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Abstract Aging is associated with distinct phenotypical, physiological, and functional changes,

leading to disease and death. The progression of aging-related traits varies widely among

individuals, influenced by their environment, lifestyle, and genetics. In this study, we conducted

physiologic and functional tests cross-sectionally throughout the entire lifespan of male C57BL/6N

mice. In parallel, metabolomics analyses in serum, brain, liver, heart, and skeletal muscle were also

performed to identify signatures associated with frailty and age-dependent functional decline. Our

findings indicate that declines in gait speed as a function of age and frailty are associated with a

dramatic increase in the energetic cost of physical activity and decreases in working capacity.

Aging and functional decline prompt organs to rewire their metabolism and substrate selection and

toward redox-related pathways, mainly in liver and heart. Collectively, the data provide a

framework to further understand and characterize processes of aging at the individual organism

and organ levels.

Introduction
Genetics, lifestyle, and environmental factors contribute to different rates of aging. Across the life-

span, most species undergo complex phenotypical and functional changes that affect all organs of

the body and the systems that allow communication and coordination between tissues. While this

concept of aging has existed for a very long time, several milestones have recently been achieved in

aging research, both in terms of the identification and modulation of pathways critical to aging in

model organisms, and the characterization of factors relevant to human aging. In particular,
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important progress has been made in comparing the phenotypes and rate of decline due to chrono-

logical aging versus disease-related factors, the relationship between health risk factors and aging,

and the impact of behavioral trends on health and risk of disease promotion in humans (Healthy

Aging: Lessons from the Baltimore Longitudinal Study of Aging, NIA, NIH, US DHHS, July 2010).

There is significant variability in survival in the older population that cannot be explained solely by

age and sex alone.

Under well-controlled environmental conditions, laboratory mice can live up to 4 years

(Miller et al., 2002). A wide range of physiological, functional, behavioral, and pathological changes

occur with age that determine how long mice live. Mice develop many of the histopathological char-

acteristics of human aging during their lifespan, such as lymphocyte infiltration, tissue inflammation

and necrosis, cancer, and amyloidosis (Mitchell et al., 2016; Mitchell et al., 2019). Understanding

the process of normal aging in mice and identifying murine aging predictors and biomarkers will aid

in the development of interventions capable of improving health and quality of life that are translat-

able to humans.

Research on aging is shifting its focus toward understanding the underlying differences in the

aging phenotype of chronological and biological aging. Resilience and associated compensatory

homeostatic mechanisms slow functional decline, resulting in great variability in survival

(Ferrucci et al., 2020). For instance, physical performance metrics have provided important informa-

tion about individualized estimates of survival as evidenced by the association of age-related decline

in gait speed with reduced overall survival in humans (Studenski et al., 2011; White et al., 2013).

However, clinically detectable changes currently utilized to characterize the aging phenotype are

only apparent when compensatory mechanisms begin to fail (Ferrucci et al., 2020). In this context,

the nature of the processes (e.g. metabolic, immunologic) and underlying mechanisms causing these

compensatory maladaptations are not well understood (Ferrucci et al., 2020; Adelnia et al., 2020).

All hallmarks of aging exhibit prominent anabolic and catabolic effects (López-Otı́n et al., 2013). In

light of previous cross-sectional health studies in mice (Justice et al., 2014; Fischer et al., 2016), we

performed an extensive characterization of the group differences in several relevant phenotypes,

including glucoregulatory and physical performance metrics, in a cohort of male C57BL/6N mice

ranging from 3 to 36 months of age. In addition, untargeted metabolite profiling of multiple organs

and serum was conducted in this cross-sectional study, allowing a thorough characterization of the

functional and molecular changes that occur with age. We report group differences in many func-

tional and phenotypic biomarkers of aging in mice and provide an initial characterization of the spe-

cific biomolecular changes that occur in different organs that may contribute to these age-related

conditions.

Results

Physiological, biochemical, and physical behavioral tests in a cross-
sectional study of aging in mice
To characterize aging phenotypes in a cohort of male C57BL/6N mice, we utilized physiological, bio-

chemical, and physical behavior tests to cross-sectionally assess group differences in these traits with

age. Age group classification was as follows: Young (Y), (3–8 months; n = 23); Adult (A), (13–23

months; n = 26), and Old (O) (27–36 months; n = 22) (Figure 1A).

Frailty was the first characteristic assessed due to its high human relevance as an established

aging biomarker and good predictor of clinical outcomes. It is characterized by loss of gait speed,

fatigue, loss of body weight and muscle strength, and cognitive decline (Palliyaguru et al., 2019).

Here, we used a multimodal approach to assess the impact of aging on the development of frailty

and the associated impairment of several related phenotypic measures. The frailty index (FI) is a

compilation of 31 clinical parameters, with 0 being not frail and one being frail (Whitehead et al.,

2014). The values obtained from FI assessment increased progressively among different groups of

mice, passing from 0.13 ± 0.01 in group Y to 0.24 ± 0.01 in group A, and 0.31 ± 0.02 in group O

(Figure 1B), in agreement with earlier results (Whitehead et al., 2014). The FI increased linearly as a

function of age (Figure 1B, p=3.80e-16, r2 = 0.615), with age accounting for 61.5% of FI variation.

These group differences in FI were associated with reduced forelimb muscle strength, expressed as

latency to fall from a wire (p=0.0033, r2 = 0.113), and gait speed (p=2.73e-16, r2 = 0.608)
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Figure 1. Impact of age and frailty on motor function, gait, and glucose homeostasis in male C57BL/6N mice. (A) Flowchart depicting analyses

performed in the study. (B–D) Effects of age on frailty index, motor function, and gait speed in mice. (E–F) Mean and maximum tail height as a function

of age. (G–J) Negative correlation between gait speed, motor function, and tail height with frailty. (K) Dependence of fasting blood glucose with age.

(L) Scatter plot depicting insulin sensitivity as measured by the HOMA-IR index. (M) Relationship between fasting blood glucose and frailty index.

Figure 1 continued on next page
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(Figure 1C,D). Age accounted for 52.5% and 46.5% of the mean (p=2.61e-13) and maximal

(p=1.87e-11) tail height variation, respectively (Figure 1E,F). Given the strong relationship between

FI vs. age and FI’s significance as a metric of age-dependent decline, we related other functional

parameters, for example, wire hang, tail height and gait speed, to FI. Gait speed exhibited the stron-

gest relationship with FI from that of age itself, since FI can explain ~33% of the gait speed decrease

(Figure 1G) compared to only ~17–25% of the other variables (Figure 1H–J). As expected, clear def-

icits in muscle strength (wire hang test and mean/maximal tail height) and walking speed were signif-

icantly related with FI. Interestingly, since total gait speed variation could, in principle, be explained

by age and FI (Figure 1B and G, respectively), it can be considered a major biomarker of aging-

dependent decline. After adjusting for age, frailty lost the association with gait speed (Figure 1G,

p=0.477) but it remained strongly associated with forelimb muscle strength (Figure 1H, p=0.00088).

