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A deep neural network to de-noise single-cell RNA
sequencing data
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and Habil Zare

Abstract—Single-cell RNA sequencing (scRNA-seq), a power-
ful technique for investigating the transcriptome of individual
cells, enables the discovery of heterogeneous cell populations,
rare cell types, and transcriptional dynamics in separate cells.
Yet, scRNA-seq data analysis is limited by the problem of
measurement dropouts, i.e., genes displaying zero expression
levels. We introduce ZiPo, a deep artificial neural network for
rate estimation and library size prediction in scRNA-seq data
which incorporates adjustable zero inflation in the distribution
to capture the dropouts. ZiPo builds upon established concepts,
including using deep autoencoders and adopting the Poisson
and negative binomial distributions, by taking advantage of
novel strategies, including library size prediction and residual
connections, to improve the overall performance. A significant
innovation of ZiPo is the introduction of a scale-invariant loss
term, making the weights sparse and, hence, the model biologi-
cally more interpretable. ZiPo quickly handles vast singular and
mixed datasets, with the processing time directly proportional to
the number of cells. In this paper, we demonstrate the power
of ZiPo on three datasets and show its advantages over other
current techniques. The code used to produce the results in
this manuscript is available at https://bitbucket.org/habilzare/
alzheimer/src/master/code/deep/ZiPo/.

Index Terms—Single-cell RNA sequencing, Denoising, Zero
inflation, Deep learning

I. INTRODUCTION

RECENT single-cell RNA sequencing (scRNA-seq) tech-
nologies provide invaluable insight into gene expression

at individual cell levels. However, they often result in many
genes displaying zero expression levels. These zero values
can arise from two distinct events: (i) biological events,
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referred to as structural zeros [1], when a gene expresses no
RNA at the time of the experiment, and (ii) non-biological
events, also known as dropout events [1]–[3], stemming from
the insufficiencies in library preparation and amplification
processes [4], [5]. Non-biological zeros occur due to various
factors in the employed technology. These factors can include
mRNA degradation after cell lysis, variability in converting
mRNA to cDNA, inconsistencies in amplification efficiency,
cell library concentration or sequencing depth, and other batch
effects [3].

Unique Molecular Identifiers (UMIs) are a valuable tool
in rectifying amplification biases in non-zero gene expres-
sion measurements by identifying and eliminating reads from
cDNA duplicates generated during amplification [6]. Despite
their utility, UMIs cannot rectify sampling zeros and the
corresponding cDNA copy numbers for these zeros remain
unidentified [7].

In the context of scRNA-seq data, imputation involves
inferring missing expression values or non-biological zeros.
The aim is to estimate the actual expression values that
were not detected due to experimental limitations. Imputation
methods are often developed based on the principle that similar
cells will likely have similar gene expression profiles [8], [9].

Noise in scRNA-seq data can arise from various sources,
including the aforementioned technical variabilities and the
inherent stochasticity of gene expression. Denoising methods
strive to eliminate or reduce noise in the data by identifying
and adjusting for these sources of variability, making the signal
more pronounced. For instance, a common denoising approach
adjusts the expression values for each gene based on the total
amount of RNA detected in each cell, thereby correcting for
differences in sequencing depth [10]. Statistical learning and
deep learning models, such as autoencoders, are among the
most powerful tools for processing complex biological data
like scRNA-seq.

Imputation methods for scRNA-seq data are generally built
upon probabilistic and mathematical models. They aim to
replace missing values, often zeros, with estimates derived
from the existing data points and their interrelationships. To
infer the missing values, these methods often exploit the
structure and characteristics of the data, such as the correlation
patterns in the scRNA-seq data, i.e., the similarities among
cells and genes.

One example is the Markov affinity-based graph imputation
of cells [11] (MAGIC), which is among the most renowned
statistical methods tailored for denoising and imputation of
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scRNA-seq data. This computational approach denoises the
cell count matrix and imputes missing gene expression values.
MAGIC constructs a graph where nodes represent cells and
edges reflect similarities between cells, facilitating information
sharing across similar cells via a diffusion process. Another
notable method, SAVER [12], uses an empirical Bayes-like
approach to estimate the true expression levels, leveraging
expression similarities between cells to impute non-biological
zeros. scImpute [8] is another method that finds and imputes
highly probable dropout values using a clustering approach.
This method draws on information from the same gene in
similar cells to the imputed cell. A similar approach DrIm-
pute [13], employs k-means clustering [14], [15] to identify
similar cells and then imputes dropouts based on the average
expression values in those cells.

