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Abstract 

Se v eral no v el high-throughput e xperimental techniques ha v e been de v eloped in recent y ears that generate large datasets of putative biologically 
functional peptides. Ho w e v er, man y of the computational tools required to process these datasets ha v e not y et been created. In this study, w e 
introduce F aS TPACE, a f ast and scalable computational tool to rapidly align short peptides and e xtract enriched specificity determinants. T he 
tool aligns peptides in a pairwise manner to produce a position-specific global similarity matrix for each peptide. Peptides are realigned in an 
iterative manner scoring the updated alignment based on the global similarity matrices of the peptides and updating the global similarity matrices 
based on the new alignment. The method then iterates until the global similarity matrices con v erge. Finally, an alignment and consensus motif 
are extracted from the resulting global similarity matrices. The tool is the first to support custom weighting for the input peptides to satisfy 
the pressing need to include experimental attributes encoding peptide confidence in specificity determinant e xtraction. F aS TPACE e xhibited 
state-of-the-art performance and accuracy when benchmarked against similar tools on motif datasets generated using curated peptides and 
high-throughput data from proteomic peptide phage display. FaSTPACE is available as an open-source Python package and a web server. 
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hen mentioned in the context of biological sequences, mo-
ifs refer to short nucleic acid or protein sequence patterns en-
oding structural or functional characteristics ( 1 ). Short linear
otifs (SLiMs) are a common class of short protein motifs

hat encode a wide range of functions, from directing pro-
ein localization to determining protein stability ( 2 ). SLiMs
re usually found in the intrinsically disordered regions of
he proteome, where they form low-affinity transient bind-
ng sites. Most SLiM-containing peptides contain only three
o four key residues that encode the major specificity and
ffinity determinants. These attributes make SLiMs difficult
o discover both experimentally and computationally. Clas-
ical low-throughput experimental interactomics approaches
ave been employed to characterize the majority of validated
LiMs. Most investigations have adopted mutagenesis-based
ethods, such as deleting or mutating motifs, to elucidate the

nteraction or function of specific individual instances ( 3–5 ).
iophysical approaches such as isothermal titration calorime-
ry, surface plasmon resonance and fluorescence polarization
re regularly applied biophysical methods to characterize the
inding strength of motif-mediated interactions ( 6 ). Crystal-
ography has been a prevalent technique in numerous stud-
es, offering structural insights into motifs bound to a globu-
ar binding partner ( 7 ,8 ). Although these techniques are accu-
ate and reliable approaches for locating motifs, they are low-
hroughput methods regarding the number of motifs studied
n parallel with limited scalability. Furthermore, most of these
tudies depend on a priori information suggesting the pres-
nce of a putative motif, generally coming from a known con-
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sensus, conservation or laborious truncation analyses. Conse-
quently, this makes those experimental methods more suitable
for validating motifs rather than discovering them. 

In recent years, several new high-throughput approaches
have been developed to experimentally discover novel motif-
containing peptides in an unbiased manner ( 9 ), producing
thousands of peptides in a single experiment. Of these ap-
proaches, proteomic peptide phage display (ProP-PD) has
been applied most extensively to identify novel SLiMs ( 10–
12 ), and other approaches, such as yeast surface display and
bacterial surface display, are similarly scalable ( 9 ). The ex-
plosion in peptide data has ushered in a new era of interac-
tomics, promising deeper insights into the motif-mediated in-
teractome. However, the exponential growth in data has out-
stripped the development of tools capable of handling such
massive datasets. This necessitates the development of novel
methods to analyse these data. A key processing step for pep-
tide datasets is the discovery of specificity determinants in the
returned peptides. Enriched specificity determinants indicate
that specific peptides have been identified, verifying that the
experiment was successful. These specificity determinants can
then be used for downstream processing, such as filtering and
peptide ranking. The novel high-throughput SLiM-based in-
teractomics approaches have created a requirement for speci-
ficity determinant extraction methods with a particular focus
on scalability in terms of both the number of screens and,
more importantly, the number of peptides. Moreover, for most
of these methods, the returned peptides hold distinct levels of
confidence encoded, dependent on the experimental approach,
by attributes such as sequencing counts and presence in
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experimental replicates. Therefore, future tools should in-
tegrate this information to discriminate between noise and
meaningful signals, ensuring that the most robust and biolog-
ically relevant information is highlighted. 