After including age, FI was only marginally associated with mean tail height (Figure 1I, p=0.0792)

while still being associated with maximal tail height (Figure 1J, p=0.0495). The effects of frailty on

muscle strength were maintained after correction for age, indicating the presence of independent

risk factors beyond chronological age that could reduce physical performance in the oldest mice.

Given the adaptive role of insulin resistance in aging (Barzilai and Ferrucci, 2012), venous blood

was collected from 6 hr fasted mice. Blood glucose, plasma insulin concentrations, and HOMA-IR

index, a surrogate for estimating insulin resistance (Matthews et al., 1985), were largely similar

from 6 to 16 months and were observed to be lower after 19 months of age (Figure 1K,L, Figure 1—

figure supplement 1A). In contrast to physical performance measurements, only a weak association

existed between fasting blood glucose and the FI score (Figure 1M). These results may reflect a sur-

vivorship bias of the long-living mice (Scheen, 2017), although other effects such as reduced body

weight and age-associated regional distribution among fat depots could have profound metabolic

implications vis-à-vis changes observed in fasting blood glucose and insulin resistance (Girard and

Lafontan, 2008; Hardy et al., 2012; Tran et al., 2008; Shuster et al., 2012).

In order to understand the impact of body composition on overall fitness, body composition anal-

ysis was performed next using low-field NMR spectroscopy (Figure 2A). Group differences in body

weight and whole-body fat percentage were noted with a steady increase in values up to ~19

months and a decline thereafter (p=7.87e-07, r2 = 0.319 and p=2.71e–07, r2 = 0.340, respectively),

whereas a weak positive association was observed between fasting glucose levels and percent body

fat (Figure 1—figure supplement 1B). To determine body fat distribution, a 7T MRI body scanner

was used to quantify the subcutaneous/visceral fat ratio, which revealed a linear reduction in visceral

adiposity as a function of age (p=3.38e-05, r2 = 0.2996) (Figure 2B). The whole-body lean tissue per-

centage was largely preserved during aging (p=2.15e-05, r2 = 0.250) (Figure 2A). Representative

MRI scans from groups Y, A, and O are depicted (Figure 1—figure supplement 1C).

Age-associated bone loss is reflective of a general functional decline. Old mice exhibited marked

and significantly lower femoral cortical bone thickness (p=7.20e-07, r2 = 0.458) and trabecular bone

mineral density (BMD) (p=0.0184, r2 = 0.112) compared to the other two groups of mice

(Figure 2C). Representative micro-CT scans of the femoral region are depicted (Figure 1—figure

supplement 1D). No association between BMD and body weight was found (Figure 1—figure sup-

plement 1E). Remarkably, there was a lower percentage of fat around the tibia per unit of body

mass in animals of increased age, with the oldest group of mice being the most affected (p=0.002,

r2 = 0.248), whereas the percentage of lean tissue surrounding the tibia trended higher in group O

compared to group A (Figure 2C). The presence of weaker bones is suggestive of age-related

osteoporosis.

To assess whether the lower gait speed in old animals was caused by an altered cardio-metabolic

phenotype, mice walked on a metabolic treadmill at their age-group’s average gait speed

Figure 1 continued

Glucose measurement was performed 3 months after frailty assessment. (B–M): Mice ranged in age from 3 to 33 months. Y: young (3–8 mo, n = 23); A,

adult (13–23 mo, n = 26); O: old (27–33 mo, n = 22). The actual number of data points shown on the graphs varies as not all mice were tested for any

given intervention.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Phenotypic characteristics of male mice in function of age.
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Figure 2. Impact of age on body composition measurements, bone density, and in vivo metabolic function in male C57BL/6N mice. (A) Body weight

(left panel), percentages of whole-body fat mass (middle panel) and lean tissue mass (right panel) as assessed by low-field nuclear magnetic resonance

imaging. (B) Ratio of subcutaneous to visceral fat calculated from abdominal 7-Tesla MRI scanning. (C) In vivo microCT analysis of the tibia was carried

out to measure cortical thickness, trabecular bone mineral density (BMD), as well as fat and lean mass around the tibia expressed as percentage of the

Figure 2 continued on next page
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(determined from the MotoRater data, see Figure 1D), while VO2 and VCO2 were simultaneously

monitored. Although variability exists within age groups, there is a steady decline in gait speed mea-

sured from progressively older cohorts of mice, and therefore average gait speed emulated the nat-

ural walking pattern, which is defined as walking without hesitation (e.g. stopping frequently/

exploring/sniffing) not sprinting across the platform. Remarkably, the energetic cost of walking

increased exponentially from ~20 months of age and was paralleled by a sustained decrease in work

capacity (Figure 2D, 1st and 4th panels). The running VO2 values did not differ over the entire activ-

ity episode (800 s.) across age, thus ruling out a role for fatigue in the higher energetic cost in the

oldest mice (data not shown). Respiratory exchange ratio (RER, defined as VCO2/VO2) varies

between ~0.7 (i.e. predominant use of fats as fuel source) and 1.0 (i.e. exclusive carbohydrate utiliza-

tion), with intermediate RER values implying mixed substrate use. Interestingly, RER and heat dissi-

pation values, obtained during the treadmill monitoring, decreased from ~0.85 to ~0.80, and from 5

to 3 kJ h�1, respectively, indicating higher utilization of lipid than glucose as an energy source, and

less heat dissipation in the older groups of animals (Figure 2D, 3rd and 2nd panels). The differences

in work economy and heat production between the three age groups were maintained after adjust-

ing for lean mass (data not shown). The diminished heat dissipation vs. age might not be due to an

increase in the efficiency of energy use by the group O, but rather a predominant overall decrease

in work capacity, that is, by working less, the mice dissipate less heat (Figure 2D, 2nd and 4th pan-

els). These results are also consistent with the observation that, compared with young animals, older

mice consume significantly more O2 (Figure 2D, 1st panel) and released more CO2 per unit gait

speed (not shown), because enhanced lipid catabolism demands more O2.

Multiple linear regression analysis showed that from the initial set of explanatory variables, the

interaction of gait velocity and age was found to be significant (Figure 2E, left panel). Frailty status

was more apparent with age as gait velocity increases: Specifically, at younger ages, the frailty index

was inversely correlated with gait velocity while at older ages frailty status showed strong association

with lower gait velocity (Figure 2E, right panel). Studies have shown that higher level of HOMA-IR is

significantly associated with frailty in the elderly, but such association is not observed in the middle-

aged population (Peng et al., 2019); moreover, fasting plasma glucose does not differ between frail

Figure 2 continued

total body weight. (D) Metabolic parameters derived from the metabolic treadmill as a function of age. Energetic cost (left panel); heat generation