Deep learning models have emerged as revolutionary tools
in the last two decades due to their unique ability to solve
complex problems. With the exponential growth of biolog-
ical data, these models help determine patterns and draw
inferences from large, complex datasets. Deep models lever-
age artificial neural networks with multiple hidden layers
to perform downstream tasks, including feature extraction,
dimension reduction, prediction, and classification. They offer
novel approaches to tackle and interpret the complexity of this
information, providing new insights into various areas such
as genomics, proteomics, and cell biology [16]–[18]. Appli-
cations vary from predicting protein structure and detecting
genetic variants to understanding gene regulatory networks and
interpreting scRNA-seq data. As these models evolve, their
application in biological research is expected to drive signif-
icant breakthroughs and help reveal the complex underlying
mechanisms.

Notably, self-supervised models like autoencoders play a
prominent role in deep learning. Deep autoencoders are explic-
itly designed to provide efficient data representations. First,
the encoder compresses the input into a lower-dimensional
representation. Next, the decoder reconstructs the original data
from the compressed representation. Training an autoencoder
involves minimizing the difference between the input and the
output. Incorporating multiple layers in the encoder and the
decoder results in deep autoencoders that can model com-
plex data with a high-dimensional feature space. However, a
challenge known as the “vanishing gradients” emerges during
the backpropagation stage of training, particularly in deeper
models. Because of the chain rule and multiplication of the
gradients, there is a possibility that when some of the gradi-
ents are small, the multiplication would be numerically too
small, leading to no significant learning in back-propagation.
Techniques such as batch normalization [19] and residual con-
nections [20] fix the vanishing gradients problem [21]. Deep
autoencoders are valuable in different applications, including
feature extraction, dimension reduction, and denoising.

Regardless of the denoising approach, discrete statistical
distributions are needed to model the count data in scRNA-seq.
Various count distributions such as negative binomial (NB),
zero-inflated NB (ZINB), Poisson, and zero-inflated Poisson
(ZIP) have been widely employed for modeling UMIs or gene
reads in scRNA-seq [4]. For instance, the deep count autoen-

coder (DCA) [22], is used to denoise the scRNA-seq data
using an NB model for noise. This approach characterizes the
reconstruction error by evaluating the probability distribution
of the noise model rather than directly reconstructing the input
data. The ZINB distribution introduces a zero-inflation param-
eter that signifies the proportion of additional zeros, distinct
from those originating from the NB component. Similarly, the
ZIP distribution also incorporates a zero-inflation parameter,
specifically targeted at the zeros not accounted for by the
Poisson distribution. Employing a zero-inflated model versus
a non-zero-inflated model does not depend on the prevalence
of zeros in the data. Zero inflation is a statistical consideration
that takes into account the inevitable nonbiological zeros. Zero
inflation and its biological and technical validity for different
sequencing methods are among the highly debated topics.

Here, we introduce ZiPo, a deep model that takes scRNA-
seq data as its input and performs two tasks: (a) imputing the
missing data using zero-inflated distributions, and (b) provid-
ing an embedding of the single-cell gene expression data in
a low-dimensional space, offering a nonlinear transformation
akin to PCA’s dimensionality reduction capabilities that can
be used in downstream tasks like cell-type clustering. We
introduce a regularization parameter that not only adjusts the
zero-inflation level but also offers a more refined, adaptable,
and biologically accurate approach for handling the intricacies
of sequencing data, setting our work apart in this domain. This
model can also be used for single-nucleus data, but we only
use single-cell terminology in this manuscript for simplicity.

II. METHODS

In ZiPo, we first encode the high-dimensional gene expres-
sion data of the cells into a low-dimensional space (e.g., with
32 latent variables) using a deep model. Next, we consider
these latent variables as unknown covariates of the scRNA-seq
data and recover the expression levels using these unknown
covariates together with other possibly known covariates that
may influence the gene expression patterns observed in indi-
vidual cells. Such covariates might include tissue or cell types,
sequencing depth, spatial location, age, sex, etc. [23].

We assume a zero-inflated distribution for gene expression
levels. The two most common distributions for scRNA-seq
data are zero-inflated Poisson (ZIP) and zero-inflated negative
binomial (ZINB). The results in this manuscript are based
on ZIP, but they can readily apply to ZINB with minimal
adjustments. We prioritized ZIP because the straightforward
Poisson distribution aligns well with UMI-based sequencing
data. This approach eliminates the need for ZINB’s additional
parameter that might account for potentially greater dispersion
in the model.

