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We previously showed that inducible nitric oxide synthase (iNOS) protein expression in
melanoma tumor cells is associated with poor patient prognosis. Here, we analyzed the
association between iNOS and the oncogenic PI3K-AKT pathway. TCGA data show that
iNOS and phospho-Akt Ser473 expression were associated significantly only in the subset of
tumors with genetically intact PTEN. Employing a stage III melanoma TMA, we showed that
iNOSprotein presence is significantly associatedwith shorter survival only in tumorswithPTEN
protein expression. These findings led to our hypothesis that the iNOS product, nitric oxide
(NO), suppresses the function of PTEN and stimulates PI3K-Akt activation. Melanoma cells in
response to NO exposure in vitro exhibited enhanced AKT kinase activity and substrate
phosphorylation, as well as attenuated PTEN phosphatase activity. Biochemical analysis
showed that NO exposure resulted in a post-translationally modified S-Nitrosylation (SNO)
PTEN,whichwas also found in cells expressing iNOS.Our findings provide evidence that NO-
rich cancers may exhibit AKT activation due to post-translational inactivation of PTEN. This
unique activation of oncogenic pathway under nitrosative stress may contribute to the
pathogenesis of iNOS in melanoma. Significance: Our study shows that iNOS expression
is associated with increased PI3K-AKT signaling and worse clinical outcomes in melanoma
patientswith wt (intact) PTEN.Mutated PTEN is already inactivated.We also demonstrate that
NO activates the PI3K-AKT pathway by suppressing PTEN suppressor function concurrent
with the formation of PTEN-SNO. This discovery provides insight into the consequences of
inflammatory NO produced in human melanoma and microenvironmental cells. It suggests
that NO–driven modification provides a marker of PTEN inactivation, and represents a
plausible mechanism of tumor suppressor inactivation in iNOS expressing subset of cancers.

Keywords: melanoma, phosphatase and tensin homolog, nitric oxide, PI3K-AKT axis, S-nitrosylation, inducible
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INTRODUCTION

Melanoma is the deadliest form of skin cancer and its incidence
has been increasing in the United States for the last 30 years. The
molecular pathogenesis of melanoma is strongly associated with
activation of the phosphatidylinositol 3-kinase (PI3K) –AKT
pathway, promoting cellular growth, proliferation, and survival.
In melanoma, activation of the PI3K-AKT pathway generally
occurs in the setting of concurrent oncogenic RAS-RAF-MEK-
ERK signaling (1). Previous studies showed that the constitutive
activation of the PI3K-AKT pathway occurred in the setting of
PTEN loss of expression and function, which was detected in up
to 30% of cutaneous melanomas (2). The analyses of human
melanoma samples and cell lines showed that low PTEN levels
were associated with elevated phospho(active)-AKT, which
remained significant even in brain metastasis (3). Supporting
the clinical significance of activation of the PI3K-AKT pathway,
PTEN loss was shown to promote resistance to both targeted and
immune therapies for melanoma (4).

In addition to genetic alterations, PTEN function can be
regulated by post-translational modifications (PTM) (5). Lee
et al. have shown that cysteines at the active site of PTEN
normally form a disulfide bond, and oxidation by H202
exposure results in its inactivation (6). More recently, cysteines
of PTEN were reported to be post-translationally modified by
another oxidant, nitric oxide (NO) resulting in S-Nitrosylation
(SNO), in human brain, which was indicated to promote neuron
survival in early stages of neurodegenerative disease (7). We have
previously reported that protein expression of nitric oxide
synthase (NOS), particularly inducible NOS (iNOS), in
approximately 60% of tumor cells in the advanced melanoma
patients, and that its presence significantly associated with poor
prognosis (8). It has also been proposed that cancer-associated
inflammation and NO production support cancer by oxidizing
redox-sensitive molecules, especially tumor suppressors (9). In
this study, we report that iNOS expression is associated with
increased PI3K-AKT signaling and worse clinical outcomes in
melanoma patients with intact PTEN, which this is possibly due
to iNOS-driven oxidants. We demonstrate that the iNOS
product, NO, can activate the PI3K-AKT pathway by
suppressing PTEN activity concurrent with the formation of
PTEN-SNO. Together the findings provide new insights into the
significance and multifaceted roles of NO in melanoma and
provide evidence for PTM regulation of tumor suppressors.
MATERIALS AND METHODS