(second panel); RER, respiratory exchange ratio (third panel); and Work (right panel). Energetic cost was determined from VO2 per unit of body weight

and gait speed while work was expressed as mJoules. (E–G) Multiple regression analyses with frailty index (E, F) and gait velocity (G) as response

variables. The modeling approach consisted of fitting a series of four regressions for each of the response variables. The explanatory variables included

in the multiple regression modeling are depicted in Figure 2—source data 1. (E) left panel, Effect of gait velocity on the relationship between frailty

and age; right panel, Impact of age on the interaction between frailty and gait velocity. (F) left panel, Effect of bone cortical thickness on the

relationship between frailty and age; right panel, Impact of age on the interaction between frailty and bone cortical thickness. (G) left panel, Effect of

energetic costs on the relationship between gait velocity and age; right panel, Impact of age on the interaction between gait velocity and energetic

costs. Although this is a cross-sectional study, the points were joined to help the reader see the various associations without suggesting that there is

causal association; for example, that animals with higher age tend to have higher frailty within the same gait velocity (E, left panel). (H–K) Mice at

different ages were placed into metabolic cages for 72 hr to measure VO2, VCO2, RER, heat production, and ambulatory activity counts. The values

associated with the first 12 hr acclimatization phase (L1) were discarded. (H) Body weight as mice entered the metabolic cage. (I) Averaged hourly RER

trajectories were captured during two dark/light cycles in young (n = 8), adult (n = 22) and old (n = 18) mice. ZT, zeitgeber time is defined as the 12:12

hr light/dark cycle that synchronizes organismal biological rhythms. Each point represents mean ± SEM. (J) Scatter plot depicting RER values averaged

over 48 hr for individual mice in the three age groups. (K) Relationship between RER and age. Data in (H) and (J) were analyzed using one-way ANOVA

with Dunnett’s post-hoc analysis. *, p<0.05; **, p<0.01; ****, p<0.0001. (L) Diagram depicting the impact of age on body composition and energetic

parameters in AL-fed male mice.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Multiple regression analyses results for frailty index and gait velocity.

Source data 2. Area under the curves (AUCs) from the averaged, hourly trajectories of various energetic parameters that were captured during two

dark/light cycles in young, adult, and old mice.

Source data 3. Distribution of various energetic parameters in male mice in various age groups.

Source data 4. Linear regression of the metabolic cage data obtained from the whole cohort of male mice and after segregation by age groups.

Source data 5. Generalized linear model (GLM) to assess potential significant interaction effect in energetic parameters between mice of various age

groups.

Figure supplement 1. In vivo metabolic data by indirect calorimetry.
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and non-frail individuals (Kalyani et al., 2012). Here, positive associations between HOMA-IR tertiles

(Q1, median, Q3) and the risk of frailty were observed in old animals, while fasting blood glucose

tertiles and frailty status were negatively correlated (Figure 2—source data 1). By incorporating

bone density variables into the starting model, we found that frailty increases more steeply with age

as cortical thickness increases (Figure 2F, left panel) and that the effect of cortical thickness on frailty

index is much larger in older ages (Figure 2F, right panel). The introduction of variables such as per-

cent lean mass, percent fat and visceral-to-subcutaneous fat ratio as well as metabolic treadmill

parameters such as energetic cost, heat generation or RER did not improve the initial model (Fig-

ure 2—source data 1).

Of all the experimental variables analyzed, age and energetic costs were the only explanatory var-

iables for gait speed (Figure 2—source data 1). Gait speed tended to be lower in older animals

than in group Y, consistent with the observations made in the human population (Studenski et al.,

2011). Moreover, at higher energetic costs there was a stronger decreasing relationship between

gait velocity and age (Figure 2G, left panel). There was a marked positive association between gait

velocity and energetic costs in groups Y and A, whereas no significant relationship was observed in

group O (Figure 2G, right panel).

To better understand the impact of age on energy balance and availability in mice, we conducted

indirect calorimetry experiments in metabolic chambers for 72 hr to collect specific measurements

such as the VCO2, VO2, RER, energy expenditure (EE), and ambulatory activity counts. Mice from

Group A (12–20 mo) were significantly heavier than group Y (7 mo) and group O (26–36 mo) animals

as they entered the metabolic cages (Figure 2H). Hourly trajectories of energetic parameters were

captured over two 24 hr cycles (D1-L2-D2-L3) and then were averaged. Distinctive diurnal patterns

of O2 consumption and CO2 production were observed in the three groups of mice (Figure 2—fig-

ure supplement 1A) that led to differences in the calculated values for RER (Figure 2I), with signifi-

cantly higher area under the curve (AUC) in group O vs. groups Y and A, indicative of greater

metabolic flexibility (AUC for Y, 2.563 ± 0.1163 [CI 2.335–2.791]; A, 2.311 ± 0.2188 [CI 1.883–2.74];

O, 3.277 ± 0.1421 [CI 2.999–3.556]). Moreover, EE was greater in group A compared with the other

two groups consistent with their higher O2 consumption (Figure 2—figure supplement 1A). While

these differences are largely reflective of the higher body mass of group A mice, it was also clear

that the relationships between these metabolic parameters and body weight were altered with age

(Figure 2—source data 2). Lastly, the higher ambulatory activity during the dark cycle was signifi-

cantly lower in group O mice (Figure 2—figure supplement 1A, Figure 2—source data 2) and

showed a strong negative correlation with age across the entire pool of animals. The diurnal changes

in RER in the three age groups showed statistically significant differences in the dark cycle (D)

between group Y vs. group O and group A vs. group O (Figure 2J), with higher RER in the oldest

group of mice (Figure 2K). No difference in RER could be observed in the light phase between the

different groups of mice. Scatter plots of the averaged 48 hr values of various energetic parameters

from groups Y (n = 8), A (n = 22), and O (n = 18) mice showed statistically significant differences in

group Y vs. group A mice and A vs. O mice in VO2 and EE (Figure 2—figure supplement 1B, Fig-

ure 2—source data 3). In contrast, there were no differences between groups Y and O mice in any

of the measures except for the ambulatory activity (Figure 2—figure supplement 1G, Figure 2—

source data 3).

Consistent with the lower gait speed observed in older animals, metabolic cage analysis reveals a

strong negative correlation between age and ambulatory activity (Figure 2—figure supplement

1C), whereas no other respiratory parameters correlated significantly with age (Figure 2—source

data 4). As expected, body weight was positively correlated with EE, oxygen consumption, and CO2

production (Figure 2—figure supplement 1D, Figure 2—source data 4). The observed differences

in the AUC of respiratory parameters were primarily a result of the higher body weight of group A

mice, which is why a generalized linear model (ANCOVA) analysis was used to determine differences

in the relationship of body weight with VO2, VCO2, and EE (Figure 2—figure supplement 1E, Fig-

ure 2—source data 5). This analysis demonstrated statistically significant differences in the relation-

ship between body weight and respiratory parameters when comparing group Y vs. A mice and

group Y vs. O mice. These metabolic alterations may complement many of the differences that were

observed in body composition and other related parameters.

Overall, the data presented in this section show that gait speed is a major biomarker of health-

span, and that frailty, in addition to age, is able to explain to a great extent its functional
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deterioration. In contrast, morphometrics (e.g. body weight, % fat and % lean mass) and glucose

homeostasis (e.g. blood glucose, insulin, and HOMA2-IR) metrics show a more nuanced relationship

with age. In fact, many of these factors (e.g. blood glucose, insulin, body weight, % fat) do not start

to show a reduction in values until after ~19 mo, whereas others (e.g. bone density parameters, %

fat around tibia) steadily decline in the values from various groups of mice with age. Important

exceptions to this include % lean mass, % lean mass around the tibia per whole body weight, and

the ratio of subcutaneous/visceral fat, that tend to be higher in group O animals. These findings pro-

vide a coherent picture of the bioenergetic changes that occur as a function of age, marked by an

exponential increase in the energetic cost of physical activity, which is paralleled by a sustained

decrease in work (energy). Together with gait speed, these parameters constitute landmarks of

aging-dependent decline (Figure 2L), which led us to explore in further detail how the metabolomic

landscape was altered with age in different tissues.

