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ABSTRACT: The rapidly developing artificial intelligence (AI)
requires revolutionary computing architectures to break the energy
efficiency bottleneck caused by the traditional von Neumann
computing architecture. In addition, the emerging brain−machine
interface also requires computational circuitry that can conduct
large parallel computational tasks with low energy cost and good
biocompatibility. Neuromorphic computing, a novel computa-
tional architecture emulating human brains, has drawn significant
interest for the aforementioned applications due to its low energy
cost, capability to parallelly process large-scale data, and
biocompatibility. Most efforts in the domain of neuromorphic
computing focus on addressing traditional AI problems, such as handwritten digit recognition and file classification. Here, we
demonstrate for the first time that current neuromorphic computing techniques can be used to solve key machine learning questions
in cheminformatics. We predict the band gaps of small-molecule organic semiconductors and classify chemical reaction types with a
simulated neuromorphic circuitry. Our work can potentially guide the design and fabrication of elementary devices and circuitry for
neuromorphic computing specialized for chemical purposes.

■ INTRODUCTION
The rapid development of artificial intelligence (AI) demands
imminent response to the energy efficiency bottleneck brought
by the conflict between the traditional von Neumann
computational architecture and the rapidly evolving deep
learning algorithms.1 In the von Neumann architecture, the
data movement between memory and processing units causes a
large penalty of energy.2 On the other hand, human brains
consume orders of magnitude less energy but usually
outperform modern computers in tasks such as image
recognition and natural language analysis.3 As an example of
this energy efficiency gap, the training process of the first
generation of AlphaGo, the famous deep learning model to
play the strategy board game of Go, requires ∼5 × 105 W4 as
the peak power, while human brains work at only ∼20 W5 but
can easily defeat the early versions of AlphaGo. Neuromorphic
computing can fill this energy gap by enabling the processing
of big data within the memories to eliminate data movement,
which can drastically reduce the energy consumption by ∼5
orders of magnitude.6

Recently, neuromorphic computing has been demonstrated
with resistive memories or memristors based on various
materials, including oxides,7 phase change materials,8 and
polymers.9 A memristor is a key device whose conductance can
be tuned via programmed applied voltage pulses. In a matrix−
vector multiplicator implemented via a crossbar circuit in
neuromorphic computing (Figure 1a), the conductance of
memristors acts as the weights of an abstract artificial neural

network in machine learning algorithms (Figure 1b).10 The
input vectors are given in the form of voltages (in Figure 1b).
As a result of Ohm’s law and Kirchhoff’s law, the output of the
crossbar memory is naturally the results of vector−matrix
multiplication operations. Therefore, by tuning and reading the
conductance of memristors, training and inference of a neural
network can be accomplished within memristors.
Traditionally, to complete vector−matrix multiplications in a

conventional computational architecture, the process units
need to fetch data from the dynamic random-access memory
(DRAM) to obtain the weights and inputs, multiply inputs
with the weights, and move data back to the DRAM, resulting
in high energy consumption.32 However, crossbar circuitry
allows for in-memory computing and parallel reading. The
memristors serve as the memory where the vector−matrix
multiplication take place in situ. Parallel reading allows these
operations to occur in a single step by mimicking the current
summary in a parallel-connected circuit.11 Parallel writing,
which is also beneficial for energy usage, is used to update the
weights;11 weights (Wij) are updated based on the outer
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product of the row (length of the voltage pulse xi) and the
column (height of the voltage pulse yi), according to eq 1. It
had been proven that for an N × N crossbar, analog resistive
memory crossbars can be O(N) more energy-efficient than a
conventional digital memory-based architecture.11

′ = + ⊗

′ = +

W W x y

W W x y
or

ij ij i j (1)

To estimate the performance of a memristor in a
neuromorphic computing circuit quickly without fabricating
such a circuit, neuromorphic computing simulation software
packages, such as CrossSim26 and NeuroSim,27 have attracted
much attention. Fuller et al.7−9 used CrossSim to perform
classification in backpropagation simulations on handwritten
digits and file classification on a Sandia data set. Yu et al.12,13

