison between
various patterns is possible, in contrast to the Rwp factor.
However, Rwp considers relative instead of absolute differ-
ences, as each peak is weighted with an uncertainty factor wi

that is inversely proportional to the reference profileQs height.
As a result, Rwp penalizes the mismatch between the profile
intensities, both in peak and trough regions, as is evident when
considering the similar Rwp factors for patterns 2 and 3. Since
the overall relative intensity difference between the reference
and the calculated PXRD patterns conveys no physical
meaning, we will globally scale each computational pattern
to minimize its weighted profile residual when comparing
with the full experimental pattern. This will result in a unique
Rwp value for each pattern, whereas SI is unaffected as it is
scale invariant. Since these figures of merit can vary
significantly with the quality of the reference pattern, there
is no specific heuristic value at which the agreement is
deemed sufficient. However, as the best of two models is
defined by a lower value of Rwp, (Rwp,ideal = 0) and a higher
value of SI (SI,ideal = 1), the heuristic will allow for a quantita-
tive ordering of which models are most likely to reproduce the
experimental data, resulting in an automated model selection
criterion.

Finally, the credibility of any figure of merit is significantly
influenced by the presence of background noise in the
experimental reference patterns. Especially for poorly crys-
talline COFs, significant background noise is expected, which
originates from amorphous regions, and should be filtered.
Clearly, a non-negligible experimental background signal at
Bragg angles that correspond to a reflection peak in the
computational pattern would artificially improve the figure of
merit. As such, eliminating the background profile is essential
before employing any PXRD heuristic. This is achieved here
using the robust Bayesian analysis method (see Sec-
tion S1.5),[54] resulting in a protocol that can also be applied
if the material contains large amorphous regions. Henceforth,
only figures of merit applied on the background filtered
profile will be reported, which will be indicated by the “B”
subscript.

Table 1: Number of 2D and 3D structural models generated by our in-
house protocol (step 1 in Figure 1).

Block labels correspond to those in Figure 2. For TA DBC-COF the
number of structural models with a 3D topology that are retained is
reported between brackets.
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3D COFs

At first instance, the protocol is applied to the two
building block combinations that give rise to the 3D COFs of
Figure 2. In the static approach, all potential structural
models of Table 1 are optimized towards their equilibrium
structure at 0 K and the PXRD patterns of these optimized
structures are derived following the procedure outlined in
Section S1.3. The resulting likelihood ordering, based on the
heuristic value, is visualized in Figure 4 a,b, where the
reference experimental PXRD patterns were extracted from
ref. [48]. As the heuristic is calculated based on the relative
difference between two profile intensities, the 2q range is
limited to the measured experimental data. Consequently,
any diffraction peak of our hypothetical models that falls
outside this experimental 2q range is not taken into account
when calculating the heuristics. As this can artificially
increase the heuristic results for these structural models—it
is expected that the experimental pattern has no matching
peaks outside the experimental 2q range—the names of these
structural models are indicated by an asterisk (*) in Figure 4
and should be considered with care.

The green regions in Figure 4a,b correspond to success-
fully retrieved experimental structures, whereas the gray
regions indicate other likely potential structural models based
on the heuristic values. For the 3D-COFs, COF-103 and COF-
108, the static approach succeeds in identifying the correct
experimentally resolved structural model when taking both
the SI,B and Rwp,B values into account. The gray zones
correspond to structures which might potentially be viable,
but it is immediately clear that only one heuristic value is
favorable, either SI,B is close to one or Rwp,B is close to zero.
For COF-103, shown in Figure 4a, an appreciable difference
is observed between the best ctn topology and the second best
mmm topology, facilitating the correct model selection. While
our protocol also correctly identifies the experimentally
reported topology for COF-108 (Figure 4b), the distinction
between the best topology (bor, indicated in green) and the
second best topology (asn when considering Rwp,B and ofp
when considering SI,B, indicated in gray) is smaller than
for COF-103 due to the larger residual experimental back-
ground for COF-108 (see Section S1.5). Clearly, the static
approach of our protocol is able to correctly identify the most
probable structural model for 3D COFs, which are connected

Figure 3. (a) Illustrative PXRD pattern (red) built up from six individual Bragg peaks that are each characterized by their position (black), intensity
(green) and shape (orange). (b) Illustration of the figures of merits used in step 3 of the procedure for four hypothetical and representative PXRD
patterns.
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through strong covalent bonds and thus less prone to dynamic
effects.