Untargeted metabolomics analysis
To determine whether the differences in healthspan assessments, such as physical function, FI, ener-

getics, and work economy can be linked to metabolic remodeling, we performed untargeted metab-

olomics analysis. We used serum and four different organs (brain, heart, liver, and skeletal muscle) of

the same mice and compared the three different life stages: Y, A, and O. Depending upon the

organ, a total of 133 to 177 metabolites was detected. Combining univariate and multivariate statis-

tics we identified 49 metabolites that were significantly different in serum and across organs as a

function of age, of which 46 were shared. Figure 3 depicts a heat map of the averaged levels of the

46 shared metabolites after normalization as a function of age. The metabolite abundance in each

mouse is provided (Figure 3—figure supplement 1).

Several features are worth highlighting: (i) The liver was the organ exhibiting the highest abun-

dance of metabolite intermediates from all major pathways involved in macronutrient metabolism

(glucose, lipids, amino acids) and redox-related pathways (nicotinamide, glutathione, pentose phos-

phate); (ii) heart and serum had the next highest metabolite abundance; (iii) across age and organ,

there was an apparent qualitative similarity of the metabolites’ pattern of abundance or depletion;

however, significant quantitative differences in metabolite levels also exist, as revealed by multivari-

ate statistics (see Figure 4); (iv) several metabolites from redox-related pathways, such as pentose-

phosphate, NAD+ salvage, methionine cycle, and transsulfuration, exhibited significant differences

with age; and (v) expectedly, relative accumulation of glutamate/glutamine in the brain, and of lac-

tate in serum was observed – the latter concomitant with depletion in the liver where it is utilized for

gluconeogenesis.

Applying principal component analysis (PCA), a multivariate clustering method, to the metabolo-

mic dataset, we found a clear separation between the metabolite profiles among organs and serum

for each age group (Figure 4A).

Adaptative redox-related metabolic remodeling is a common trait in
old mice
We next determined if groups of metabolites were different in each organ in Y, A, and O mice. As

revealed by partial least squares discriminant analysis (PLSDA), a supervised clustering method, brain

and heart exhibited a net separation between the three groups of mice. In contrast, in liver, skeletal

muscle and serum, Y and O animals were clearly separated while group A mice partially overlapped

with both groups (Figure 4B). To identify the main metabolites responsible for age-dependent met-

abolic differences, we analyzed the top 20–25 metabolites in each organ, ranked based on the vari-

able importance in projection (VIP) score as a function of age (Figure 4C); the mini heat map on the

right shows each metabolite’s level variation within the different age groups.

The age dependence of each metabolite’s concentration was further assessed by quantifying the

Pearson correlation coefficient as a function of age; positive and negative values denote greater or

lower levels in older mice. Depicted in Figure 4D are the brain, heart, liver, serum and skeletal mus-

cle results. For example, the top sixteen VIP score-ranked metabolites (VIP >1.0) in the liver are also

among the most important ones increasing (F6P, ribulose 5P, G6P, glutathione) or decreasing (pyru-

vate, xylitol, sorbitol, nicotinamide) with age. Extending this analysis to the other organs enabled us

to visualize the emergence of a consistent ‘meta-pattern’ of metabolic change characterized by
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metabolites from redox-related pathways, such as pentose phosphate (G6P, ribulose 5P, ribose 5P),

NAD+ salvage (nicotinamide), methionine cycle (methionine) and transsulfuration (cysteine, taurine,

glutamate, glycine, glutathione) (Figure 4D). Unlike in liver and the heart, where higher relative accu-

mulation levels of those metabolites were detected in older animals, skeletal muscle exhibited oppo-

site comportment whereas the brain displayed an intermediate behavior. Specifically, G6P, ribulose

5P, ribose 5P and glutathione were elevated with age in liver and/or heart (Figure 4D, Figure 4—

figure supplement 1). There was also an apparent difference in the response of these organs to oxi-

dative stress, as revealed by lower nicotinamide and cysteine in the liver, and higher methionine sulf-

oxide (a biomarker of oxidative stress that originates from oxidation of methionine) in the heart from

aged mice. In skeletal muscle, nicotinamide, methionine and cysteine were lower in group O mice,

whereas in the brain, nicotinamide was relatively low, in contrast to methionine, which was modestly

higher, while methionine sulfoxide was diminished (Figure 4D, Figure 4—figure supplement 1).

Interestingly, the higher levels of methionine sulfoxide in the serum from old animals along with

lower levels of nicotinamide are consistent with increased oxidative stress as a function of age

(Figure 4D).

Together, these data suggest that as mice age, organs such as liver and heart, which are exposed

to higher oxidative stress as a result of their function (detoxification in the liver and energy

Figure 3. Heatmap depicting levels of modulated metabolites and associated pathways in brain, heart, liver, serum, and skeletal muscle from young,

middle-age, and old mice. There were 46 metabolites involved in more than 10 defined pathways that were shared between serum and various organs

across the three age groups. Each row represents a single metabolite, and each column depicts averaged values for each tissue and age group (In each

tissue, n = 11–12 animals for young; n = 7 for adult; and n = 11–12 for old). For each metabolite, standardized abundance was calculated. The

pseudocolor scaling of the standardized expression is from low (blue) to high (red).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Heatmap depicting levels of regulated metabolites and associated pathways in brain, heart, liver, serum, and skeletal muscle
from young, adult, and old mice.

Petr et al. eLife 2021;10:e62952. DOI: https://doi.org/10.7554/eLife.62952 9 of 25

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.62952


Figure 4. Untargeted metabolomics performed in multiple organs and serum from young, adult, and old male C57BL/6N mice. (A) Three-dimensional

principal component analysis (PCA) depicting the effect of age across various organs and serum. (B) Brain, heart, liver, serum, and skeletal muscle

metabolite profiles from young (Y, black symbols), adult (A, blue symbols) or old (O, red symbols) mice were analyzed by Partial Least Square

Determinant Analysis (PLS-DA). A statistically significant degree of separation was observed between age groups. The ellipses correspond to 95%

confidence intervals for a normal distribution. Each principal component is labeled with the corresponding percent values. (C) Variable in projection

(VIP) scores of positively (red boxes) and negatively (green boxes) correlating metabolites in each tissue or serum as a function of age. (D) Correlation

coefficients of the top 25 metabolites that correlated positively (orange bars) and negatively (green bars) as a function of age for the indicated tissues

and serum. Blue arrowhead, fatty acids; green arrowhead, amino acids and related; red arrowhead, redox and related.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Heatmaps depicting average values of the metabolites enriched in brain, heart, liver, serum and skeletal muscle, respectively, as
a function of age.
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generation in the heart), remodel their metabolism toward higher expression/activity of redox-

related metabolic pathways, for example, pentose phosphate, NAD+ salvage and transsulfuration.