The model takes each cell’s measured gene expression
vector as its input. The encoder consists of dense linear layers
for reducing the dimension followed by sigmoid activation.
The model is then followed by parallel layers from the encoded
variables (unknown covariates) to predict:

1) the library size,
2) the zero-inflation rate, and
3) the parameters of the desired distribution.

A schematic representation of the model is provided in Fig. 1.
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Figure 1: Schematic of the ZiPo model structure. ZiPo is composed of a deep encoder and a shallow decoder. Each input sample is a
vector of expression of n genes g1, . . . , gn for a given cell. Residuals can optionally be added from any encoder layer to the layer containing
latent variables l1, . . . , lz . If there are any known covariates x1, . . . , xk, we feed them to the model alongside the latents. The decoder
network has several hidden blocks, each composed of standard components including dense linear, activation, and batch normalization layers.
The decoder generates zero-inflation probabilities z1, . . . , zn, the distribution means µ1, . . . , µn, and other possible distribution parameters
θ1, . . . , θn. Also, a deep subnetwork will be used to predict the library size, y, using the latents and covariates.

A. Advantages of predicting the library size

We separate the library size (i.e., the sum of all gene
expressions for each cell) from the other predictions because
what we want to model in the zero-inflated distribution is
the relative expression levels of genes in a cell, not the
absolute values, which depend on less relevant variables like
the sequencing quality, assay efficiency, etc. To normalize
gene expression data, we can adjust raw count data using
count per million (CPM) [24] to account for differences in
library size or sequencing depth between samples, allowing
for fair comparisons of gene expression levels across samples.
In this method, the raw counts for each gene in a sample
are divided by the total number of reads (or counts) in that
sample. Predicting the library size offers at least two distinct
advantages over calculating it via adding all gene expressions
for each cell: (1) it can help reduce technical noise in the
data, and (2) it retains potentially valuable information about
the library size in the latent variables that can be used in
subsequent analyses. Notably, the library size could convey
information relevant to the cell size [25].

B. Sparsifying of the weights

We expect each feature in the second layer to represent a
pathway or an eigengene, incorporating only a small subset of
the genes [26], [27]. Therefore, most of the weights of the first
encoding layer should be zero or near zero, forming a sparse
weight matrix. The sparsity of this layer can be enforced by
adding a term to the loss function that acts similarly to an L1

penalty. Not all activation functions can produce the intended
sparsity as discussed in detail in section II-D.

C. The model structure in mathematical notation

Throughout the manuscript, we use the subscript c for any
variable to indicate that it is calculated for the cell c. The input
matrix is denoted as X = {xcg}, where xcg is the expression
of gene g in cell c. Xc denotes the full expression vector of cell
c over all available genes. For t encoding layers, the cellular
embedding for cell c is formulated as:

Uc = Gt ⊕ . . .⊕G2 ⊕G1(Xc),

where Uc is the embedding for cell c. Each Gi is composed
of a linear layer, an activation function (e.g., sigmoid), and a
batch normalization layer, which helps resolve the vanishing
gradients problem and accelerates the training [19], [28]. We
add known covariates of the cells, U ′

c, to the embedding vector
Uc, yielding the complete encoded representation of the cell,

Vc = concat(Uc, U
′
c).

Subsequently, optional layers are used to predict the follow-
ing variables:

log(lc) = liblog(Vc),

logit(zc) = N(Vc),

log(µc) = Mlog(Vc),

θ(j)
c = Θj(Vc); 1 ≤ j ≤ p,
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where l is the library size, µ is the mean parameter for the
distribution, z is the zero-inflation probability, θ represents
additional relevant parameters of the distribution, and p is
the number of these parameters. In the case of the Poisson
distribution, we only have the mean parameter, µ. For the
NB distribution, we need an extra parameter representing
the difference between the mean and the dispersion of gene
expressions. For N , we use a dense linear layer. For Mlog, we
use a dense linear layer followed by logSoftmax activation,
forcing the sum of the average gene expressions for each cell
to be equal to 1.

Given this configuration, the following linear relationships
are established:

zc = sig(AzVc +Bz)

µ ≈ exp(AµVc +Bµ).