added hybrid precision synapse and advanced learning
algorithms in NeuroSim to increase the Modified National
Institute of Standards and Technology (MNIST)28 hand-
written recognition accuracy. The accuracy and energy
consumption for the training of MNIST images with different
emerging nonvolatile memories are also compared using
NeuroSim in 2018.2 Additionally, Chen et al. used MATLAB
to simulate the classification performance of their memristive
synapse for neuromorphic computing.14 Wang et al.15 used
SPICE29 to simulate an in-memory computing system based
on a resistive random-access memory crossbar circuit, which
can perform parallel and general computing tasks, and
indicated that this architecture could handle with data-
intensive problems. Hu et al.16 developed a dot product
engine with transistor−memristor arrays and combined it with
MATLAB to formulate a single-layer neural network for
MNIST handwritten classification, achieving 89.9% recogni-
tion accuracy.
At the same time, machine learning has found wide

application in cheminformatics, for example, generating
molecules with desired properties,17,30,31 predicting pharma-
ceutical properties for drug-like compounds,18 and so forth.
Similar to other AI applications, the exciting applications of
machine learning in cheminformatics calls for energy-efficient
computational hardware. The decent feature of the neuro-

morphic architecture is suitable for machine learning tasks in
cheminformatics. However, few studies have been conducted
for this application. Here, we introduce CrossSim into
chemistry-related machine learning objectives. As an example
of regression tasks, we used CrossSim to predict the band gap
of small-molecule organic semiconductors; as an example of
classification tasks, we used CrossSim to classify chemical
reactions. We conducted experiments on the band gap
prediction with different materials’ lookup tables. In CrossSim,
the weight update is based on lookup tables that are acquired
from experiments. The lookup tables provide the information
of the probability distribution of conductance change at a given
conductance by the applied voltage pulse.26 After comparing
three materials including a lithium-ion synaptic transistor,8

tantalum oxide (TaOx)-based resistive memories,7 and an
electrochemical neuromorphic organic device,9 we found that
the lithium-ion synaptic transistor has the lowest loss, while
tantalum oxide-based resistive memories exhibit a fluctuation
with increasing training epochs in the regression task to predict
the band gaps for organic semiconductors. To reveal the
reason why the fluctuation exists in TaOx-based memristors,
we trained two sequential crossbar circuits with different
lookup tables (i.e., circuits based on different materials). We
found that the performance of TaOx memristors depends on
the dimension of the crossbar circuit, and they tend to
underperform in relatively small crossbar arrays (50 × 1). This
phenomenon may be due to the write noise intrinsic to TaOx
memristors.7 To demonstrate the ability of neuromorphic
computing for classification applications, another network was
trained to classify the chemical reaction types from a reaction
database, USPTO-50k.24 We obtained consistent results
between the CrossSim simulation and the widely used deep
learning application programming interface (API) Keras. Due
to the imbalance of the data set, undersampling19 was applied
to data-abundant reaction types. Compared to previous
outcomes, CrossSim training after undersampling showed
higher classification precision and less false positive cases. Our
work demonstrates that neuromorphic computing techniques
can be used in cheminformatic problems well and further
discusses the material dependency on the training perform-
ance. Our work can potentially be used to guide the design and

Figure 1. Schematic for the structure of (a) neuromorphic computing and its relationship with (b) neural networks.
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fabrication of devices and circuitry for neuromorphic
computing specialized for chemical purposes.

■ METHODS

Molecular Band Gap Prediction. Band gap is an
important electronic and optical property for organic semi-
conductors. However, calculating the band gap from the
density functional theory (DFT) requires many resources. We
can leverage machine learning to predict the band gaps at a
much lower cost.11 The data source used for the molecular
band gap prediction was obtained from the literature,
calculated by the DFT.20 The database is composed of a
total number of 111,725 molecules. These molecules were
given as xyz files and transformed to the canonical simplified
molecular-input line-entry system (SMILES) molecular
representation.21 Then, the SMILES strings were converted
into Morgan Fingerprints22 with digits of 1024 and a radius of
2 by RDKit.23 The Morgan fingerprints are the input for
memristors. The whole data set was split into a training set and
a test set in a ratio of 9:1. Molecular fingerprints were treated

as the input signal for the neuromorphic simulation in
CrossSim. To ensure that the initialization of the simulation
is the same, we used identical seeds to set up the training
processes. The flowchart of this regression task is shown in the
first panel of Figure 2a. The architecture of the neural network
is shown in Figure 2b. The output layer generates a band gap
value for each input molecular fingerprint. The loss function
between the predicted band gap and actual band gap is the
mean squared error (MSE) and was optimized by back-
propagation. Similar to the weight update in neural network
training, conductance at each intersection in Figure 1 was
alternated through the applied voltage to move the predicted
values close to actual band gap values. The conductance
update was accomplished based on a conductance change
lookup table. This lookup table was generated from
experimental measurements. The numerical weights in the
network layer are mapped directly onto the experimental
device conductance states. The statistics of the conductance
change is included in the lookup table. For the back-
propagation, the weights were programmed by the lookup
table. To update a weight, the initial state of the device, G0, is