Oppositely, skeletal muscle and brain do not appear to be able to remodel those pathways thus

becoming more vulnerable to increased oxidative stress with aging. This metabolic pattern agrees

with the idea of different rates of aging among organs.

Age and organ-specific metabolic remodeling
Next, we addressed the metabolic pathways involved in this remodeling, according to metabolite

intermediates present in the profile. Serum metabolite profiles from old mice showed accumulation

of intermediates from urea cycle function (urea, glutamine, ornithine), a pattern consistent with pre-

dominant amino acid degradation in the liver, and significant accumulation of the branched-chain

amino acids (BCAAs) valine, isoleucine and leucine (Figure 4D, Figure 4—figure supplement 1).

Remarkably, the three top-ranked metabolites, glucose, 3-hydroxybutyrate (3-HB, a ketone body),

and glycerol appear to be lower in the serum of old mice, suggesting a reduced supply of these fuel

substrates from liver and adipose tissue to heart, brain, and skeletal muscle (Figure 4D, Figure 4—

figure supplement 1). Together, the lower levels of glycerol and serum fatty acids (myristic, linoleic,

oleic, and palmitoleic, but not arachidonic) suggests potential liver and adipose tissue dysfunction in

aged mice, in agreement with the body composition data and the metabolic cage data.

In liver, depletion of glucose, pyruvate, sorbitol, fructose 1P (F1P), xylitol, maltose, and malto-

triose with age suggests active glycolysis and glycogen breakdown, less utilization of the polyol

pathway, and hepatic release to the circulation (Figure 4D, Figure 4—figure supplement 1). The

accumulation of tyrosine, tryptophan, glutamine, and glutamate, concomitant with the depletion of

alanine and valine (but not glycine), is mirrored by the serum metabolite profile, consistent with

active amino acid degradation and urea cycle function.

The heart shows a remarkable accrual of BCAAs with age. Glucose degradation pathways appear

to be all very active including polyols (fructose, F1P) and glycogenolysis (maltose) also consistent

with glucose 1P (G1P) depletion (Figure 4D, Figure 4—figure supplement 1). Higher levels of the

tricarboxylic acid intermediates fumarate, malate, and succinate suggest active mitochondrial func-

tion. Reduced production of 3-HB further contributes to the loss of 3HB circulating levels and reveals

less fatty acid oxidation. In the brain, the accumulation of the top-ranked fatty acid w6 linoleic acid

together with stearic and palmitoleic acids is notably associated with the increased abundance of 3-

HB, a preferred substrate of this organ (Figure 4D, Figure 4—figure supplement 1). The higher lev-

els of urea and glutamine in older mice, accompanied by depletion of ornithine, suggest active urea

cycle function, a trait consistent with depletion of several amino acids (isoleucine, serine, tyrosine,

glutamate) (Figure 4D, Figure 4—figure supplement 1).

Expectedly, the skeletal muscle from old mice exhibits high glucose catabolism as suggested by

the accumulation of maltose, lactate and maltotriose. Higher levels of urea concomitant with lower

levels of several amino acids, such as leucine, tyrosine, valine, serine, and cysteine, indicate of active

amino acid degradation accompanied by urea cycle function (Figure 4D, Figure 4—figure supple-

ment 1).

Metabolite set enrichment analysis (MSEA) shows the statistical significance of the metabolic

pathways involved for each organ. The results obtained support the idea that metabolic remodeling

in old mice occurs via redox-related pathways in liver and heart as compared to skeletal muscle and

brain (Figure 5). MSEA also confirmed the relevance of the urea cycle and ammonia cycling likely

due to amino acid degradation in skeletal muscle, brain, and liver, a metabolic trend that is also

reflected by the serum metabolite profile. With aging, and in an amphibolic organ like the liver,

amino acid degradation could be triggered in parallel with protein biosynthesis, as indicated by tis-

sue enrichment (Figure 5). In the aging phenotype of predominantly postmitotic catabolic organs

like skeletal muscle, heart, and brain, protein synthesis might be less significant compared to that in

liver.

Together, the data obtained show that each organ exhibits an age-specific metabolic remodeling

which is, in part, associated with its function, for example, prominence of redox-related pathways in

liver and heart, active glucose catabolism in skeletal muscle, activation of glucose metabolism in the

heart and gluconeogenesis and urea cycle function in liver. Statistically significant pathways found by

MSEA in old mice are consistent with major hallmarks of metabolic remodeling identified by other

types of analysis. Many of the differences observed in this metabolomic profiling can be linked to
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Figure 5. Pathway enrichment in brain, heart, liver, serum, and skeletal muscle Metabolite set enrichment analysis

(MSEA) showing the statistical significance of the metabolic pathways involved for each organ. Note the metabolic

remodeling occurring with age, as it pertains to redox-related pathways (green symbols), urea cycle and ammonia

cycling through amino acid degradation (dark blue symbols), and one-carbon metabolism (light green symbols).
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the phenotypic alterations that were observed in group O mice, either as factors that may be

involved in promoting or may arise as a result of these differences.

Patterns of metabolic signatures of biological aging from covariation of
metabolites with physiological metrics
In order to cope with the increased energetic cost of maintaining health and energy balance, each

organ must fine-tune their metabolism and substrate selection. To assess the strength of the links

between metabolites and phenotypic outcomes, we generated correlation matrices between ener-

getic cost, RER, or frailty index (FI) and metabolites representative of major pathways involved in the

metabolic remodeling of the four organs (heart, skeletal muscle, liver, and brain) and serum. Firstly,

a correlation matrix with the 46 significantly changed metabolites was constructed to investigate

their covariation, independently of age and organ (Figure 6A). A big cluster of positively correlated

metabolites accompanied by four minor ones were found, from which 24 metabolites from all clus-

ters and representative pathways were selected. The energetic cost of walking and RER are two met-

rics closely related to gait speed, whereas FI, a major biomarker of aging, is only remotely related to

metabolism. Next, the Pearson correlation coefficient for each of the 24 metabolites was calculated

with respect to the energetic cost, RER or FI from scatter plot matrices (‘r’ with p<0.05) for each of

the four organs and serum (see Figure 6—figure supplement 1 as an example and Figure 6—

source data 1). Hierarchically clustered heatmaps allowed for visualization of all correlation coeffi-

cients (positive and negative) corresponding to the 24 metabolites as a function of the phenotypic

outcome in each organ and serum (Figure 6B–D). Broadly speaking, the increase in energetic cost,

RER, or FI was correlated with organ-specific patterns of increased abundance or depletion of select

metabolites.

With respect to the energetic cost of walking (Figure 6B), a group of metabolites show a strong

negative correlation in liver, of which only pyruvate, palmitoleic acid, and glucose were shared by

the heart. A second cluster of negatively correlated metabolites represented by nicotinamide, ala-

nine, and myristic acid was present in heart, and to a lesser extent in liver and brain. BCAAs (valine,

isoleucine, leucine) and several other metabolites, including 3-hydroxybutyrate (3-HB), correlated

positively with energetic cost in the heart, while being negatively linked in liver. On the other hand,

glutathione correlated positively with energetic cost in both organs (heart > liver). For many metabo-

lites, including glutathione, glycerol, and methionine sulfoxide, the brain presented a distinct pattern

with respect to the other organs. The skeletal muscle resembled the heart profile with some

exceptions.