To model the library size, we use a series of dense linear
layers followed by batch normalization and an activation
function. We can readily employ deep models to predict dis-
tribution parameters, resulting in nonlinear rather than linear
Vc functions in the above equations.

D. The loss function
The zero-inflated distribution is given by:

Pr(x|z, l, µ,θ) = zδ0(x) + (1− z) exp f(x;m,θ), m = lµ,

where f represents the logarithm of the distribution for non-
zero-inflated expression levels with mean m and possibly other
parameters θ and δ0 is the atomic distribution on zero. Note
that m = lµ is the expected expression level according to our
definitions.

We denote the rate of zero inflation by r, i.e., r = logit(z)
and the likelihood of our samples, given the distribution
parameters by L. The first component of the loss function
is the log-likelihood of the zero-inflated distribution:

logL = log Pr(X|z, µ,θ)
= log

∑
xcg

Pr(xcg|z, µ,θ)

=
∑

xcg=0

log(z + (1− z) exp f(0; lµ,θ))

+
∑

xcg>0

(log(1− z) + f(x; lµ,θ))

=
∑

log(1− z) +
∑

xcg=0

log
( z

1− z
+ exp f(0; lµ,θ)

)
+

∑
xcg>0

f(x; lµ,θ)

=
∑

log sig(−r) +
∑

xcg=0

log(exp r + exp f(0; lµ,θ))

+
∑

xcg>0

f(x; lµ,θ)

=
∑

log sig(−r) +
∑

xcg=0

r − log sig(r − f(0; lµ,θ))

+
∑

xcg>0

f(x; lµ,θ).

A typical approach employed in the DCA method involves
using truncated log functions by adding a tiny offset quantity
to the argument of the log function to avoid infinity (or very
large) numeric values when the argument is zero (or near
zero). Although this approach might be appropriate in specific
conditions, it is inaccurate when we have no a priori knowl-
edge of the input argument to decide on a proper value for
the offset. To prioritize precision in our calculations, instead
of relying on truncated log functions, we use the composite
function log sig [29], which stabilizes the numerical schema
without truncation.

The ZiPo model is regularized in two ways. We apply L2

regularization to the predicted zero probabilities and other
distribution parameters. The regularization hyperparameter in
ZiPo, αz , controls the level of zero inflation. An excessively
large αz prevents the model from using significant zero
inflation. Setting αz to zero will yield a model with strong
zero inflation that overestimates the expression rates. We also
impose a regularization term on the weights of the first layer
to sparsify them. We use this regularization term to shrink
weights appearing to be less important. We then prune those
relatively small weights after ensuring that removing them
does not affect the model performance.

We use NLL for “negative log-likelihood” and MSE for
“mean square error” throughout the manuscript.

E. Which activation function and weight regularization ap-
proach should be used?

In deep neural networks, activation functions such as ReLU
[30] or GELU [31] are commonly employed to tackle the
vanishing gradients issue. However, for the encoding segment
of ZiPo, we favor the sigmoid activation function. This choice
is influenced by the specific type of regularization applied to
the weights (parameters) of the first encoding layer.

A limitation of ReLU arises from its linear properties. That
is, the model can decrease the absolute weights in the initial
layer while compensating for this by increasing the weights
of the second layer, without affecting the final output of
the second layer and the final performance of the model.
Therefore, simple L1 or L2 regularization penalties would
not significantly change the model’s performance or output.
Some variations of the above activation functions like ReLU6,
defined as min(max(0, x), 6), could potentially resolve this
problem. However, we prefer the nonlinearity of the sigmoid
function over the piecewise linearity of ReLU6.

Similarly, the optimizer can lower the weights of the first
encoding layer but compensate for them by increasing the
batch normalization weights in the following layer. To protect
the first layer weights, we use a scale-invariant loss function
defined by dividing L1 by L2:

−E[logLc] + αz E[z2cg] + αwmeani
meang|Wig|

(meangW 2
ig)

1
2
+ E[αθ · θ2],

where Wigs are the weights of the first linear layer and α’s
are regularization hyperparameters determining the strength of
the corresponding penalty terms (i.e., αz controls the zero-
inflation rate and αw controls the weights in the first layer
and αθ controls the parameters of the distribution).
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If the features of the initial layer are sufficiently inter-
pretable, the model should perform well because those features
are directly related to the genes. Employing similar regu-
larization across all layers is possible. However, introducing
an additional hyperparameter for each layer complicates the
model and the training process.