Several approaches have been developed to extract motifs
from datasets of functionally related peptides. SLiMFinder
( 13 ) is an enumerative approach that identifies the optimal
motifs at the expense of computationally expensive algorithms
and represents motifs as regular expressions, which can result
in the loss of important quantitative information. MEME ( 14 )
is a probabilistic algorithm for discovering motifs by perform-
ing expectation maximization to fit a mixture model. It pre-
dicts fixed-length ungapped motifs in a given range of motif
window lengths. MEME Suite ( 15 ) is complemented by the
GLAM2 algorithm ( 16 ) to allow the discovery of gapped mo-
tifs. However, to avoid enumerating the massive number of
possible alignments, GLAM2 uses simulated annealing as an
optimization method to sample stochastic insertions and dele-
tions while adjusting the alignment of sequences and find-
ing a motif. MUSI ( 17 ) detects specificity in a large dataset
of short biological sequences by fitting a mixture model with
maximum likelihood estimation to generate position-specific
scoring matrices (PSSMs). GibbsCluster ( 18 ,19 ) groups the
dataset into clusters, maximizing the intracluster alignment fit
while minimizing the intercluster similarity. HH-MO T iF ( 20 )
is a web-based tool that compares Hidden Markov Model
(HMM) profiles of closely related orthologues collected for
each query sequence to find SLiMs. However, it favours high
recall at the cost of low precision and uses many untunable pa-
rameters. Other discriminative methods, which require a neg-
ative set in addition to the positive set, are presented to solve
the motif-finding problem ( 21–24 ). Likewise, they suffer from
similar problems: DEME ( 21 ), for example, in addition to the
requirement of a priori negative dataset, requires determining
a fixed window length for its substring search space. 

Multiple sequence alignment programmes are available
with a diversity of algorithms and features. Though there are
many approaches to motif discovery, one commonly applied
approach is tackling motif discovery as an alignment task to
generate the best alignment of a set of motif-containing pep-
tides. Although it will still need additional steps to identify
ab initio motifs, motif extraction is a more straightforward
question with many viable solutions. ClustalW ( 25 ) is one of
the early general-purpose multiple sequence alignment pro-
grammes. It follows the branching order in a guide tree to
progressively build up multiple alignments from a series of
pairwise alignments. T-Coffee ( 26 ) uses a pairwise progres-
sive strategy optimized for speed and simplicity by considering
the alignments between all the pairs while carrying out each
step. ProbCons ( 27 ) introduces probabilistic consistency, in-
corporating a simple sequence similarity model (a three-state
pair HMM) into traditional progressive sum-of-pairs scoring,
while Clustal Omega ( 28 ) makes the progressive alignment
approach scale by enhancing the creation of the guide trees.
MAFFT ( 29 ) converts sequences to volume and polarity val-
ues based on their amino acid composition. Then, it uses the
fast Fourier transform algorithm and normalized similarity
matrix to align sequences by a progressive method and an
iterative refinement method directed by formed guide trees.
MUSCLE ( 30 ) uses an alignment scoring function called the
log-expectation score. It adapts a strategy of fast distance es-
timation, progressive alignment and refinement techniques.
Opal ( 31 ) conducts a form-and-polish strategy and employs
normalized alignment costs to estimate distances between se- 
quences and a stochastic 3-cut approach to polish produced 

alignments. Although there are many other tools for identify- 
ing motifs computationally ( 32 ), not all of them are suitable 
for proteins generally and SLiMs specifically. 

In this paper, we introduce the FaSTPACE (fast and scalable 
tool for peptide alignment and consensus extraction) tool, de- 
signed specifically to tackle the new wave of high-throughput 
SLiM-based interactomics approaches by focusing on accu- 
rate and fast peptide alignment and enriched motif extraction 

on large peptide datasets. FaSTPACE also allows weights to 

be integrated into motif identification, thereby allowing ex- 
perimental confidence to be encoded during motif discovery. 

Materials and methods 

FaSTPACE is a novel peptide analysis tool for peptide align- 
ment and motif extraction. The tool takes as input a set of 
peptides and, optionally, a set of positive peptide weights. The 
output of FaSTPACE is a peptide alignment and the most en- 
riched motif, the motif consensus that is most overrepresented 

compared to its expected number of occurrences in the set of 
peptides. The enriched motif is returned with a set of met- 
rics describing the level of enrichment of the motif. The core 
of the algorithm produces a global similarity matrix (GSM), a 
probabilistic representation of the similarity of a given peptide 
to all other peptides in the dataset, that is optimized through 

multiple iterations. The optimal alignment can then be defined 

based on the highest scoring peptide GSM, which can be con- 
sidered the most representative peptide with highest level of 
similarity to other peptides in the dataset. From each peptide 
GSM, a motif is extracted, and the most significantly enriched 

motif in the input peptide set is returned. 