Materials
DETA NONOate (#82120), 1400W (#80200), and L-NIL
(#80300) were purchased from Cayman Chemical (Ann Arbor,
MI). Sulfanilamide (#S9251), Sodium Nitrite (#S2252), N-(1-
Naphthyl) ethylenediamine dihydrochloride (#22,248-8), and
sodium ascorbate (#A7631) were purchased from Sigma-
Aldrich (Saint Louis, MO). N-Ethylmaleimide (NEM)
(#23030), IP Lysis Buffer (#87787), Protease and Phosphatase
Inhibitor Cocktail (#78440), protein quantification assay kit
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(#A53226) Streptavidin Magnetic beads (#65602), N-[6-
(biotinamido) hexyl]-3′-(2′-pyridyldithio)-propionamide
(HPDP-Biotin) (#21341) and Protein A Agarose Beads
(#20333) were purchased from Thermo Fisher Scientific
(Waltham, MA.). LY294002 (#S1105) and Wortmannin
(#2758) were purchased from Selleck Chemicals (Houston,
TX). All of the cell culture media was purchased from Corning
(Corning, NY). All antibodies, including phospho-AKT Ser 473
(pAKTS473)(#4060), AKT (#9272), PTEN (#9559), GSK-3a/b
(#5676), phospho-GSK-3a/b (#8566), and PTEN (#9788), were
purchased from Cell Signaling Technology (Beverly, CA) unless
stated otherwise. We purchased iNOS antibody (#SC-651) from
Santa Cruz Biotechnology (Santa Cruz, CA).

Melanoma Tissue Microarrays
Slides from a stage III melanoma TMA (Stage III B/C array of
regional metastases) were obtained from MD Anderson Cancer
Center (4). Immunolabeling of PTEN (2) and iNOS were
assessed and scored using standard methods as previously
described (8). This study was approved by the institutional
review boards of MD Anderson Cancer Center and complied
with the 1983 revision of the Helsinki Declaration of 1975.

Cell Culture, Treatment, and Transfection
The human melanoma cell lines A375, MeWo, LOX IMVI, and
WM793 were obtained from the American Type Culture
Collection (ATCC), and WM 266.4 was provided by Dr.
Michael Davies (MD Anderson). Cells were cultured in
Dulbecco’s modified Eagle medium containing 5% fetal bovine
serum at 37°C and in 5% CO2 and 95% air. For DETA NONOate
treatment, cells were cultured to 75% confluency, and freshly
prepared DETA NONOate stock was added to the final
concentration as indicated in the text. After treatment times,
cells were washed twice with cold phosphate-buffered saline
and were harvested for analysis of pAKTS473 levels, AKT
kinase activity, AKT substrate phosphorylation, and PTEN
activity. An iNOS expressing construct was established as
described by us previously (10). Cells were transfected with
plasmids using Lipofectamine 2000 (Invitrogen), according to
the manufacturer’s specifications.

In Vitro Akt Kinase Assay
In vitro Akt activity was assessed by using an Akt kinase assay kit
(#9840, Cell signaling Technology). After DETA NONOate
treatment, A375 cells were lysed, and cellular Akt was
immunoprecipitated using beads containing immobilized
Phospho-AKT (S473) Rabbit monoclonal antibody. The kinase
reaction was performed by supplementing the kinase substrate
GSK-3 fusion protein and ATP. The phospho-GSK3 was
measured by Western blot using an anti-phosho-GSK-
3 antibody.

Akt Signaling Pathway Antibody Array
The phosphorylation of 16 effector proteins associated with the Akt
signaling, were screened by an Akt signaling antibody array kit
(#9474, Cell Signaling Technology) according to the manufacturer’s
instructions. Briefly, cell lysates were incubated on the glass slides
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containing target-specific capture antibodies followed by a
biotinylated detection and chemiluminescence visualization.