2D COFs

Turning our attention to the 2D COFs, visualized in
Figure 4c,d, our static approach is unable to identify the best
structural models for COF-5 and TP-COF, with no distinct
outlier, in contrast to the 3D COFs. The htb-a, fxt-a, hca-a, fss
and hnd topologies for COF-5, and the ply, hcb and hnd
topologies for TP-COF, indicated in gray, have similar SI,B

and/or Rwp,B values. However, an optimal heuristic combina-
tion is missing for the experimentally reported hcb topology
of both materials.[10, 50] This mismatch originates from the
inability of the static approach to account for dynamic
averaging at working temperatures, as only one low-energy

structure with a fixed layer inclination is considered (see also
Section S5). This limitation is expected to manifest itself for
every 2D COF, as their layers are held together by weak, non-
covalent forces. However, for TA DBC-COF the static
approach does predict the correct kgm topology, as in this
case the DBCTA building blocks hinder layer shearing due to
steric constraints (Figure S18).

To resolve these dynamic effects in structures that have
a large intrinsic freedom, characterized by shallow minima on
the free energy surface due to the presence of weak
interactions, it is necessary to generate PXRD patterns
through MD simulations at operando conditions of temper-
ature and pressure (see Figure 1). In this dynamic approach,
the PXRD pattern of any structural model is obtained by
averaging PXRD patterns collected at different snapshots
from the MD trajectory of this structural model. As an
example, Figure 5b visualizes the experimental PXRD pat-

Figure 4. Similarity index SI,B (orange) and weighted profile index Rwp,B (blue) ordered as a function of decreasing Rwp,B for (a) COF-103, (b) COF-
108, (c) COF-5 and (d) TP-COF, without background noise, using either a (top) static or (bottom) dynamic approach. The green regions indicate
a successfully retrieved structural model corresponding to the experimentally reported topology (in bold face), whereas the gray regions
correspond to favorable heuristic values that are unsuccessful. An asterisk (*) indicates that the heuristic results for that topology are artificially
increased due to significant peaks outside the experimental 2q range, which are not taken into account when comparing the PXRD patterns.
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tern of COF-5 together with (i) the diffraction pattern of the
optimized hcb structural model (static approach), (ii) the
diffraction patterns corresponding with several snapshots
through the MD simulation, and (iii) the diffraction pattern
obtained by averaging over the patterns obtained at 50
uniformly distributed MD snapshots, where each snapshot
corresponds to an embedding in the hcb topology (dynamic
approach). Clearly, the time-averaged PXRD pattern of the
dynamic approach significantly improves the representation
of the true atomic structure during measurement, increasing
the similarity between the simulated and experimental PXRD
patterns.

Turning our attention to the differences between the
computational PXRD patterns in Figure 5b, two observations

can be made. First, compared to the PXRD pattern in the
static approach, the reflection peaks occurring in the PXRD
patterns of the MD snapshots are either shifted towards lower
2q values or disappear completely, with the exception of the
first peak at 2q = 3.488. While the shift in peak positions
indicates an increase in distance between the diffraction
planes at finite temperatures, the complete disappearance of
peaks indicates that the static structure is too symmetric,
featuring extra diffraction planes compared to the exper-
imental structure. This artificial symmetry in optimized
structures is a well-known effect,[55] which is resolved by the
MD simulations at finite temperature in our dynamic
approach, as demonstrated in Figure 5b. Second, different
MD snapshots give slightly different PXRD patterns. These