Algorithm steps 

The method consists of three steps (Figure 1 ): initiation, re- 
finement and post-processing of the GSM. 

Initiation 

The initiation step of the pipeline produces an initial GSM for 
each peptide in the input dataset. The initiation step includes 
four stages: 

1. Perform an all-by-all peptide alignment of the 
dataset : The first step of the FaSTPACE pipeline 
performs ungapped global alignments between all pairs 
of sequences (external gaps are permitted, but no gaps 
are added within either peptide). Motif-containing 
peptide alignment differs from classical alignment as the 
expectation in an alignment of motif-containing pep- 
tides is that the residues outside the consensus positions 
of the motif will share limited similarity. FaSTPACE 

considers this by scoring sequence alignments using a 
BLOSUM62 matrix with negative values capped at zero,
thereby positively scoring similarities and allowing any 
dissimilarity with no penalty. This overcomes the issue 
of mismatch intolerance of global alignments for motif- 
containing peptides where unaligned negatively scoring 
non-motif positions can have an excessive influence 
resulting in misalignment. The query peptide is moved 

across the comparison peptide one residue at a time 
and an alignment score A B , the sum of the non-negative 
BLOSUM62 values for the corresponding residue pairs 
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Figure 1 . Sc hema of the three steps in the F aS TPACE tool: (i) initiation starts b y calculating P -v alues of alignment scores based on a modified 
BLOSUM62 matrix and uses them to generate per-peptide GSMs; (ii) refinement uses the GSMs as substitution matrices to produce new GSMs 
iteratively; and (iii) post-processing uses refined GSMs to align peptides and extract motifs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the alignment, is calculated for each peptide pair
comparison. The highest scoring comparison is used as
the aligned peptide pair. 

2. Estimate statistical significance of alignment scores : The
statistical significance of an alignment score A B can be
represented as the probability of observing that align-
ment score or higher by chance ( 33 ). Therefore, a null
model is used to run N simulations, and the P -value of a
score A B is estimated from the number of runs M with a
score greater than or equal to A B ( 33 ): 

P( A B ) = 

M 

N 

. 

Although null models to find SLiMs can be obtained by
reversing or randomly shuffling dataset sequences ( 34 ),
these approaches can introduce biases into the signif-
icance calculations. Instead, FaSTPACE uses the origi-
nal dataset sequences as the null model, and P -values
are estimated based on best alignment score for each of
the peptide pairs obtained from all-by-all pairwise align-
ments in the given dataset. This way, the corrected score
ˆ A B reflects how unexpected the score A B is from the

dataset alignment score distribution: 

ˆ A B = − log ( P( A B ) ) . 

3. For each peptide pair, calculate a pairwise similarity ma-
trix (PSM) : Next, PSMs are generated from peptide pairs.
Each peptide in the dataset (Figure 2 A) is considered a
query peptide one at a time and is aligned with all the
other peptides one target peptide at a time. For each pair-
wise alignment, the FaSTPACE scoring algorithm analy-
ses the query sequence with length q by sliding the target
sequence across it one position at a time and calculating
the alignment score ˆ A B each time (Figure 2 B). The align-
ment score ˆ A B of the best sliding alignment between the
two sequences is stored for each query peptide position
p involved in the alignment along with the aligned target
peptide residue r in a corresponding matrix cell PSM rp .
Therefore, the end result of a pairwise alignment is a 20
× q PSM with one or no non-zero score existing per col-
umn p (Figure 2 C). 

4. For each peptide, produce an initial GSM : After consid-
ering each peptide in the dataset in turn and aligning the
query peptide to all other peptides in the dataset in a
pairwise manner, n − 1 PSMs have been created for each
query peptide (Figure 2 D). These matrices are combined
for each query peptide by summing the scores in the cor-
responding matrix cells (Figure 2 E and Supplementary 
Figure S1 ). Consequently, FaSTPACE generates a GSM
containing residue-level scores for each peptide within
the dataset. Residues within an enriched consensus ex-
hibit higher GSM rp scores in this matrix (Figure 2 F and
Supplementary Figure S2 ). 