F. Datasets

We have used three datasets to illustrate ZiPo performance
(Table I). The ROSMAP Alzheimer’s disease single-nucleus
RNA-seq (snRNA-seq) dataset was generated by Mathys et
al. [32], and is available from https://www.synapse.org/ with
synapse ID: syn18485175. This dataset includes 80,660 single
nuclei derived from the dorsolateral prefrontal cortex of 48
postmortem human brains. The liver [33] and myeloma [34]
scRNA-seq datasets are accessible through GEO with acces-
sion numbers GSE125188 and GSE117156, respectively. In
the liver dataset, 70,706 human CD45+ cells from the paired
liver perfusion, spleen, and human peripheral blood mononu-
clear cells (PBMC) were profiled. The myeloma dataset in-
cludes 51,840 cells from 29 diagnosed patients and 11 control
donors.

Table I: Three datasets were used in our experiments testing the ZiPo
model.

Dataset Tissue(s) # Cells # Genes Nonzero

ROSMAP Brain 70,634 17,249 9.82%
Liver Liver, Spleen, Blood 68,100 19,536 9.00%
Myeloma Bone marrow 51,840 27,992 1.94%

While the distributions of library sizes (i.e., the sum of gene
expression per cell) were similar across these three datasets,
the total gene expression (i.e., the sum of expression levels
per gene) varied (Fig. 2). We used the liver dataset to conduct
hyperparameter analysis. Then, we assessed the performance
of the optimized architecture in all three datasets.

a b

Figure 2: Violin plots of library sizes and gene expression levels
for each dataset. Library sizes generally vary by two orders of
magnitude. The Myeloma dataset has outliers with relatively small
library sizes (a). While the total expression levels of most genes are
in the order of 104 in the Liver and ROSMAP datasets, it has a
bimodal distribution in the Myeloma dataset (b).

G. Model parameters

Here, we systematically investigate the hyperparameter
space to identify reasonable values and provide insight for
ranges that can be extensively explored using an automatic
hyperparameter optimization software such as optuna pack-
age [35]. Specifically, we use two middle layers with 16 and
4 neurons to predict the library size. The Adam optimizer [36]
is used with the default linear layer initialization of weights in
pytorch [37]. The desired learning rate is 0.001. However, due
to the relatively large library sizes, the optimizer needs large
learning rates to converge quickly. Therefore, to accelerate the
training process, we set the initial learning rate at 0.0212 and
decrease it by a factor of 0.9 to reach 0.001 at epoch 30.
If the learning process halts, i.e., no improvement of at least
0.1% in validation loss, the learning rate will be reduced auto-
matically after 15 epochs using the class ReduceLROnPlateau
of pytorch-ignite [38]. The learning process stops early if the
validation loss does not improve over 30 epochs.

In our implementation, users can either manually specify
the model hyperparameters or allow our program to search
for the optimum settings in a predefined sampling space using
the Optuna package.

H. Model comparison

We compared the trained models based on the average
loss they obtained using 12 random seeds. The error bars
in the figures in the Results section represent λ times of
standard error of the mean, where λ = Φ−1(0.99)/

√
2 ≈ 1.64,

where Φ is the cumulative distribution function for the normal
distribution. With this choice, assuming a one-sided t test (i.e.,
normality of distributions and same variance), non-overlapping
bars indicate that we can reject the null hypothesis with 99%
confidence.

III. RESULTS

Our systematic investigation of the hyperparameter space
starts with seeking an optimum design for the encoder and
decoder, using the ROSMAP dataset.

A. A deep enough encoder with residuals leads to better
performance.

Almost half of the model variables are embedded in the first
layer of the encoder. The first layer also influences the size
of the other layers. Therefore, it is important to optimize the
first layer. To focus on the encoder, we used a simple linear
structure for the decoder, as discussed in II-C.

1) The first layer’s size: In a 3-layer model with 64 latent
variables, we assessed the effect of the first layer size, s1,
on model training time and performance (Fig. 3). The middle
layer size was set to be the geometric mean of the first layer
size and the number of the latent variables (i.e.,

√
s1 ∗ 64).