Western Blotting
After DETA NONOate treatment, cells were washed with cold
PBS twice and lysed with IP lysis buffer [25 mM Tris•HCl pH 7.4,
150 mMNaCl, 1% NP-40, 1 mM ethylenediaminetetraacetic acid
(EDTA), 5% glycerol] and a protease and phosphatase inhibitor
cocktail. Protein concentration was determined by bicinchoninic
acid (BCA) assay. Equal amounts of protein were separated with
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) transferred to a nitrocellulose membrane and blocked in
5% bovine serum albumin in phosphate-buffered saline/Tween.
The membrane was then incubated with primary and secondary
antibodies, and target proteins were detected and visualized with
enhanced chemiluminescence (ECL) detection reagent.

Biotin-Switch Assay for SNO-Post Translational
Modification Detection
The biotin-switch assay for detection of SNO-modifications on
thiols was performed as described previously (11) with minor
modifications. In brief, cells expressing iNOS were lysed in
HENS buffer (100 mM HEPES, 1 mM EDTA, 0.1 mM
neocuproine, 1% Triton X-100, 0.1% SDS, pH 7.4), and free
thiols were blocked by incubation in 50 mMNEM. Protein SNOs
were selectively reduced by ascorbate (20 mM) and labeled with
HPDP-Biotin (1 mM). The biotinylated proteins were collected
on streptavidin magnetic beads and eluted for immunoblotting
analysis using antibody specific for PTEN.

PTEN Phosphatase Activity Assay
PTEN phosphatase activity was assessed by measurement of
inorganic phosphate liberated during in vitro PTEN phosphatase
reactions converting PIP3 to PIP2. Briefly, after DETA NONOate
treatment, A375 cells were lysed, and cellular PTEN was
immunoprecipitated and added to assay buffer containing
substrate phosphatidylinositol 3,4,5-trisphosphate diC8
[PI(3,4,5)P3] (#P3908, Echelon Biosciences, Salt Lake City,
UT). Free phosphate was detected using a Malachite Green
detection kit (#10009325, Cayman Chemical) according to the
manufacturer’s instruction.

Nitrite Measurements
The nitrite level in the medium was measured based on the
Griess reaction. Briefly, 200 ml of the cell culture medium was
mixed with 10 ml of sulfanilamide (30 mM in 2 M HCl), followed
by 10 ml of N-(1-naphthyl)ethylenediamine dihydrochloride
(30 mM in 0.1 M HCl). The absorbance was measured at
540 nm and compared with a standard curve generated using
sodium nitrite.

Statistical Analysis
Statistical results are reported as means ± standard deviations for
n ≥ 3 biological replicates. Statistical analysis was performed
using GraphPad Prism 7.0, and significance was evaluated with a
two-tailed Student t-test. For the survival analysis, patients who
remained alive at the time the study data were collected were
Frontiers in Oncology | www.frontiersin.org 3
censored at the date of their last follow-up. The Kaplan-Meier
method was used to estimate the distribution of survival times,
and the log-rank test was used to compare distributions. For the
reverse phase protein array (RPPA) protein expression analysis,
the Mann-Whitney test was used, and a difference was
considered significant for a p value <0.05.

The Cancer Genome Atlas (TCGA) gene expression, the
Reverse Phase Protein Array (RPPA) protein expression, and
clinical data were downloaded from official TCGA repositories
(Broad Institute, TCGA Genome Data Analysis Center). RPPA
box plots were prepared using the Tableau Desktop software.
RESULTS

iNOS Expression Is Associated With
Increased AKT Activity and Poor Clinical
Outcomes in Melanomas With Intact PTEN
To examine the association between iNOS and AKT activity in
clinical samples, we first analyzed the RPPA data of melanoma in
TCGA (12) to quantitatively measure Phospho-Akt S473
(pAKTS473) levels. As pAKTS473 is a marker of Akt
activation, the levels of expression were compared between
tumors with or without positive iNOS gene expression (>= 0.1
TPM by RNAseq). The analysis identified significantly (p < 0.05)
higher pAKTS473 expression levels in tumors with positive
iNOS gene expression (n=112, median = 0.114) versus those
without iNOS gene expression (n=57, median = -0.0451)
(Figure 1A).