Figure 2. (a) Schematic for applying a CrossSim simulator to solve simple chemical neural network problems; (b) architecture of the neural
network for band gap prediction; and (c) architecture of the neural network for reaction type classification. ReLU: rectified linear unit.
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determined and next, the state is updated by the average
change ΔG; ΔG is scaled based on the updated size calculated
by the backpropagation.9 Therefore, the behavior of each
material can be estimated when they are used in a
neuromorphic circuit if the relationship between the
conductance and applied voltage is measured. In this work,
the following four lookup tables were obtained from the
literature: current-controlled pulses measurement for the
lithium-ion synaptic transistor (LISTA_Current);8 voltage-
controlled pulses measurement for the lithium-ion synaptic
transistor (LISTA_Voltage);8 tantalum oxide-based resistive
memories (TaOx);7 and an electrochemical neuromorphic
organic device (ENODe).9 LISTA is an all-solid-state non-
volatile redox transistor with a resistance switching mechanism
based upon the intercalation of Li-ion dopants into a channel
of Li1−xCoO2.

8 TaOx switches the resistance based on an
oxygen vacancy exchange between the TaOx layer and the Ta
layer upon the application of an external electric signal.7 The
device architecture for ENODe is a poly(ethylenimine) (PEI)/
poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PE-
DOT:PSS) film serving as the postsynaptic electrode,
interfaced with a PEDOT:PSS presynaptic electrode via an
electrolyte. Upon applying a potential to the PEDOT:PSS
electrode, cations are transported to the PEI/PEDOT:PSS
layer and resulting holes are removed from PEDOT in the
postsynaptic electrode, thereby reducing its conductivity.9

According to the references, the device area for TaOx is 0.9 ×
0.9 μm2 and the area for ENODe is 0.3 × 0.3 μm2. These four
types of materials were applied and tested in this band gap
prediction task to identify the strength and weakness for the
specific purpose.
Chemical Reaction Classification. The database for the

chemical reaction classification was USPTO-50k.24 USPTO

contained chemical reactions from US patents from 1976 to
2016. Information about the reaction types, product SMILES,
and reactant SMILES was included in the database. Reactions
in USPTO-50k were single-step reactions and grouped into 10
reaction classes, Rx_1 to Rx_10, referring to heteroatom
alkylation and arylation, acylation and related processes, C−C
bond formation, heterocycle formation, protections, depro-
tections, reductions, oxidations, functional group interconver-
sion, and functional group addition,24 respectively. The entire
database was split into a training set and a test set in a ratio of
9:1 with the same reaction type ratios. We used Morgan
fingerprints of reactions, the difference between the fingerprint
of the product and reactants, as inputs for CrossSim. The
dimensions of the network were set to be 1024, 50, and 10
nodes for the input layer, hidden layer, and output layer,
respectively, as shown in Figure 2c. The goal was to identify
the class of a reaction based on its reactants and product. The
backpropagation algorithm together with the gradient descent
was applied to update the weights during the training process.
Additionally, the lookup table used to adjust the conductance
in CrossSim was LISTA_Current. Later, the classification
result from the CrossSim simulation was compared to that
from Keras,25 an API for implementing neural networks, with
an identical network architecture and algorithm.

■ RESULTS AND DISCUSSION
Prediction for the Band Gap of Small Organic

Molecules. Prediction of the band gap of a small organic
molecule was first performed using the four lookup tables with
the conductance change probability distribution in the range
[0.25, 0.75], which was recommended by the manual of
CrossSim software.26 As shown in Figure 3a, the average losses
of LISTA_Current (current-controlled pulse measurement for