GSM rp = 

n −1 ∑ 

k =1 

PSM 

k 
rp . 

The combined residue score GSM rp inversely correlates
with the probability of observing position p aligned with
residue r in a motif by chance. 

Refinement 
The refinement step of the pipeline iteratively refines the GSM
to separate the enriched motif positions from the noise in the
initial per-peptide GSMs of the pairwise alignments. The re-
finement is accomplished by iteratively repeating the initiation
step with one major difference. In the refinement step, the nor-
malized initial GSMs of both the query and target peptides re-
place the non-negative BLOSUM62 matrix when scoring the
pairwise alignments. Each iteration of the refinement process
starts by normalizing the GSM for each peptide by the Frobe-
nius norm of all GSMs in the dataset (the square root of the
sum of the squares of the elements of all the matrices). Next,
FaSTPACE performs an all-by-all pairwise alignment result-
ing in an updated PSM for each peptide pair. The normalized
GSMs (for a query peptide i and a target peptide j ) function
as substitution scores in the computation of the best align-
ment score A G 

during the creation of the updated PSM. Each
aligned position p i involved in the best alignment with a pos-
itive score is assigned the alignment score A G 

in the updated
PSM. These refined PSMs are then cumulatively integrated to
form new intermediate per-peptide GSMs. 

A G p i 
= GSM 

i 
r j p i + GSM 

j 
r i p j , 

A G 

= 

q ∑ 

p i =1 

A G p i 
, 

∀ p i with A p i > 0 : PSM 

i 
r j p i = A G 

, 

GSM rp = 

n −1 ∑ 

k =1 

PSM 

k 
rp . 

The refinement process is performed multiple times in itera-
tions and stops when the average change in per-residue scores
GSM p (position in a peptide in the dataset) falls below a cut-
off (default: 1 × 10 

−6 ) or the algorithm hits the maximum
number of iterations without convergence (default: 100). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae103#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae103#supplementary-data
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Figure 2. Illustration depicting the step-b y -step process in the generation of GSMs using an example dataset. ( A ) An illustrative peptide dataset for the 
MDM2 SWIB domain with the consensus FxxxWxxL. The dataset consists of five motif-containing peptides (positive peptides) with a length of 16 
amino acids without any noise (negative peptides). ( B ) Sliding the first and second peptides relative to each other by one position at a time and 
assessing the alignment to assign the best aligned regions. ( C ) The alignment that yields the highest score obtained through the sliding process of the 
first two peptides against each other. ( D ) The alignments with the highest scores derived from the sliding process of the first peptide against each of the 
other peptides in the dataset. ( E ) The aggregation of all PSMs of the first peptide into a unified GSM. ( F ) GSMs for all peptides in the dataset. ( G ) 
Generating peptide alignments and extracting motif consensus based on the produced global matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Post-processing 
The post-processing step converts the refined GSMs into pep-
tide alignments and enriched motifs (Figure 2 G). 

Motif alignment 
An alignment is generated for each peptide set based on the fi-
nal GSMs. FaSTPACE picks the highest residue score across all
GSMs in the dataset and regenerates the pairwise alignments
that lead to that high score by aligning the peptide with the
highest score (template peptide) against all other peptides us-
ing their similarity matrices for alignment scoring as described
in the ‘Refinement’ section. Therefore, the resulting multiple
sequence alignment is a snapshot of the pairwise alignments of
all peptides with the most representative peptide in the dataset
after the final convergence of the algorithm. 

Motif extraction and scoring 
Unlike in the alignment generation that has one alignment
template peptide, each peptide is a motif template during motif
extraction, so a motif is extracted from each peptide based on
its GSM. The best motif in the dataset can come from any pep-
tide in the dataset. For each peptide in the dataset, the high-
est scoring residue in the GSM is considered as a seed for a
putative motif. Residues from the GSM are added to the pu-
tative motif one at a time in descending order from the max-
imum score in the GSM. The P -value of the extracted motif
is calculated with each additional position using a variant of
SLiMChance ( 13 ). The probability of the motif happening by
chance in the dataset is computed using amino acid frequen-
cies of the complete peptide dataset. This computed probabil-
ity defines the likelihood of the motif appearing at least as of-
ten as observed in the dataset. FaSTPACE returns the putative 
motif for a given peptide when the P -value of the formed mo- 
tif cannot be improved by adding additional positions. Then,
a significance score is computed for that motif to adjust the 
P -value for multiple experiments. The maximum number of 
trials is conservatively estimated by multiplying 20, the num- 
ber of amino acids in the peptide search space, by the average 
peptide length and the number of peptides in the dataset. Con- 
sequently, FaSTPACE determines the significance of a motif 
with a P -value p v similar to SLiMChance ( 13 ) by applying the 
binomial distribution to calculate the probability of obtaining 
one or more successful outcomes within the specified number 
of trials, each with a probability p v . 