As loss of PTEN expression is also associated with increased
pAKTS473 expression, we then repeated the analysis
incorporating the genetic status of PTEN (PTEN loss for
mutation or copy number < -0.5 vs. PTEN no loss). The data
show that in tumors with PTEN loss, there was no significant
difference in pAKT expression (p=0.332) as a function of iNOS.
However, in tumors with genetically intact PTEN, iNOS gene
expression was associated with significantly increased pAKTS473
expression (p<0.05; iNOS negative: n=40, median expression =
-0.0638, iNOS positive: n=71, median expression = 0.0) (Figure
1B). These results led us to hypothesize that iNOS may be
involved in AKT activation in the subset of melanomas with
functionally active intact PTEN.

The prognostic significance of iNOS in melanomas with
intact PTEN was further analyzed using a TMA of lymph node
metastases from patients with newly diagnosed stage III disease
(8). Previous analysis showed that loss of PTEN protein
expression was associated with significantly shorter overall
survival (OS) among these patients (4). Based on the
associations observed in the melanoma TCGA cohort, we
tested whether iNOS protein expression was associated with
clinical outcomes among stage III patients with intact PTEN
expression. iNOS protein levels were determined by IHC, which
was categorized as positive or negative based on the percentage of
positively stained cells. Among the tumors with PTEN protein
expression, iNOS was positive in 55 (76.4%) and negative in 17
(23.6). Kaplan-Meier analysis showed that patients with positive
February 2021 | Volume 11 | Article 631766
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iNOS expression had significantly shorter OS (median 28.0
months) from stage III diagnosis compared to patients with
negative iNOS (median OS not reached, p=0.012) (Figure 1C).
Most patients with negative PTEN expression were iNOS
positive (24 vs. 3) in this TMA (TMA core examples in
Supplementary Figure 1).

Nitric Oxide Activates PI3K and AKT in
Human Melanoma Cells With Intact PTEN
Based on the above clinical associations, we performed further
experiments to functionally evaluate the relationship between
iNOS, PTEN, and the PI3K-AKT pathway in human melanoma
cell lines. First, A375, a human melanoma cell line with a BRAF
V600E mutation and wild type PTEN, was exposed to the NO
Frontiers in Oncology | www.frontiersin.org 4
donor, DETA NONOate for defined times up to 24 h. It has been
shown previously that DETA NONOate addition to cells
generates intracellular NO flux at approximately 1000:1 ratio.
Thus, µM concentration of DETA NONOate result in a steady
state of NO at nM concentrations, which is responsible for its
biological function (13). Western blotting showed that NO
exposure increased the level of pAKT S473 in the cells within
2 h, which was sustained even longer in cells treated with 200 and
500 µM NO donors (Figure 2A). In addition to the A375 cells
used in this time and concentration titration experiment, four
other human melanoma cell lines were employed and exposed to
varying concentrations of DETA NONOate for 2 h to examine
pAktS473 protein levels as a measure of AKT activation. A
similar increase of pAKT S473 was also observed in MeWo
A B