Figure 3. (a) Average loss for different lookup tables with the lookup table possibility distribution range [0.25, 0.75] for training; (b) average loss
for different lookup tables with the lookup table possibility distribution range [0.1, 0.9] for training; (c) actual vs predicted result for the
LISTA_Current simulation with the lookup table range from 0.1 to 0.9 at epoch 40 for the test set.
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the Li1−xCoO2-based lithium-ion synaptic transistor),8 LIS-
TA_Voltage (voltage-controlled pulse measurement for the
Li1−xCoO2-based lithium-ion synaptic transistor),8 and
ENODe (PEI/PEDOT:PSS)9 converged normally, but the
loss of TaOx7 did not converge after five or six epochs. The
learning rate was explored for better performance, but it did
not change the result of TaOx prediction, as shown in Figure
S1. Ideal results were gained by enlarging the possibility
distribution range to [0.1, 0.9]. The performances of the
available materials are compared in Figure 3b. Generally,
LISTA_Current and LISTA_Voltage had a smaller average
loss than TaOx and ENODe, which indicates that the material
for LISTA (Li1−xCoO2) may be the favorite material to
fabricate a physical device to make predictions on molecular
band gaps. Figure 3c shows the comparison between the actual
band gaps and predictions for the test set using the
LISTA_Current lookup table, where the coefficient of
determination is 0.96. This prediction result was comparable
to the result obtained from the regression with TensorFlow
Keras, where the coefficient of determination is 0.98. In
addition, the TaOx prediction result in Figure 3b fluctuated
with increasing epochs. To find out the reason of fluctuation,
research on the simulation of different materials for the two
crossbars was conducted. The results are discussed in the
following paragraph.
Crossbar networks with dimensions of (1024, 50) and (50,

1) were simulated with different lookup tables in CrossSim, as
shown in Figure 2b. The simulation results are shown in Figure
4. Fluctuations were observed in each figure when the TaOx
lookup table was utilized for the (50, 1) crossbar network. In

Figure 4c, the network with the dimension of (1024, 50) was
completely simulated with the TaOx lookup table, and the
network with a dimension of (50, 1) was simulated with other
materials. It was demonstrated that the fluctuation in the TaOx
simulation was caused by the (50, 1) network. According to
the application of TaOx-based resistive memories on hand-
written digit recognition,7 we think this perturbation on a
small-dimension crossbar network is caused by the intrinsic
write noise of this material.33 If the dimension of the crossbar
network is small, the write noise will exhibit a large impact on
the crossbar performance. However, the influence of this write
noise can be neglected when TaOx is applied in large-
dimension crossbar networks. Therefore, TaOx can capture
features of large-dimension networks but lacks the ability to fit
the results with small-dimension crossbar networks.
In addition, a two-hidden-layer model for the band gap

prediction task was implemented. Dimension of the model was
set to be (1024, 50, 50, 1). Also, the three crossbars were all
simulated with the LISTA_Current lookup table. The training
result is shown in Figure S3. It took more epochs, about 160
epochs, for the MSE loss to reach a steady state, and the loss
was around 0.00282, which was close to the result we obtained
from the one-hidden-layer model whose loss was 0.00285.
After that, the test set was tested on the two-hidden-layer
model, and a coefficient of determination of around 0.98 was
obtained. As mentioned previously, the coefficient of
determination for the one-hidden-layer model is 0.96. Upon
comparing the results from these two models, we believe that
the one-hidden-layer model was sufficient for the band gap

Figure 4. Using different materials to simulate the band gap prediction for training. (a) LISTA_Current: both crossbars using LISTA_Current;
LCLV: first crossbar using LISTA_Current and second crossbar using LISTA_Voltage; LCTa: first crossbar using LISTA_Current and second
crossbar using TaOx; and LCEN: first crossbar using LISTA_Current and second crossbar using ENODe; (b) LISTA_Voltage: both crossbars
using LISTA_Voltage; LVLC: first crossbar using LISTA_Voltage and second crossbar using LISTA_Current; LVTa: first crossbar using
LISTA_Voltage and second crossbar using TaOx; and LVEN: first crossbar using LISTA_Voltage and second crossbar using ENODe; (c) TaOx:
both crossbars using TaOx; TaLC: first crossbar using TaOx and second crossbar using LISTA_Current; TaLV: first crossbar using TaOx and
second crossbar using LISTA_Voltage; and TaEN: first crossbar using TaOx and second crossbar using ENODe; and (d) ENODe: both crossbars
using ENODe; ENLC: first crossbar using ENODe and second crossbar using LISTA_Current; ENLV: first crossbar using ENODe and second
crossbar using LISTA_Voltage; and ENTa: first crossbar using ENODe and second crossbar using TaOx.
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prediction task. Moreover, the training result for a three-
hidden-layer model is provided in the Supporting Information.
Classifying Chemical Reactions. In Table 1, classification