In Fig. 3 and throughout this paper, we use the s1–s2–· · · –
sp convention to describe the number of neurons used in the
structure of a model with p layers, e.g., 8192–512–64 is a
model with 8192, 512, and 64 neurons in the first, second,
and third layers, respectively.
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a b

Figure 3: Investigating different sizes for the first layer. We trained
each model architecture using 12 different seeds. As expected, the
NLL mostly decreased as s1, the size of the first layer in the encoder,
increased (a). The number of training epochs before stopping was
roughly in the same range for all encoder architectures (b). We
stopped at s1 = 8192, where the average loss did not improve.
s1 = 4096 had a significantly lower loss than models with a
smaller first layer based on the error bars, except for the models
with s1 = 2048.

With increasing s1, the average loss was reduced until s1 =
4096. The model became relatively unstable, and loss obtained
a wider range with s1 = 8096 (Fig. 3a). The s1 = 4096
model had the lowest average loss, and according to error
bars, was significantly better than the models with a smaller
first layer, except the models with s1 = 2048. Because we are
interested in smaller networks, for the rest of our experiments,
we chose s1 = 2048, a smaller model than s1 = 4096, but
not significantly worse in terms of the likelihood. The rationale
was that smaller models require less memory and computation
for training and have a better chance of interpretability.

2) The number of latent variables: In a 3-layer architecture
with a first layer of 2048 neurons and the size of the middle
layer determined by the geometric mean as described, the
likelihood improved as we increased the number of latent
variables on the third layer up to 128 (Fig. 4a). Subsequent
increases in the number of latent variables caused no signif-
icant improvement. As a smaller quantity of latent variables
is computationally beneficial (Fig. 4b), we chose 128 latent
variables for our model.

3) Deeper encoders with residuals perform better: We in-
vestigated the effect of the encoder depth and the incorporation
of residual connections from the encoder layers to the latent
layer on models featuring 2048 neurons in the first layer.

Adding residual connections to the models with 3 or more
layers lowered their NLL loss (Fig. 5). The deepest model with
the full residual connections was the optimal model. Because
adding the middle layers did not significantly affect the model
size (i.e., most weights are in the first layer), we continued to
use this configuration for the rest of our experiments.

B. A simple decoder is better than a deep one.

Using the same optimal encoder structure, (i.e., 2048 neu-
rons in the first layer, 128 latents, 1024, 512, and 256 neurons
in the middle layers, respectively, equipped with full residual
connections from all encoder layers to the latent layer), we
trained the model with different decoder structures (Fig. 6).

a b

Figure 4: Investigating different numbers of latent variables.
Performance improved as the number of latents increased (a). The
number of epochs increased slightly as the number of latents in-
creased (b). We stopped the experiment at 512 latents, where the
average loss was not improving significantly. The model with 512
latents, had the lowest minimum and was significantly better than
the models with fewer latents according to error bars, except for
models with 128 and 256 latents. Hence, we chose 128 as the
optimal number of latents, which provided adequate performance yet
maintained lower complexity compared to larger models.

a b

Figure 5: Investigating different encoder depths and residuals.
Increasing the model depth improved its performance, but this advan-
tage was lost without residuals (a). The number of epochs required
for training was unaffected by the number of residuals (b). Overall,
the deepest model with full residuals exhibited superior performance.

More complex decoders needed more epochs for training and
resulted in larger NLL losses. Therefore, we chose the simple
linear dense decoder described in the Methods section.

a b

Figure 6: Investigating different decoder architectures. Adding
hidden layers to the decoder worsened the model performance (a).
Different structures required roughly the same number of epochs for
training (b).
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C. Batch normalization is essential for convergence.

The effect of batch normalization on training depended on
the activation function. With the GELU activation function,
removing the batch-normalization layer destabilized the train-
ing process, and the optimizer did not converge. With the
sigmoid activation function, removing the batch-normalization
layer did not destabilize the training process, and the optimizer
converged, but got stuck in local minima (Fig. 7). Either way,
batch normalization was essential for training.

a b

Figure 7: Investigating the effect of batch normalization. Without
batch normalization, the model would be stuck in local minima (a)
and training would stop too early (b).

D. Controlling the zero-inflation rate improves library size
estimation and MSE of reconstruction.

With no regularization on zero inflation, the model over-
estimated their rates, leading to a much larger MSE in 3
out of 8 tests with different seeds (Fig. 8c). Also, the mean
of zero probabilities was very large (Fig. 8d). With a very
large zero-inflation regularization parameter (αz = 108 in
Fig. 8d), the model had almost no zero inflation, the training
needed more epochs, and the NLL loss was larger than the
models with smaller regularization. Apart from these extreme
cases, the models had stable reconstruction regarding NLL loss
and MSE rates for a vast range of regularization parameters
(i.e., 0.01 ≤ αz ≤ 10, 000). However, smaller regularization
parameters generally led to smaller NLL losses and larger
mean zero probabilities. In the following experiments, we set
αz = 0.1, which appeared to be a reasonable value for the
mean of zero-inflation probabilities.