Scoring peptides 

FaSTPACE returns three metrics for scoring a peptide based 

on the presence of a motif: (i) utilizing the P -value (similar- 
ity P-value ) and the significance ( similarity significance ) of the 
motif obtained from the peptide’s GSM; (ii) using the motif 
P -value associated with the most significant motif extracted 

from any peptide in the dataset that matches the peptide 
( matched P-value ), along with its significance ( matched sig- 
nificance ); and (iii) employing the peptide’s GSM as a scoring 
matrix by summing the scores attributed to each amino acid 

at its respective position within the GSM ( similarity score ). 

Peptide weighting 

Positive peptide weights can easily be integrated into the FaST- 
PACE algorithm to encode experimental information that re- 
flects peptide confidence into the peptide alignment and motif 
extraction. Peptides are paired with one another, and align- 
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ents are produced and subsequently collapsed. Weights can
e applied in the aligning and collapsing phase, contributing
o the overall value. The introduced weights x should be cor-
ected to make the similarity scores from the GSMs compa-
able by aligning to similar dataset sizes (the dataset after re-
oving the query peptide from it). FaSTPACE normalizes the
eights of the target peptide j after removing the query pep-

ide weight x i from the dataset (total dataset weight w t ) and
ultiplies the residue scores PSM rp by the corrected weight w j

hile accumulating PSM score to produce GSM scores. 

w j = 

x j × w t 

w t − x i 
, 

GSM rp = 

n −1 ∑ 

k =1 

w k × PSM 

k 
rp . 

enchmarking dataset 

aSTPACE’s ability to align and extract motifs was bench-
arked on the Motif Extraction from PeptidesBench-
arking (MEP-Bench) datasets (dataset: https://zenodo.org/

ecords/10467208 ; bioRxiv: 10.1101 / 2024.01.12.574168).
he MEP-Bench test sets were sampled from annotated mo-

if instances for a given ELM class in the ELM database ( 35 ).
eptide sets were built with different attributes to character-
ze the ability of the method to perform on a range of real-
orld applications. The peptide set attributes tested were pep-

ide length (12, 16, 20, 24, 28, 32), number of positive (motif-
ontaining) peptides (5, 10, 15, 20, 30, 40, 50) and percent-
ges of noise using negative peptides sampled from other ELM
lasses (0–800%). Each test case contained numerous peptide
ets (100 replicates per attribute) to produce 653 846 peptide
ets in total. A series of motif discovery tools (SLiMFinder,

USI, GibbsCluster, MEME) and alignment tools (OPAL,
lustal Omega, MUSCLE, ClustalW, ProbCons, MAFFT, T-
offee) were evaluated on the peptide sets. All tools were used
ith default parameters. It should be noted that the quality
f the results of each method could potentially be improved
y non-default parameters, particularly the multiple sequence
lignment-based tools that are not optimized for short peptide
lignment. The results of all methods were converted to pep-
ide alignments to allow direct comparison of the disparate
utput format. The percentage of correctly aligned motifs in
he positive peptides was used as the evaluation metric. The
umber of correctly aligned peptides represents the highest
ount of positive peptides, wherein the initial motif position
s aligned in each of them. Subsequently, the percentage of this
ount is computed based on the total number of positive pep-
ides within the provided dataset. 