Taken as a whole, the increase in energetic cost correlates with a pattern of metabolites related

to substrate utilization. This pattern is consistent with a mixture of glucose, lipid, and amino acid

metabolism in liver, and more predominant glucose and lipid metabolism in the heart, whereas lipids

appeared to prevail over glucose in skeletal muscle. Remarkably, brain displayed a pronounced

amino acid catabolism in addition to the expected dependence on glucose and ketone bodies.

Regarding redox metabolism, heart exhibited the highest correlation between energetic cost and

glutathione, followed by liver then SKM, while ribose from the pentose phosphate pathway was pos-

itively correlated in heart only, and the oxidative stress biomarker methionine sulfoxide showed a

positive correlation in both cardiac and SKM, suggesting a more oxidative environment in these two

organs along with brain.

As a function of RER (Figure 6C), liver and heart shared a cluster of both negatively and positively

correlated metabolites. Again, the brain exhibited a clearly distinct pattern with respect to the other

organs consisting of mostly positively correlated metabolites, whereas skeletal muscle presented a

more mixed pattern with two noticeable clusters of negatively and positively correlated metabolites.

An elevated RER is indicative of an increase in the proportion of carbohydrates utilized for energy

production. Consistent with this, we observed an increasing abundance of glucose intermediates in

both liver and heart concomitant with depletion of lipids and amino acids. In this regard, SKM and

brain presented a distinct pattern which was more based on glucose rather than lipid metabolism.

The increasingly mixed glucose and lipid utilization led to a trend toward higher abundance of

methionine sulfoxide and depletion in glutathione in response to increased RER in heart, liver, and

SKM, while brain had markedly less methionine sulfoxide, but greater accumulation of methionine

and nicotinamide compared to glutathione. This pattern is consistent with systemic oxidative stress

and lower antioxidant capacity.
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Figure 6. Heatmaps of hierarchically clustered correlation coefficients of representative metabolites from organs and serum vs. different physiological

metrics. (A) Correlation matrix of the 46 metabolites significantly changed across age, organs and serum. Using the statistical module of

MetaboAnalyst, we determined the clusters of normalized metabolites covarying positively or negatively, independently of organ or serum and age.

The type (positive or negative) and strength (color intensity) of correlation are coded brown and blue, respectively, normalized between 1 and �1

according to the bar on the right. (B–D) Twenty-four significantly changed metabolites representative from all pathways that covary independently from

organs or serum and age (see panel A) were correlated with energetic cost (B), RER (C) or frailty index (FI) (D). Using the software Origin v. 2021, we

performed scatter plot correlation matrices (see Figure 6—figure supplement 1) to determine the Pearson correlation coefficient, r (p<0.05), for each

Figure 6 continued on next page
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Increasing energetic cost and higher RER elicited an enrichment of several lipids and amino acids,

but depletion of glycerol in serum (Figure 6B and C). These patterns are consistent with the meta-

bolic remodeling exhibited by liver, a major sink of lipids and amino acids, and unveiled a reduced

supply of 3-HB and glycerol from liver and adipose tissue to heart, brain, and skeletal muscle, at

least in old mice.

The prevalent pattern of metabolites correlating positively with increasing FI (Figure 6D) appears

to be inconsistent with the pattern profiles revealed by energetic cost and RER. This is expected

given the less direct mechanistic relationship between metabolism and FI since the latter derives

from a compilation of many different phenotypic features (Palliyaguru et al., 2019). Energetic cost

results from the ratio of respiration (VO2) over gait speed (Figure 2D), while RER includes only respi-

ration-related variables (CO2 release over O2 uptake). Hence, because the latter is more directly

related to metabolism, the mechanistic links between RER and metabolism can be more directly

envisaged. Nevertheless, the energetic cost of walking/running is a relevant metric because of the

presence of gait speed, a major biomarker of functional performance during aging. Remarkably,

energetic cost and RER rendered a similar pattern of metabolic profiles (Figure 6B and C).

Discussion
In this cross-sectional study, male mice of various ages (3–36 months) were assessed for functional

differences associated with aging, while pursuing the detection of major biomarkers and underlying

energetic and metabolic mechanisms. Metabolic remodeling in serum, liver, brain, cardiac, and skel-

etal muscle, their interactions and consequences for diminishing bodily functions, morphometry and

biochemistry, were extensively tested and analyzed. We performed an in-depth characterization of

the phenotypic differences that exist between groups Y, A, and O animals. This analysis demon-

strated that (i) gait speed decline, which appears to be fully explained by age and frailty, is a major

functional biomarker of aging in mice; (ii) the deterioration of locomotor activity is associated with a

dramatic increase in the energetic cost of physical activity from age ~19 months, and was paralleled

by a sustained decrease of working capacity; (iii) other morphometric (e.g. body weight, % fat and

lean) and biochemical (e.g. blood glucose, insulin, HOMA-IR) metrics show a more subtle relation-

ship with age. To further explore the molecular changes that may contribute to or result from these

alterations, we performed metabolomic analysis in a number of key metabolic tissues and showed

that (iv) different organs remodel their metabolism in response to specific functional demands,

for example, energy supply and detoxification; specifically, unlike brain and skeletal muscle, liver and

heart in old mice rewire metabolism toward higher expression/activity of redox-related metabolic

pathways such as pentose phosphate, NAD+ salvage, and transsulfuration; (v) depletion of glucose,

3-HB, and glycerol in serum from old mice is consistent with reduced supply of these fuel substrates

from liver and adipose tissue to other organs; (vi) aging in mice favors up-modulation of glucose

metabolism in cardiac and skeletal muscle as well as in liver, where gluconeogenesis and urea cycle

are also enhanced, as well as similar but less pronounced pattern in brain. We then evaluated the

associations between metabolites and phenotypic covariates (energetic cost of walking/running,

RER, and frailty) by selecting the 24 most representative metabolites independently from age and

organ. The main results showed that (vii) variance in energetic cost and RER can be explained by a

distinct signature pattern of metabolic remodeling in the liver (e.g. mixed glucose, lipid, and amino

acid metabolism), cardiac and skeletal muscle (e.g. glucose and lipids), and brain (mixture of amino

acids in addition to glucose and ketone body catabolism). The enhancement in energy demand eli-

cited an increasingly mixed substrate utilization (glucose, lipids, amino acids) leading to a rise in

Figure 6 continued

of the 24 metabolites in each organ and serum vs. each of the physiological metrics analyzed. Displayed are in the form of hierarchically clustered

heatmaps (dendogram on the left) corresponding to the ensemble of correlation coefficients, positive (red) and negative (blue), exhibited by each

metabolite vs. the specified physiological metric.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. The Pearson correlation coefficient, r, value for each metabolite vs. energetic cost, RER, and Frailty index.