Figure 5. (a) Atomistic representation of the stacking in both the static and dynamic approach, containing two and ten layers, respectively, in their
unit cell. (b) Diffraction pattern comparison for COF-5 using the hcb topology for the optimized structure (static, orange), six representative
snapshots taken from the MD trajectory (gray) and the diffraction pattern obtained by averaging over fifty snapshots of the MD trajectory
(dynamic, green). (c) Definition of the layer offset between subsequent layers, showing the variation of this offset during an MD simulation as
a heatmap.
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small deviations are expected, as they correspond to the
natural dynamics of the atoms at operando conditions and
replace the missing atomic displacement factors in Eq. S1.4.
Therefore, the MD-averaged PXRD pattern obtained in the
dynamic approach contains, in a natural way, the broadening
effects that are absent in the static approach. As a result,
Figure 5b demonstrates that our dynamic approach leads to
a much better correspondence with the experimental PXRD
pattern compared to the static approach.

For 2D COFs, the largest discrepancy between the static
and dynamic approach finds its origin in the ability to describe
the dynamic character of the layer movement, which is
evident from Figure 5a. In a static simulation, the layer offset
(see Figure 5c and Section S1.7) has a fixed magnitude and
direction, as defined by the cell vectors. Considering two
layers in the optimized structure, they are either aligned,
yielding an eclipsed stacking (AA), or displaced with respect
to each other, yielding serrated (AB) or inclined stacking
configurations, where the latter is illustrated in Figure 5a. In
contrast, in a dynamic simulation, the layer offset fluctuates in
both magnitude and direction during the simulation, as shown
in Figure 5a for two snapshots. Moreover, in our dynamic
approach, a larger system consisting of ten layers is consid-
ered, giving rise to more complex layer behavior. Figure 5c
shows the observed layer offsets both in a static and dynamic
approach through a heatmap. Dynamically, a range of offsets
is found, all with a magnitude around 2.2 c without any
preferential directionality, whereas in the static approach only
one single offset is found with the same magnitude but a fixed
direction, which is insufficient to account for the dynamics of
the system.

Based on the COF-5 case study in Figure 5, one expects
the dynamic approach to yield a much better heuristic value
compared to the static approach for 2D COFs consisting of
weakly bound layers. Figure 4 c,d indeed reveals significant
alterations when comparing the dynamic with the static
approach for 2D COFs. Remarkably, in the dynamic ap-
proach, the most likely structural model coincides with the
expected topology for COF-5 and, when ignoring the
structural models that contain diffraction peaks outside the
experimental 2q range, also for TP-COF. We also adopted the
dynamic approach for the 3D COFs and TA DBC-COF,
finding no substantial difference with the static approach due
to the strong connectivity and steric hindrance in these
materials allowing only minimal deviations under finite
temperatures and pressures (see Figure 4a,b and Figure S18).
These results illustrate the general applicability of our
dynamic protocol to predict the correct structural model.

Model Refinement

While the dynamic approach of the in silico protocol
correctly predicts the topology for all COFs considered here,
the precise embedding of the building blocks inside the
topology can still give rise to different structural models. In
turn these can lead to slight variations in the cell vectors and
can significantly influence the intensities of the XRD patterns
(see Section S1.2). Consider for instance TA DBC-COF,

which assembles in the kgm topology. Even within this
topology, different relative orientations of the imine linkages
give rise to three different pore structures and distinct
diffraction patterns, as illustrated in Figure 6. In other words,
the TA building block can be embedded in three different
ways, with the imine linkages of TA pointing in opposite
directions (kgm1), or with the imine linkages both pointing in
the same direction, which is either bent away (kgm2) or
towards (kgm3) the smaller triangular pore. These different
embeddings can not all be reached during a regular MD
simulation as they correspond to different (meta)stable
configurations that are separated by too large energetic
barriers.

The heuristic values for the different embeddings report-
ed in this figure demonstrate that the kgm3 model best
reproduces the experimental PXRD pattern. Surprisingly, this
structural model does not agree with the experimentally
proposed model (kgm1), which is illustrated in Figure 2. This
experimental model was constructed ad hoc in Material
Studio and subsequently refined using the Pawley method,[51]

which, however, does not fit the atomic positions, as discussed
in Section S1.1. This case study illustrates that, even when the
topology is correctly identified, it is instructive to consider
whether different embeddings of the building blocks within
the topology are possible, at least when multiple (meta)stable
configurations exist. From these results it follows that our
protocol not only succeeds in finding the optimal structural
model for newly synthesized materials, but can also improve
upon existing models through refinement of the local
geometry and embedding, increasing the similarity between
the experimentally observed and calculated diffraction pat-
terns in a quantitative manner.