pplication to ProP-PD data 

aSTPACE was evaluated through benchmarking on ProP-PD
s a high-throughput technique generating real-world data. A
roP-PD experiment is a protein–protein interaction assay be-
ween a bait protein and a ProP-PD library. A screen is a set of
eplicate ProP-PD experiments for a given bait against a sin-
le ProP-PD library. The enriched phages for each replicate are
ollected and sequenced through several phage display selec-
ions on sequential days. Hence, next generation sequencing-
erived peptide counts for each unique peptide that binds a
pecific screened bait using the library are obtained. These
ounts are normalized to the proportion of observed peptides
in a single selection to produce normalized peptide counts and
combined into a single replicate value for each peptide by cal-
culating the mean. After that, the per-peptide replicate mean
counts are combined into a single screen value by retaking
the mean again. Intuitively, motif-containing biologically rel-
evant peptides should bind their baits with higher mean nor-
malized peptide counts, be found in more replicates and be
more specific by showing less promiscuity through different
baits. Therefore, we tested FaSTPACE on a ProP-PD dataset
of 40 screens ( 12 ). The FaSTPACE evaluation process involves
three distinct runs. In the first two, the tool is executed twice
on each screen’s peptides, once with mean normalized counts
as weights and once without any weights. In the third run,
FaSTPACE is evaluated on a filtered list of peptides per screen.
This filtered list comprises peptides identified in more than
one replicate and those overlapping with at least one other
peptide in the screen. Promiscuous peptides are considered by
removing peptides from the filtered list that have < 20% of all
the counts across all screens in a given screen. To provide a
basis for comparison, SLiMFinder is also run on this filtered
list. For each of the four experiments, consensus information
is extracted from every screen. Subsequently, CompariMotif
( 36 ) normalized shared information content scores are com-
puted to quantify the similarity of the extracted motif for the
selection to the expected motif for the bait protein as defined
by the ELM database. This comprehensive approach allows
for a thorough evaluation of FaSTPACE’s performance across
various conditions and a comparison with SLiMFinder. 

Results 

Evaluating F aS TPA CE on artificially generated 

datasets 

FaSTPACE is evaluated on datasets (dataset:
https:// zenodo.org/ records/ 10467208 ; bioRxiv:
10.1101 / 2024.01.12.574168) generated from validated
motif instances from the ELM database (see the ‘Materials
and methods’ section) (Figure 3 A). The tool was tested against
11 other tools that can be roughly classified into two groups:
motif discovery tools (SLiMFinder , MUSI, GibbsCluster ,
MEME) and alignment tools (OPAL, Clustal Omega, MUS-
CLE, ClustalW, ProbCons, MAFFT, T-Coffee). FaSTPACE
aligns the given sequences based on their GSMs instead of the
found motif, so similar to alignment tools, it always manages
to align the given data (percentage runs completed: FaST-
PACE 100%, SLiMFinder 93%, MUSI 96%, GibbsCluster
99%, MEME 100%, Opal 100%, Clustal Omega 100%,
MUSCLE 100%, ClustalW 100%, ProbCons 100%, MAFFT
100%, T-Coffee 100%) (Figure 3 B). Average running times
and alignment accuracies are calculated per tool on groups
of test sets with the same number of positive peptides, pep-
tide length and noise percentage ( Supplementary Table S1 ).
FaSTPACE showed higher performance than all tested mo-
tif discovery tools and most of the alignment tools with
a median of average running times of < 1 s (FaSTPACE
with no refinement 0.11 s, FaSTPACE 0.25 s, SLiMFinder
73.9 s, MUSI 8.6 s, GibbsCluster 2.2 s, MEME 2.2 s, Opal
3.3 s, Clustal Omega 13.2 s, MUSCLE 0.10 s, ClustalW
0.06 s, ProbCons 0.36 s, MAFFT 0.87 s, T-Coffee 1.6 s)
(Figure 3 C). The running time of FaSTPACE is influenced
by both the number and length of peptides in the datasets.
This correlation becomes more apparent when the effect of

https://zenodo.org/records/10467208
https://zenodo.org/records/10467208
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae103#supplementary-data
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Figure 3. The evaluation of FaSTPACE on artificial data and ProP-PD data. ( A ) Overview of the generation of the benchmarking test sets from the ELM 