results obtained using CrossSim (based on LISTA_Current
lookup table) and Keras are listed. The precision is defined as
the number of correctly classified reactions (true positive)
divided by the total number of reactions being classified as
belonging to a specific reaction type (true positive + false
positive). Higher precision was obtained for reaction types
with larger data amount. Table S1 shows the recall of both
CrossSim and Keras classification models. Recall is defined as
the number of true positive cases divided by the summation of
true positive and false negative cases. As shown in Table 1 and
S1, no obvious difference in the performance could be
discovered between the two models. Therefore, we believed
that the classification task accomplished by CrossSim was
comparable to that completed by Keras. Because the USPTO-
50k database is not balanced between reaction types, we
adopted the undersampling strategy19 on the majority of
classes in the training set to seek for a better classification
performance. As a result of undersampling, Rx_1 and Rx_2
were diminished by 20% in the training set; Rx_3 and Rx_6
were reduced by 10%. The classification for CrossSim with an
undersampling strategy is shown in Tables 2 and S2. The
numbers of false positive cases for data-abundant reaction
types are decreased. Therefore, the precision of classification is
increased with the application of the undersampling strategy.

■ CONCLUSIONS

Neuromorphic computing simulation is accomplished within a
crossbar simulator CrossSim. The energy consumption can be
dramatically reduced if the widely used von Neumann
architecture can be substituted by neuromorphic computing
devices. Unlike other studies on machine learning applications
in cheminformatics, we used the CrossSim simulator to solve
chemical problems, namely, organic molecular band gap
prediction and chemical reaction type classification. In the
task of predicting the band gaps of small-molecule organic
semiconductors, different lookup tables of different memristors
are applied in CrossSim at the conductance changing
possibility distribution range of [0.1, 0.9] to overcome the
divergence when TaOx is applied as the conductance update
policy. Among these memristors, LISTA exhibits the smallest
loss. This suggests that LISTA will be the best choice for
fabricating a neuromorphic device to predict small organic
molecular band gaps. According to the comparison of different
memristors in two crossbar networks, we obtain the conclusion
that TaOx may not be appropriate to be used as a conductance
update policy for networks with relatively small dimensions.
This phenomenon may be due to the relatively high write
noise of TaOx-based memristors. Regarding the classification
problem, the accuracy and prediction amount attained by
CrossSim are close to those by Keras, and better performance
can be achieved by undersampling the reaction types with
more abundant data. Our work can potentially inspire the
following studies that focus on generating lookup tables for
novel neuromorphic materials in CrossSim and applying them
in other chemical problems.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.1c04287.

Learning rate impact on the tantalum oxide lookup table
for band gap prediction; training result for band gap
prediction using the one-hidden-layer model with 100
epochs; training result for band gap prediction using the
two-layer model; training result for band gap prediction
using the three-layer model; comparison of CrossSim
and Keras: recall and true positive cases for reaction-type
classification; and recall and true positive cases for
CrossSim with undersampling (PDF)

Table 1. Classification Result Comparison between CrossSim and Keras

CrossSim Keras

precision
true positive + false

positive precision
true positive + false

positive
number of reactions in the test

set

RX_1 heteroatom alkylation and
arylation

0.756 1835 0.763 1935 1500

RX_2 acylation and related processes 0.721 1521 0.737 1464 1190
RX_3 C−C bond formation 0.698 357 0.717 346 550
RX_4 heterocycle formation 0.663 70 0.789 61 90
RX_5 protection 0.594 18 0.441 23 65
RX_6 deprotection 0.647 763 0.676 772 825
RX_7 reduction 0.712 276 0.701 238 450
RX_8 oxidation 0.574 48 0.556 57 80
RX_9 functional group interconversion 0.473 110 0.499 103 160
RX_10 functional group addition 0.5 2 1 1 25

Table 2. Classification Result for CrossSim with
Undersampling

CrossSim with undersampling

precision true positive + false positive

RX_1 0.902 1536
RX_2 0.805 1152
RX_3 0.704 597
RX_4 0.788 80
RX_5 0.540 87
RX_6 0.655 875
RX_7 0.903 380
RX_8 0.514 107
RX_9 0.421 183
RX_10 1 3
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