Conclusion

Crystal structure determination of complex nanoporous
materials is key for establishing structure-function relations in
material design. However, finding the atomic-level structure
of experimentally synthesized materials may become a daunt-
ing task. This is certainly true for materials that lack long-
range order, such as some COFs, where current techniques
struggle to systematically and reproducibly identify the
correct structural model as they are highly sensitive to the
quality of the experimental data and are prone to confirma-
tion bias. Herein, we presented an in silico protocol that
reverses the generally applied strategy of extracting possible
models from the observed PXRD peaks. Instead, by generat-
ing an exhaustive set of structural models for any given
building block combination and generating representative
PXRD patterns for each model through a static or a dynamic
approach that accounts for the operando experimental
conditions, the different structural models are ranked based
on intuitive heuristics that unambiguously quantify the
correspondence between the computed and experimental
PXRD patterns, thereby uniquely identifying the most likely
model.

The procedure was validated for several well-character-
ized COFs, but is equally applicable to other modular building
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block materials, such as MOFs and zeolites, in any topology.
Starting from seven building blocks, many structural models
were proposed, through all possible topologies. For 3D COFs,
a static approach without dynamic averaging proved sufficient
considering their characteristic strong covalent bonds. How-
ever, for 2D COFs, which show a high degree of flexibility due
to the weak interaction between the layers, it was essential to
account for different dynamically generated snapshots at
experimental temperatures. This approach yields a natural
analog to experimental XRD measurements and corrects for
an artificially too symmetric structure obtained at 0 K in
a static approach. Thus, the in silico protocol proposed here
can successfully detect experimental crystal structures, even
for 2D COFs. Interestingly, our approach also succeeds in
showing finer details of the structure. For the TA DBC-COF,
our procedure can distinguish between various structural
models that all exhibit the experimental topology but have
different orientations of the imine linkages. Such subtleties
would easily be overlooked when visually comparing PXRD
peak positions.

The presented in silico workflow opens the perspective to
systematically screen large databases of materials, to identify
their atomic-level structural models, and establish causal
structure-function relations. We hope that such detailed
knowledge will help computational and experimental materi-
al scientists alike by opening the door for a more precise
design of challenging modular materials for various applica-
tions.
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2020, 20, 222 – 228.

[23] V. Pecharsky, P. Zavalij, Fundamentals of Powder Diffraction
and Structural Characterization of Materials, Springer US, 2009.

[24] A. Le Bail, Powder Diffr. 2005, 20, 316 – 326.
[25] G. S. Pawley, J. Appl. Crystallogr. 1981, 14, 357 – 361.
[26] A. Le Bail, H. Duroy, J. L. Fourquet, Mater. Res. Bull. 1988, 23,

447 – 452.
[27] L. B. McCusker, Acta Crystallogr. Sect. A 1991, 47, 297 – 313.
[28] M. Falcioni, M. W. Deem, J. Chem. Phys. 1999, 110, 1754 – 1766.
[29] Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H.

Guo, S. Qiu, Y. Yan, J. Am. Chem. Soc. 2015, 137, 8352 – 8355.
[30] V. S. Vyas, M. Vishwakarma, I. Moudrakovski, F. Haase, G.

Savasci, C. Ochsenfeld, J. P. Spatz, B. V. Lotsch, Adv. Mater.
2016, 28, 8749 – 8754.

[31] L. Bai, S. Z. F. Phua, W. Q. Lim, A. Jana, Z. Luo, H. P. Tham, L.
Zhao, Q. Gao, Y. Zhao, Chem. Commun. 2016, 52, 4128 – 4131.

[32] S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols,
Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang,
Science 2015, 349, 1208 – 1213.