resource. The dataset includes 653 846 artificial sets of motif-containing peptides representing 133 groups based on the number of motif-containing 
peptides, peptide length and noise percentage. ( B ) A bar plot of the percentage of aligned test sets that return peptide alignment and / or motif 
extraction data from the benchmarking test sets. ( C ) A bo x en plot of the a v erage running time of each group of peptide sets for the different tools on the 
benchmarking test sets. ( D ) A bo x en plot of the a v erage percentage of correctly aligned motifs for each group for the different tools on the 
benchmarking test sets. ( E ) Heatmap of the percentage of correctly aligned peptides in groups with different numbers of positive peptides. ( F ) Heatmap 
of the percentage of correctly aligned peptides in groups with different peptide lengths. ( G ) Heatmap of the percentage of correctly aligned peptides in 
groups with different noise percentages. ( H ) Average receiver operating characteristic (ROC) curves comparing FaSTPACE (with / without weighting) and 
SLiMFinder in discriminating curated motif-containing peptides from others in ProP-PD screens. ( I ) ROC curves comparing different peptide scoring 
methods in discriminating curated motif-containing peptides from others in ProP-PD screens. ( J ) A boxen plot of CompariMotif scores comparing the 
expected motif in the ELM database for each bait protein of the 34 baits with ELM motifs versus the motif discovered from the ProP-PD screen by 
SLiMFinder and F aS TPACE. 
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he added noise to datasets is eliminated, as demonstrated
y assessing solely the running time of the initiation step
 Supplementary Figure S3 ). Specifically, the running time of
he algorithm is found to be quadratically correlated with the
otal dataset size ( Supplementary Figure S4 A), with conver-
ence occurring more rapidly and with less noise when the
ataset contains an enriched motif, thus limiting the number
f refinement iterations. A significant advantage of FaST-
ACE lies in its memory consumption, which grows linearly
ith the dataset size regardless of the noise present in the
ataset ( Supplementary Figure S4 B). FaSTPACE outperforms
ll benchmarked tools in the accuracy of generated align-
ents with a median of the average percentage of correctly

ligned motifs of 82% (FaSTPACE with no refinement 67%,
aSTPACE 82%, SLiMFinder 79%, MUSI 44%, GibbsClus-
er 52%, MEME 42%, Opal 74%, Clustal Omega 55%,

USCLE 49%, ClustalW 47%, ProbCons 41%, MAFFT
1%, T-Coffee 39%) (Figure 3 D). Removing the penalization
f dissimilar residues in the alignment, by ignoring negative
alues in the BLOSUM matrix, improved results compared
o application of the standard BLOSUM matrix (FaSTPACE
2% aligned motifs, FaSTPACE with standard BLOSUM
7% aligned motifs) ( Supplementary Figure S5 ). FaSTPACE
s significantly better than any other tool when the dataset
ontains a large number of motif-containing peptides (Figure
 E), and gives better performance when the peptides in the
ataset are shorter (Figure 3 F). It is also noted that the
umber of positive peptides and their length in a dataset are
ore critical factors in aligning motifs correctly than the
oise percentage added to the dataset (Figure 3 G). 

valuating F aS TPA CE on P roP-PD benchmarking 

ata 

e evaluated FaSTPACE on a ProP-PD dataset ( 12 ) and
ompared its scores (matching motif P -value) against other
ethods of scoring peptides for containing a motif (mean
ormalized counts, replicate score, overlapping score and
LiMFinder score) ( Supplementary Table S2 ). In Figure 3 H,
ach motif-containing screen’s ROC curves are calculated, and
heir average is plotted. FaSTPACE matching motif P -value
cores outperform all the other scores in discriminating motif-
ontaining peptides (Area under the ROC Curve (AUC): 0.78).
or weighting peptides, FaSTPACE uses mean normalized
ounts with a modest discrimination capability (AUC: 0.78).
LiMFinder P -value score comes next after FaSTPACE scores
AUC: 0.72). SLiMFinder is used to find motifs in replicated
eptides (peptides that appear in more than one replicate of
 screen) and overlapping peptides (peptides with other pep-
ides overlapping them in the screen). SLiMFinder extracted
otif aligns those peptides, and a PSSM is built from them.
hen, PSSMSearch scores all screen peptides based on the
uilt PSSM. It gives the SLiMFinder-based score an edge as it
uns on clean data of replicated and overlapping peptides with
escent discrimination power (replicate AUC: 0.59; overlap
UC: 0.63) (Figure 3 I). Despite that, FaSTPACE outperforms
LiMFinder-based scores by a wide margin. In Figure 3 I, all
he peptides in all the ProP-PD screens are used in building
 single plot of ROC curves. To account for the differences in
he number of peptides in each screen, FaSTPACE is run with a
ormalization factor of 1000 (all the screen sizes are corrected
o be 1000). Given those settings, FaSTPACE and SLiMFinder
each similar results (AUC: 0.90). FaSTPACE extracted motifs
match the expected motifs from the ELM database and the
SLiMFinder motif in most screens, as evidenced by the com-
parisons made using CompariMotif ( Supplementary Table S3
and Figure 3 J). It suggests a high potential for improving the
FaSTPACE results by integrating more experimental features
into the weighting schemes. 