Figure supplement 1. Scatter plot matrix of 14 metabolites vs. energetic cost (1st column) and of each metabolite with respect to each one of the
other metabolites.
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oxidative stress in organs that have lower antioxidant capacity relative to the heart and liver. (viii)

Frailty, as a complex phenotype less directly related to metabolism, did not show a consistent meta-

bolic pattern compared to the other two physiological metrics.

Overall, the ensemble of data obtained from the cross-sectional correlation linking key metabo-

lites to relevant phenotypes identified in this study is consistent with signatures of biological aging.

These signatures correspond to patterns of metabolic remodeling that characterize age-associated

changes in functional trajectory of mice coping with the increasing energetic cost to maintain health,

energy, and redox balance. While many of these molecular alterations are likely to promote aging

and aging-associated functional decline, other alterations are expected to maintain functional capac-

ity with age.

The search for the biological mechanisms underlying healthy aging has shifted the focus of this

research field toward the extension of healthspan and lifespan, and to delaying the onset of disease

(Longo and Panda, 2016; de Cabo and Mattson, 2019; Mitchell et al., 2019; Di Francesco et al.,

2018; Aon et al., 2020). This shift is helping to understand the differences between biological and

chronological aging, underscoring that aging is not just the passage of time while emphasizing the

notion that individuals age at a different pace (Ferrucci et al., 2020). For instance, the rate of

change and onset of increase or decline in functional, behavioral, morphometric, and biochemical

organismic indicators exhibit distinct time course as a function of age. This behavior agrees with the

notion of biological rather than chronological aging, thereby showing that aging follows the trajec-

tory of the organism and not merely the passage of time.

Body composition plays an important role in determining metabolic health, as can be judged by

fat and lean content. Consistent with the body weight trajectory, younger male mice have a higher

percent fat content than old animals due to larger visceral fat depots. Interestingly, a positive associ-

ation was observed between fasting glucose levels and percent body fat, which, in turn, correlates

with extended lifespan in mice (Mitchell et al., 2016). Age-associated regional distribution among

fat depots has strong metabolic implications. Visceral fat accumulation is associated with insulin

resistance (Girard and Lafontan, 2008; Hardy et al., 2012), while subcutaneous fat plays a role in

reducing insulin levels and improving insulin sensitivity (Tran et al., 2008; Shuster et al., 2012).

Here, the increase in body fat percentage from young to adult mice was coincident with a greater

subcutaneous/visceral fat ratio, which, in turn, was associated with a significant drop in circulating

insulin levels and HOMA-IR. Noteworthily, the oldest mice had the highest ratio of subcutaneous-to-

visceral fat and a likelihood of being insulin sensitive (lowest HOMA-IR). We surmise that in order to

preserve body fat for insulation, the oldest mice fed ad libitum must eat a significantly greater

amount of food despite their low body weight, resulting in negative energy balance. Since the food

intake in proportion to body weight is increased and the energy expenditure is decreased in these

animals, they are able to rely less heavily on fat oxidation and more on carbohydrate utilization for

energy needs, yielding RER values close to 1.0 in the dark phase.

In vivo imaging using MRI and microCT enabled a precise monitoring of body composition and

bone density. These assessments illustrated the marked and significant decline in bone thickness

and mineral density, and the reduction in fat and relative increase in lean body composition as a

function of age (Figure 2A–C). These measurements are also of great interest in human aging; for

example, the relationship between brain structure and composition with gait in humans has been

described (Rosso et al., 2017; for the Health ABC Study et al., 2016). In vivo imaging techniques

were recently reviewed in the context of their importance to studying aging (Dall’Ara et al., 2016).

Previously, it was demonstrated that the frailty index, as measured with the Mouse Clinical FI,

increases with age and is significantly reduced in response to CR in male C57BL/6J mice

(Whitehead et al., 2014; Kane et al., 2016). Frail animals lack resilience, causing them to die earlier

due to the rapid deterioration of several tissue/organ systems. In this study, frailty was associated

with an age-dependent decline in physical strength, tail height, gait speed, and circulating glucose

levels. The rising energetic cost of walking is associated with steeper decline in gait speed in the

elderly (Schrack et al., 2016). The results reported herein support these findings. Specifically, the

VO2 / gait speed ratio (in mL O2/Kg/m) is energetically and physiologically consistent with the ener-

getic cost of, for example, walking or running (Figure 2D), to the extent that the cost of running

depends upon the animal’s size rather than the speed at which an animal runs (Taylor et al., 1970;

reviewed in Schmidt-Nielsen, 1984). Although the impact of age on skeletal muscle mass or fiber

type was not assessed or considered in the present study, tendon length and other aspects of
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muscle/tendon elasticity have been reported to be a major contributor of the biomechanics of work

economy (Higham et al., 2011; Wilson and Lichtwark, 2011), and plans are underway to examine

whether such changes in muscle/tendon properties are evident in old animals.

Biological aging represents a complex manifold and, in terms of the organism, widespread phe-

nomenon. This is revealed by the intersection between its macroscopic manifestations such as physi-

cal performance and functional decline, with biological mechanisms deeply rooted in cellular

energetics, repair, turnover, and detoxification. Our work highlights some of these potential func-

tional/molecular interactions and demonstrates that these mechanisms operate differently at the

level of an organ and its function, leading to a distinct and selective age-mediated impact, in turn,

consistent with the differential metabolic remodeling observed.

Limitations of the study
This was a cross-sectional study in male C57Bl/6N mice rather than a longitudinal study of male and

female mice of different genetic background which would have accounted for genetic variability and

sex. Resilience as well as immune and blood pressure measurements (Bellantuono et al., 2020)

were not carried out in this study. Future work will require, at least in part, untargeted proteomics

and assessment of epigenetic marks in various organs. The age- and frailty-dependent reduction in

gait speed and associated energetic cost indicates the need to assess mitochondrial function using

high-resolution respirometry in permeabilized tissues and isolated mitochondria in parallel with skel-

etal muscle ultrastructure by electron microscopy. Other approaches include incorporating MRI of

the brain to identify changes in brain structure and volume over time that correlate with collected

variables such as motor function, as well as assessments of cognition.

Further integration of omics in an all-inclusive phenotypic investigation would be beneficial in

order to unveil new mechanistic insights potentially translatable to humans. Examples of multi-tissue

omics analysis include a recent transcriptome analysis in rats that revealed a top list of genes poten-

tially important in aging (Shavlakadze et al., 2019).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(M. musculus, males)

C57BL/6NCrl Charles River
Laboratories

Strain Code 701 a.k.a. NIA Aging
Mouse Colony

Biological sample
(M. musculus)

Brain from
C57BL/6NCrl

B6MAL Metabolomics analysis,
see lines 249–352

Biological sample
(M. musculus)

Heart from
C57BL/6NCrl

B6MAL Metabolomics analysis,
see lines 249–352

Biological sample
(M. musculus)

Liver from
C57BL/6NCrl

B6MAL Metabolomics analysis,
see lines 249–352

Biological sample
(M. musculus)

Serum from
C57BL/6NCrl

B6MAL Metabolomics analysis,
see lines 249–352

Biological sample
(M. musculus)