[33] H. Li, Q. Pan, Y. Ma, X. Guan, M. Xue, Q. Fang, Y. Yan, V.
Valtchev, S. Qiu, J. Am. Chem. Soc. 2016, 138, 14783 – 14788.

[34] G. Lin, H. Ding, R. Chen, Z. Peng, B. Wang, C. Wang, J. Am.
Chem. Soc. 2017, 139, 8705 – 8709.

[35] G. Das, B. P. Biswal, S. Kandambeth, V. Venkatesh, G. Kaur, M.
Addicoat, T. Heine, S. Verma, R. Banerjee, Chem. Sci. 2015, 6,
3931 – 3939.

[36] S.-Y. Ding, M. Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y.
Su, W. Wang, J. Am. Chem. Soc. 2016, 138, 3031 – 3037.

[37] S. Dalapati, E. Jin, M. Addicoat, T. Heine, D. Jiang, J. Am.
Chem. Soc. 2016, 138, 5797 – 5800.

[38] S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang, Angew. Chem. Int. Ed.
2009, 48, 5439 – 5442; Angew. Chem. 2009, 121, 5547 – 5550.

[39] X. Feng, L. Liu, Y. Honsho, A. Saeki, S. Seki, S. Irle, Y. Dong, A.
Nagai, D. Jiang, Angew. Chem. Int. Ed. 2012, 51, 2618 – 2622;
Angew. Chem. 2012, 124, 2672 – 2676.

[40] M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M.
Handloser, D. D. Medina, M. Dogru, F. Lçbermann, D. Trauner,
A. Hartschuh, T. Bein, J. Am. Chem. Soc. 2014, 136, 17802 –
17807.

[41] C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt,
O. M. Yaghi, Nat. Chem. 2010, 2, 235 – 238.

[42] L. A. Baldwin, J. W. Crowe, D. A. Pyles, P. L. McGrier, J. Am.
Chem. Soc. 2016, 138, 15134 – 15137.

[43] X. Zhan, Z. Chen, Q. Zhang, J. Mater. Chem. A 2017, 5, 14463 –
14479.

[44] S. B. Alahakoon, S. D. Diwakara, C. M. Thompson, R. A.
Smaldone, Chem. Soc. Rev. 2020, 49, 1344 – 1356.

[45] T. Ma, E. A. Kapustin, S. X. Yin, L. Liang, Z. Zhou, J. Niu, L.-H.
Li, Y. Wang, J. Su, J. Li, X. Wang, W. D. Wang, W. Wang, J. Sun,
O. M. Yaghi, Science 2018, 361, 48 – 52.

[46] P. J. Waller, F. G#ndara, O. M. Yaghi, Acc. Chem. Res. 2015, 48,
3053 – 3063.

[47] D. Ongari, A. V. Yakutovich, L. Talirz, B. Smit, ACS Cent. Sci.
2019, 5, 1663 – 1675.

[48] H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cort8s, A. P. Ckt8,
R. E. Taylor, M. OQKeeffe, O. M. Yaghi, Science 2007, 316, 268 –
272.

[49] S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang, Angew. Chem. Int. Ed.
2008, 47, 8826 – 8830; Angew. Chem. 2008, 120, 8958 – 8962.

[50] B. J. Smith, N. Hwang, A. D. Chavez, J. L. Novotney, W. R.
Dichtel, Chem. Commun. 2015, 51, 7532 – 7535.

[51] N. Keller, T. Sick, N. N. Bach, A. Koszalkowski, J. M. Rotter,
D. D. Medina, T. Bein, Nanoscale 2019, 11, 23338 – 23345.

[52] L. Vanduyfhuys, S. Vandenbrande, T. Verstraelen, R. Schmid, M.
Waroquier, V. Van Speybroeck, J. Comput. Chem. 2015, 36,
1015 – 1027.

[53] L. Vanduyfhuys, S. Vandenbrande, J. Wieme, M. Waroquier, T.
Verstraelen, V. Van Speybroeck, J. Comput. Chem. 2018, 39,
999 – 1011.

[54] W. I. F. David, D. S. Sivia, J. Appl. Crystallogr. 2001, 34, 318 –
324.