The F aS TPA CE web server 

The FaSTPACE tool is now accessible as a web server, which
can be found at https:// slim.icr.ac.uk/ projects/ fastpace . Users
can input peptides into the tool via the web server, and
it will provide comprehensive information about the best-
extracted motif and alignment. The ‘Motif’ section of the re-
sults presents a sequence logo of the peptide with the highest
residue score in its similarity matrix, the regular expression
of the best P -value motif extracted from a peptide’s similarity
matrix and the scores associated with the best-extracted mo-
tif. In the ‘Alignment’ section, users will find a table displaying
aligned peptides, along with information extracted from the
similarity matrix of each peptide. 

Discussion 

Identifying overrepresented patterns in datasets of short pep-
tides is crucial for many biological problems and has been
a long-standing challenge for several years. Numerous tools
have emerged to tackle this problem by extracting specificity
determinants, such as position-specific scoring matrices or reg-
ular expressions, from sets of biologically related peptides. A
common problem of all tools is the trade-off between speed
and accuracy. The available methods can be grouped as accu-
rate enumerative approaches with exponential running time,
or as fast but suboptimal heuristic methods. FaSTPACE is the
first tool with both speed and accuracy. The FaSTPACE ap-
proach uses per-residue motif-oriented alignment scores from
all input peptides to reach local optimality, followed by it-
erative refinement to achieve global optimality. FaSTPACE
can also integrate peptide-specific experimental information
as peptide weights into this motif extraction process, elim-
inating the need to pre-filter data that can lead to the loss
of relevant information. FaSTPACE has a polynomial run-
ning time that increases quadratically with the dataset size,
enabling the tool to be applied to datasets of thousands of
peptides. This scalability and the algorithm’s weighting capa-
bilities enabled FaSTPACE to extract specificity determinants
from large datasets of unprocessed peptides, such as the phage
display examples presented. 

The major limitation of FaSTPACE is the inability to extract
variable-length gapped motifs. The addition of variable-length
gaps would lead to an exponential growth in the running time
and would likely introduce more noise to the algorithm’s re-
sults. FaSTPACE reaches state-of-the-art accuracy in motif ex-
traction in the benchmarking results of the current internal-
gap-free algorithm, indicating that the fixed-length submotifs
extracted in these cases describe the specificity determinants
of the data sufficiently . Consequently , we believe that the ad-
dition of variable-length gaps would not provide significant
benefits compared to the additional complexity it would intro-
duce to the algorithm and that it is not a worthwhile trade-off
for the suboptimal speed and accuracy of fixed motif extrac-
tion. Furthermore, tools such as SLiMFinder allow variable-
length gaps and provide high-accuracy motif extraction;

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae103#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae103#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae103#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae103#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae103#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae103#supplementary-data
https://slim.icr.ac.uk/projects/fastpace
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however, the field would benefit from further research in this
area to allow variable-length gapped motifs with speed, ac-
curacy and at scale. An additional potential improvement in
future releases is the optimization of the similarity matrix ap-
plied in the initiation step. FaSTPACE currently utilizes the
BLOSUM matrix to quantify similarity between peptides. Sev-
eral additional similarity matrices exist that may yield more
accurate results. However, intuitively, the development of mo-
tif alignment-specific similarity matrices based on character-
ized motif instances would provide the optimal solution. 

In summary, we have developed FaSTPACE, a fast and scal-
able tool to align and extract motifs from sets of short pep-
tides that allows peptide weighting. FaSTPACE is an impor-
tant addition to the set of tools tackling the current explosion
of peptide-centric biological data. 

Data availability 

FaSTPACE is implemented as an open-source Python C++ ex-
tension combining the speed and performance of C++ and the
usability of Python. Therefore, it can be installed as a Python
PyPI package. The source code is available at GitHub ( https:
// github.com/ hkotb/ fastpace ) and figshare ( https:// doi.org/ 10.
6084/m9.figshare.24996518.v2 ). The FaSTPACE tool is also
accessible as a web server at https:// slim.icr.ac.uk/ projects/
fastpace . The open-source version of FaSTPACE has addi-
tional functionality that allows users to rerun the algorithm
multiple times, each time masking motifs that were identi-
fied in previous runs. This iterative approach allows the algo-
rithm to detect less populated motif classes that might remain
undetected. 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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