C

FIGURE 1 | iNOS expression is associated with increased AKT activity and poor clinical outcomes in melanomas with intact PTEN. Reverse phase protein array
analyses show (A) expression levels of the phospho-AKT Ser 473 protein (pAKTS473) in iNOS-negative (<0.1 transcripts per kilobase million) and iNOS-positive
(≥ 0.1 transcripts per kilobase million) tumors in the melanoma TCGA, and (B) pAKTS473 protein expression levels in iNOS-negative and iNOS-positive groups with
PTEN loss (mutated PTEN or PTEN copy number < -0.5) and without PTEN loss. A P value <0.05 was considered statistically significant. (C) Kaplan-Meier survival
analysis based on combined markers of PTEN and iNOS status in tumor cells in stage III melanoma patients. A P value <0.05 was considered statistically significant.
OS, overall survival.
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cells (BRAF and NRAS WT and PTEN intact) and LOX IMVI
cells (BRAF V600E and PTEN intact). Conversely, two human
melanoma cell lines without PTEN expression, WM 266-4 and
WM 793, constitutively expressed the expected high basal
pAktS473 level, and those levels were not further increased
with the same NO exposure (Figure 2B). Therefore, only in
cell lines with intact PTEN was NO able to drive increased AKT
activity, supporting a direct involvement of NO with functional
wildtype PTEN inactivation.

Akt activation depends on upstream PI3K activity, which
produces the signaling intermediate PIP3 that brings AKT to the
membrane. PTEN inhibits AKT activation by dephosphorylating
phosphatidylinositols at the 3’-position. To test whether the NO-
induced activation of Akt is PI3K-dependent, we applied two
different PI3K inhibitors (LY 294002; Wortmannin) to A375
cells before NO exposure. Both PI3K inhibitors eliminated basal
Frontiers in Oncology | www.frontiersin.org 5
phospho-AKT and prevented NO-induced AKT activation
(Figure 2C).

Together, these results indicate that NO stimulates AKT
activation in some melanoma cells through a PI3K-dependent
manner and suggest that a functional (and intact) PTEN is
necessary for this effect.

NO Stimulated AKT Activation Is
Functional and Results in AKT Pathway
Target Phosphorylation
As pAKT S473 levels are a surrogate for Akt activation, we
further directly measured AKT kinase activity in vitro. A375 cells
were exposed to 200 µM DETA NONOate for 2 h, then AKT was
immunoprecipitated to measure its kinase activity using GSK-3
fusion protein as the substrate. As shown in Figure 3A, AKT
from NO treated cells is able to form phosphorylated GSK-3 as
A B

C

FIGURE 2 | Nitric oxide stimulates PI3K and activates AKT in melanoma cells. (A) A375 cells were treated with NO donor DETA NONOate (0–500 µM) for 1, 2, 12,
and 24 h. P-Akt (S473) levels were examined by western blot. At 2 h, 200 µM DETA NONOate treatment significantly increased P-AKT (S473) level. (B) MeWo, LOX,
WM 266-4, and WM 793 cells were treated with DETA NONOate (0-500 µM) for 2 h P-AKT (S473) expression was examined by western blot. (C) PI3K inhibitor
LY294002 and Wortmann pretreatment both blocked basal and NO-induced P-AKT(S473) formation.
February 2021 | Volume 11 | Article 631766
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detected by western blot, as compared to the negligible level of
untreated A375 cells. This confirms that NO stimulates AKT
kinase activity.

AKT is a key kinase that can phosphorylate over 100
downstream substrates involved in diverse cellular functions
including growth, survival, proliferation and metabolism (14).
To screen for activation of such additional substrates, we used
a commercial AKT pathway substrate antibody array, and
found that out of the 16 Akt pathway targets included in the
array, 12 targets had increased phosphorylation in the lysates
from A375 cells after exposure to NO (Figure 3B). These
targets including GSK-3, S6 ribosomal protein, PRAS 40, and
4E-BP1. Selected protein phosphorylation was also validated
by western blot in A375 cells treated with DETA NONOate
Frontiers in Oncology | www.frontiersin.org 6
(Figure 3C). These results collectively reveal that NO-induced
AKT phosphorylation results in enhanced AKT activity
and activation of multiple AKT pathway downstream
effectors that mediate many of the oncogenic effects of this
signaling pathway.