[55] A. M. Pgtz, M. W. Terban, S. Bette, F. Haase, R. E. Dinnebier,
B. V. Lotsch, Chem. Sci. 2020, 11, 12647 – 12654.

Manuscript received: December 25, 2020
Accepted manuscript online: January 25, 2021
Version of record online: March 8, 2021

Angewandte
ChemieResearch Articles

8922 www.angewandte.org T 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH Angew. Chem. Int. Ed. 2021, 60, 8913 – 8922

https://doi.org/10.1021/jacs.0c02155
https://doi.org/10.1021/jacs.0c02155
https://doi.org/10.1021/jacs.0c00270
https://doi.org/10.1021/jacs.9b11963
https://doi.org/10.1021/jacs.9b11963
https://doi.org/10.1038/nature01650
https://doi.org/10.1038/46248
https://doi.org/10.1038/46248
https://doi.org/10.1021/jacs.9b01226
https://doi.org/10.1021/jacs.9b01226
https://doi.org/10.1021/acsami.0c01659
https://doi.org/10.1021/acsami.0c01659
https://doi.org/10.1002/anie.201916595
https://doi.org/10.1002/ange.201916595
https://doi.org/10.1021/jacs.0c09684
https://doi.org/10.1021/jacs.0c09684
https://doi.org/10.1039/C9MH00856J
https://doi.org/10.1039/C8FD00051D
https://doi.org/10.1021/ja409033p
https://doi.org/10.1021/acs.accounts.7b00366
https://doi.org/10.1154/1.2135315
https://doi.org/10.1107/S0021889881009618
https://doi.org/10.1016/0025-5408(88)90019-0
https://doi.org/10.1016/0025-5408(88)90019-0
https://doi.org/10.1107/S0108767391001964
https://doi.org/10.1063/1.477812
https://doi.org/10.1021/jacs.5b04147
https://doi.org/10.1002/adma.201603006
https://doi.org/10.1002/adma.201603006
https://doi.org/10.1039/C6CC00853D
https://doi.org/10.1126/science.aac8343
https://doi.org/10.1021/jacs.6b09563
https://doi.org/10.1021/jacs.7b04141
https://doi.org/10.1021/jacs.7b04141
https://doi.org/10.1039/C5SC00512D
https://doi.org/10.1039/C5SC00512D
https://doi.org/10.1021/jacs.5b10754
https://doi.org/10.1021/jacs.6b02700
https://doi.org/10.1021/jacs.6b02700
https://doi.org/10.1002/anie.200900881
https://doi.org/10.1002/anie.200900881
https://doi.org/10.1002/ange.200900881
https://doi.org/10.1002/anie.201106203
https://doi.org/10.1002/ange.201106203
https://doi.org/10.1021/ja509551m
https://doi.org/10.1021/ja509551m
https://doi.org/10.1038/nchem.548
https://doi.org/10.1021/jacs.6b10316
https://doi.org/10.1021/jacs.6b10316
https://doi.org/10.1039/C7TA02105D
https://doi.org/10.1039/C7TA02105D
https://doi.org/10.1039/C9CS00884E
https://doi.org/10.1126/science.aat7679
https://doi.org/10.1021/acs.accounts.5b00369
https://doi.org/10.1021/acs.accounts.5b00369
https://doi.org/10.1021/acscentsci.9b00619
https://doi.org/10.1021/acscentsci.9b00619
https://doi.org/10.1126/science.1139915
https://doi.org/10.1126/science.1139915
https://doi.org/10.1002/anie.200803826
https://doi.org/10.1002/anie.200803826
https://doi.org/10.1002/ange.200803826
https://doi.org/10.1039/C5CC00379B
https://doi.org/10.1039/C9NR08007D
https://doi.org/10.1002/jcc.23877
https://doi.org/10.1002/jcc.23877
https://doi.org/10.1002/jcc.25173
https://doi.org/10.1002/jcc.25173
https://doi.org/10.1107/S0021889801004332
https://doi.org/10.1107/S0021889801004332
https://doi.org/10.1039/D0SC03048A
http://www.angewandte.org