E. Sparsifying the weights through weight regularization

With αz = 0.1, we investigated the effect of sparsifying
the weights in the first layer using the weight regularization
parameter αw. Note that the relative weights are important for
each neuron on the first layer. One can multiply all the weights
of a neuron by a constant and compensate for it by changing
the batch normalization coefficient.

We normalized the weights of each neuron in the first
layer by dividing all weights by the maximum weight. Then,
we prune the first layer weights by setting those smaller
than a threshold δ to zero. We investigated the effect of this
sparsification on the model performance.

a b

c d

Figure 8: The effect of zero-inflation regularization. NLLs were
roughly in the same range except for the very large regularization
parameter of 108 (a). The same was true for the number of epochs
up to 100 (b). MSE of expression rates was only unstable if no
regularization was applied (c). As expected, the mean of zero-
inflated probability decreased as the regularization parameter αz

increased (d).

With no regularization (i.e., αw = 0), more than 90% of the
weights were above 0.01 (Fig. 10a). With a large regularization
parameter, say αw ≥ 1, many weights were very small, making
the model sensitive to pruning (Fig. 10, c and d). In the middle
range (i.e., 0.01 ≤ αw ≤ 0.1), the sensitivity of MSE of rates
to the pruning seemed reasonable (Fig. 10c), we had even
better NLL losses compared to no regularization (Fig. 9a),
and the weight loss stayed almost the same (Fig. 9d).

F. ZINB compared to ZIP

Our experiments showed that due to the greater complexity
of the NB distribution compared to the Poisson distribution,
we would need to apply another regularization (although very
small) on the predicted rates of the model to train it. Therefore,
we added 0.1 ∗ E[(lcµc −

∑
g xcg)

2] to the loss function. In
models with ZINB, training stopped earlier than in models
with ZIP. In terms of the MSE of the rates, the models with ZIP
and ZINB were not significantly different (Fig. 11). However,
the models with ZIP performed significantly better regarding
NLL, and their first layer weights were much sparser (Fig. 12)
than those with ZINB.

G. ZiPo compared to DCA

Due to technical difficulties, we could not use the DCA
package to compare the corresponding method with ZiPo.
Instead, we leveraged our implementation, which is in a
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a b

c d

Figure 9: The effects of weight regularization on model perfor-
mance. Negative log likelihood (a) and MSE (b) were better in the
mid-range of the weight regularization parameter αw = 0.01 − 1.
Training needed more epochs to converge for larger αw values (c).
The corresponding loss term appeared to decrease with increasing αw

and was almost flat in the 0.01–0.1 range (d). Overall, these metrics
suggested αw = 0.1 as an appropriate choice.

sense a generalization of DCA, to simulate DCA using three
approaches: (1) the recommended parameters by DCA authors
in our settings, (2) the Poisson distribution (zipDCA), and
(3) the settings that are similar to our optimized ZiPo model
(tunedDCA). For the base settings, we used a 128–64–128
structure for the number of neurons in the model, applied
logarithmic transformation, and normalized the input matrix
by dividing the expression of each gene by the library size of
each cell.

In terms of NLL, ZiPo, and DCA performed similarly and
better than other models (Fig. 13a). The simplest model, i.e.,
DCA, was trained faster than the others but had the largest
MSE for the rates (Fig. 13b). Poisson distribution would
decrease the rates’ MSE, but the NLL was not as low as ZiPo.