PTEN Phosphatase Activity Is Attenuated,
and PTEN is Nitrosylated to Form PTEN-
SNO by Either Exogenous or Endogenous
NO
PTEN antagonizes PI3K-AKT pathway activity through its lipid
phosphatase activity. As NO treatment resulted in increased
AKT activity, we tested if this treatment also affected PTEN’s
lipid phosphatase activity. Thus, the phosphatase activity of
A

B

C

FIGURE 3 | AKT activation increases phosphorylation in the AKT pathway targets. (A) AKT kinase activity was measured by AKT immunoprecipitation from cell
extracts, followed by an in vitro kinase assay using GSK-3 fusion protein as a substrate. Phosphorylated GSK-3 levels in A375 cells treated with 200 mM DETA
NONOate for 2 h. were measured by Western blotting. (B) Phosphorylation of AKT pathway targets after 2 h. of treatment with 200 µM DETA NONOate. The protein
phosphorylation of 16 AKT pathway targets was examined using the antibody assay kit. Of the 16 AKT pathway targets, 12 showed increased phosphorylation after
DETA NONOate treatment. (C) Western blotting was used to validate the GSK-3a and GSK-3b phosphorylations in A375 cells treated with 200 mM DETA NONOate
for 2 h.
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PTEN, from A375 cells after treatment with DETA NONOate,
was measured and compared with controls. The results
demonstrate that NO treatment significantly decreased the
lipid phosphatase activity of PTEN (Figure 4A). To further
mimic the effects of endogenous NO produced by iNOS in
cancer cells, human iNOS was transfected and expressed in
A375 cells. iNOS transfection was validated by western blots of
iNOS signal and the increase of nitrite production. In addition,
iNOS inhibitors L-NIL and 1400W were utilized to inhibit iNOS
activity and prevent it from producing NO as a control (Figure
4B). We then used the biotin-switch assay to confirm that the
formation of PTEN-SNO in iNOS expressed A375 cells. Both the
increased nitrite levels and PTEN-SNO were dependent on active
iNOS, which was abolished when iNOS was inhibited by 1400W
(Figure 4C).
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

Our combined analysis of clinical melanoma samples and human
cell lines provides new insights into the role and clinical
significance of iNOS expression and NO production in
melanoma. While previous studies have implicated loss of
PTEN expression as a significant event in melanoma, our data
supports that post-translational modification of the intact PTEN
protein by NO is another likely mechanism of tumor suppressor
inactivation, which may also play an important role in this
disease. In essence, our studies demonstrate that NO can
inhibit PTEN activity and activate the PI3K-AKT pathway in
melanomas with intact PTEN. As activation of the PI3K-AKT
pathway has been implicated in resistance to both targeted and
immune therapies, these results provide further evidence for a
A

B

C

FIGURE 4 | PTEN phosphatase activity is attenuated and NO induced PTEN–SNO formation. (A) PTEN phosphatase activity in A375 cells treated with 200µM
DETA NONOate was measured with a malachite green assay. (B) A375 cells were transfected to express iNOS and produce endogenous NO. Transfected iNOS
was confirmed with western blotting, and nitrite formation was measured with the Griess reaction. NO generation from iNOS was inhabitable with the NOS inhibitors
L-NIL or 1400W. (C) Using a biotin-switch assay, we detected PTEN S-nitrosylation in A375 cells expressing iNOS.
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significant role for inflammation-driven nitric oxide, and
indicate that such inflammation could be considered as a
potential target in this disease (9).

Expression of iNOS in tumor cells, and a correlation between
iNOS expression and poor clinical outcomes, have been found in
many cancer types, including melanoma, breast, and colon,
gastric and ovarian cancers (15). It is suggested that iNOS
could be employed in conjunction with other tumor
biomarkers to be better used for diagnostic purposes (16). Now
our results indicate that the iNOS product, NO, functionally
inactivates PTEN protein, contributing to its pro-oncogenic
effects. It is well known that the normal tumor suppressor
function of PTEN is lost if the gene acquires certain mutations,
or is deleted. The inactivation of PTEN results in activating the
PI3K-AKT pathway in melanoma and contributes to metastasis
and therapeutic resistance. However, this only occurs in a
minority of patients. For most melanoma patients with intact
and potentially functional PTEN, our data suggests that
expression of iNOS promotes AKT activation and is associated
with worse survival in stage III disease patients. Notably, our
analysis of the TCGA and stage III patients showed that iNOS is
not associated with AKT activation or clinical outcomes in
melanomas with loss of PTEN, likely due to the fact that iNOS
appears to regulate the PI3K-AKT pathway through the
formation of PTEN-SNO and inhibition of the lipid
phosphatase activity of PTEN. Thus, our results suggest that
the development of iNOS inhibition as a therapeutic strategy
should focus on patients with intact PTEN.