H. Automatic hyperparameter optimization

We used the “Optuna” package to optimize ZiPo’s hyperpa-
rameters. Specifically, we searched five different encoder struc-
tures, 2048–1024–512–256–128, 1024–512–256–128, 1024–
512–256–128–64, 512–256–128, and 512–256–128–64 with
full residual connections. For the decoder, we used a simple
linear model For the regularization parameter of zero inflation
and the weights, we searched the range 0.01–1 in the logarith-
mic space. After 96 iterations, the hyper-optimizer chose the
deepest model, which resulted in a relatively reasonable value
for the MSE of expression rates (Fig. 14). For the best model,

a b

c d

Figure 10: The effects of weight regularization on model sparsity.
With no weight regularization, we do not have enough small weights
to sparsify the first layer (a). With adding even a small regularization
parameter of αw = 0.01, at least 92% of weights deopped below
10−5 (b). The MSE (c) and NLL (d) losses were more sensitive to
the pruning of weights for stronger regularization. Overall, αw =
0.1 appeared to be a reasonable choice, leading to nearly 98% of
the weights becoming zero after pruning with δ = 0.0001 without
affecting NLL and MSE losses.

a b

Figure 11: Comparing the performance of distributions ZINB vs
ZIP. ZIP had better NLL than ZINB for the ROSMAP dataset (a)
without sacrificing MSE (b).

the regularization parameter of zero inflation was 0.10594359
and the regularization parameter of weights was 0.14182903,
both of which were near our choice of 0.1.

I. Three additional datasets

Using the same hyperparameters optimized on the liver
dataset, we trained the ZiPo model on the three datasets
mentioned in II-F. The ZINB distribution generally seemed
more powerful due to its larger number of parameters (Fig. 15).
ZINB requires fewer epochs, which means faster convergence
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a b c

Figure 12: The effect of ZINB and ZIP distributions on the model’s sparsity. ZINB did not lead to sparsifiable weights (a), choosing
δ = 0.0001 for ZIP led to a very sparse model with almost the same performance before pruning (i.e., δ = 0.0001) (b),(c).

a b

Figure 13: Comparing ZiPo and similar DCA methods. Negative
log likelihood (a) and MSE (b) for different methods are shown.
While pure DCA matched ZiPo in terms of NLL performance, its
MSE results were notably inferior. Adjusting DCA parameters or
opting for a Poisson distribution instead of a negative binomial
distribution might improve the MSE, but this comes at the cost of
diminishing NLL performance.

a b

Figure 14: Hyperparameter search. The hyper-optimizer deter-
mined that the deepest model had the best NLL (a), despite having
similar MSE (b) as other models.

of the optimizer, most probably because it has more parameters
and can easily fit the input distribution. However, ZIP acted
even better regarding NLL in cases like the Liver dataset.

IV. DISCUSSION

We have described a novel deep model, ZiPo, for rate
estimation and library size prediction in scRNA-seq data.
ZiPo presents several unique features described below. Most
prominently, the present model features an adjustable zero-
inflation rate.

a) Handling big data with deep models and batches: A
significant advantage of using deep models is their capability
to handle massive datasets in batches. In contrast, other
methods would be impractical as they would need to load
the whole dataset in the memory. Also, similar to other deep
models, ZiPo can be partially trained with one dataset and
then fine-tuned using other datasets. This usually cannot be
done easily with other methods.

b) Software quality: To ensure the longevity of our code
and its maintenance in the long term, we have used popular
software packages and modern programming techniques in
implementing ZiPo. Using features like configuration files, we
have provided a flexible platform for software developers and
end-users.

c) ZIP overall surpasses ZINB: With an appropriate
architecture, zero-inflation models using ZIP distribution per-
form well. As shown here, the models with ZINB distribution
can achieve smaller losses, hence better performances than
those using ZIP. However, due to the need for extra regular-
ization in the models with ZINB, they are relatively larger with
more trainable weights, their training is more complicated and
time-consuming, and they are harder to interpret than those
with ZIP.

d) Latents for downstream analysis: To assess the valid-
ity of the latent variables, we tested ZiPo for clustering the
cells in the ROSMAP dataset. We compared the results with
the predefined cell types. The tSNE plots [39] based on the
latent variables from the two ZIP and ZINB models showed
that these models generally performed well except for a few
outliers (Fig. 16).

e) Future work: The latent variables can be investigated
more thoroughly and used in downstream analyses including
regressing eigengenes [40] or classifying senescent cells [41].
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a b c

Figure 15: Comparing ZINB and ZIP in three datasets. The NLL (a) and MSE (b) of reconstructed rates are shown. For some datasets,
ZIP might perform even better than ZINB. The model with ZINB would train faster, perhaps due to its richer parameter space (c).

a b

Figure 16: tSNE plots for latent variables. tSNE plots for the
resulting latent variables of ZiPo using ZIP (a) and ZINB (b)
distributions are shown. Cell types were previously determined in
the ROSMAP dataset.
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