In this study, we, for the first time, demonstrate the evidence
of PTEN-SNO formation in human melanoma cells expressing
iNOS. Protein S-nitrosylation (SNO) has emerged as an
important post-translational modification; previously SNO sites
have been reported on more than 4000 sites in over 2000 proteins
(17). However, in any particular tumor within a range of NO flux
is likely evident and dynamic. Therefore determining the SNOed
protein abundance and ratio to that protein abundance is more
important in determining the extent of functional consequence
of protein SNO. Therefore, we are also working on using a novel
saturation fluorescence thiol labeling approach (SNOFlo) to
identify S-nitrosoproteome and quantitatively analyze the SNO
level in melanoma cells to reveal the pathologically relevant
protein candidates (18). The PTEN-SNO is one example of
what may be the biochemical mechanism of inflammation
driving cell survival, as SNO_PTEN was also found to
attenuate neuronal survival in Parkinson’s disease (7). More
recently, it is shown to initiate pro survival signaling of PI3K-
AKT by PTEN-SNO and prevent neurons from degenerative
death (19). Similarly, the same pro-survival mechanisms will
benefit cancer cells and contribute to poor patient outcomes (20).

In addition to attenuated PTEN function, we attributed
elevated AKT activity to the direct stimulation of PI3K-AKT
by NO which is consistent with previous reports that concluded
relative short lifetime of active and phosphorylated AKT (21) as
Phosphorylated substrates are evident up to 2 h post-stimulation
(22). Currently, phosphorylation of S473 is also known to occur
through either mTORC2 (23) or DNA-PK (24). mTORC2
Frontiers in Oncology | www.frontiersin.org 8
has been reported to be involved in NO-induced AKT
phosphorylation in retinal cells (25) and NO has also been
shown to upregulate the expression of DNA-PKs in tumor
cells (26). Specifically, how NO triggers the activation of PI3K
remains elusive; both cGMP-dependent and cGMP-independent
mechanisms have been suggested. It was shown that in human T
cells, NO led to PI3K recruitment to the effector domain of Ras,
where it became activated via a process mediated by Ras Cys 118

redox modification (27). At the same time, the PI3K activation
could also be induced by cGMP analog (8-bromo-cGMP) and
can be blocked by ODQ, an sGC inhibitor indicating a cGMP
dependent manner (28). It is likely that the cell types (malignant
cells vs. normal cells) and the specifics of NO exposure (time,
concentration, NO donor type) result in these differences. Our
most recent publication on the role of this pathway in clinical
samples reported that the tumor cell nitrotyrosine (NT)
expression predicts a greater risk of developing CNS metastasis
in those patients (29). Today, we understand that complex cancer
cell and their response in the chronic inflammation environment
guides us to develop better treatments for advanced melanoma.

NO can be produced both in tumor cells as well as other cells
within the tumor microenvironment. Determined by its unique
chemical property, NO reacts with many sites on intracellular
molecules and hence affects a plethora of oncogenic pathways,
such as tumor suppressor inactivation as suggested for PTEN in
these studies, supporting consideration of NOS/NO targeted
anti-cancer therapeutics (30). In summary, our study reveals
that at tumor iNOS-relevant NO flux concentrations, NO can
stimulate the PI3K-AKT pathway in human melanoma cells;
identical conditions also promote NO-mediated PTEN-SNO.
This experimental discovery is supported by clinical
association data and has provided one plausible mechanistic
insight into the possible functional consequences of
inflammatory NO produced in human melanoma cells and
their microenvironment, and possibly other iNOS expressing a
subset of other cancers.
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