Skeletal muscle from
C57BL/6NCrl

B6MAL Metabolomics analysis,
see lines 249–352

Commercial assay or kit Mouse insulin ELISA kit Crystal Chem, Inc Cat# 90080

Software, algorithm MetaboAnalyst
(versions 3.0, 4.0)

Web-based resource
(McGill University, Canada)

https://www.metaboanalyst.ca/
MetaboAnalyst/faces/home.xhtml

Software, algorithm OriginLab 2018 OriginLab corporation https://www.originlab.com

Software, algorithm Prism 7.0 GraphPad RRID:SCR_015807

Software, algorithm Canvas Draw six
for macOS

Canvas GFX RRID:SCR_014288

Software, algorithm Microsoft Excel
(version 16.19)

Microsoft Corp. https://www.microsoft.com/
en-gb/; RRID:SCR_016137

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Other TSE MotoRater system TSE Systems

Other 7T preclinical MRI scanner Bruker Biospec 70/30

Other Oxymax Open Circuit
Indirect Calorimeters

Columbus Instruments http://www.colinst.com/
docs/OxymaxBrochure.pdf

Other Modular Metabolic Treadmill Columbus Instruments

Other Minispec Whole Body
Composition Analyzer LF90

Bruker Optics https://www.bruker.com/
products/mr/td-nmr/
minispec-lf-series.html

Other Skyscan 1076 micro-CT scanner Bruker

Husbandry, diets, and dietary intervention in mice
Male C57BL/6N mice were obtained from the NIA Aging Mouse Colony (Charles River Laboratories,

Kingston, NY). Animal rooms were maintained at 22.2 ± 1˚C and 30–70% humidity. The lights were

turned off at 6:00 PM and back on at 6:00 AM each day. Mice were group-housed up to four per

cage with ad libitum access to food (Teklad Global 18% Protein Extruded Rodent Diet, #2018S,

Envigo, Frederick, MD) and drinking water. In the case where an animal’s cage mate died during the

course of the study, animals were not rehoused and, instead, were provided a scientific exception to

justify the single housing of a social species. All animals were provided shepherd shacks and nestlets

for enrichment. All animal protocols were approved by the Animal Care and Use Committee of the

National Institute on Aging, NIH. All tests in this cross-sectional cohort of animals were performed

by non-blinded investigators (MP, SJM, MK, KWF). There were three age groups of mice, in months:

Young, 3–8 (n = 23); Adult, 13–23 (n = 27); and Old, 27–36 (n = 23). Two mice, one adult (A) and

one old (O), died during experimentation, bringing the final number of groups A and O mice to 26

and 22, respectively.

Body composition
Unanesthetized mice were placed in the body comp clear plastic tube of a Bruker’s Minispec Whole

Body Composition Analyzer LF90 (Bruker Optics, Billerica, MA, USA). This low-field nuclear magnetic

resonance device acquires and analyzes Time Domain-NMR signals from all protons in the entire

sample volume and measures body fat, free body fluid, and lean tissue content. Young (n = 8), adult

(n = 22), and old (n = 18) mice were studied.

Wire hang test
Each mouse was tested for forelimb strength using the wire hanging test. Prior to testing, mice were

trained and acclimatized by placing them on the wire of the hanging bar apparatus for several min.

The test can be used to measure decline in strength and neuromuscular function with age and con-

sisted of measuring the time before the mouse falls from the hanging wire. The test was repeated

two more times with approximately 30 min break between trials for each mouse.

Mouse gait speed and tail height analysis
Mice were acclimated to the TSE MotoRater system (TSE Systems, Inc Chesterfield, MO) for a week

before gait and tail height recording as described (Bair et al., 2019). In brief, during gait assess-

ment, the home cage was placed at the opposite end of the corridor to motivate the mouse to walk.

A valid trial consisted of having the mouse walking the corridor length without stopping or turning

in the opposite direction in the 70 cm mid-runway filming area. A custom in-house Python script was

used to calculate mid- and maximum tail height, which was tracked by a semi-automated computer

vision software package (TSE Systems). The Python script will be provided upon request for

MotoRater system user. Gait speed was analyzed by PROC GLM model with SAS 9.4.
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Frailty index
Mice are assessed for frailty using the Howlett and Rockwood clinical frailty index, which includes 31

different parameters (Feridooni et al., 2015; Bellantuono et al., 2020). In brief, the frailty index

was calculated by summing the number of deficits in factors related to integument, physical/muscu-

loskeletal, vestibulocochlear/auditory, ocular/nasal, digestive/urogenital, respiratory, and aspects of

physical discomfort for each mouse and dividing by the total number of possible deficits. Along with

these indices, mouse weight and body temperature were also scored. A higher frailty index, with a

potential score ranging from 0 to 1, is associated with lower survivability in mice (Kane et al., 2016).

Magnetic resonance imaging
A 7T preclinical magnetic resonance imaging scanner (Bruker Biospec 70/30, Ettlingen, Germany)

was used to measure volumes of visceral and subcutaneous fat from respiratory-gated axial fast spin

echo images spanning the entire cranial-caudal extent of both kidneys. The ratio of total subcutane-

ous to visceral fat volume was calculated and compared as a function of age.

Bone imaging
Mice were anesthetized using avertin (tribromoethanol; Sigma-Aldrich, St-Louis, MO) and tibia were

imaged by three-dimensional micro–computed tomography with a Bruker Skyscan 1076 micro-CT

instrument for measurement and analysis of cortical and trabecular bones as previously described

(Mercken et al., 2014). In brief, tibias were scanned at high resolution (1208 � 1080 pixels) with an

isotropic voxel size of 18 mm and at 48 kV, 200 mA (0.5 mm Al filter). Microstructural properties of

tibial cortical and trabecular bone were assessed at the distal metaphysis for trabecular parameters

and the mid-diaphysis for cortical parameters, following the nomenclature guidelines outlined by

Dempster et al., 2013. Trabecular bone was delineated via manual tracing and interpolation of tra-

beculae in a region of interest 0.25 mm to 1.75 mm proximal to the distal tibial growth plate. For

cortical bone parameters, analysis was performed at a volume of interest beginning at the mid-

diaphysis of the tibia and extending 0.6 mm distally. Percent fat and percent lean tissue around the

tibia was also quantified by micro-CT and normalized per unit of body weight.

Metabolic treadmill
Mice were acclimated on the metabolic treadmills (Columbus Instruments International, Columbus,

OH) at 5 m/min for 30 min the day prior to testing to ensure familiarity. On the day of testing, mice

ran at their age group’s natural walking gait speed, assessed by the TSE MotoRater in earlier experi-

ments, for 45 min. External motivators such as electric shock from an electrified metal grid located

near the moving belt and/or pocking are used to entice mice to run. Mice unwilling or incapable to

continue running despite receiving electric shocks more than five consecutive times within few sec-

onds meet the criterion for exhaustion and the testing ends.

In vivo metabolic assessment
The metabolic rate of each mouse was assessed by indirect calorimetry in open-circuit Oxymax

chambers using the Comprehensive Lab Animal Monitoring System (CLAMS; Columbus Instruments,

Columbus, OH, USA). Mice were single housed with ad libitum access to water and food, and main-

tained at 20–22˚C under a 12:12 hr light:dark cycle (light period 0600–1800). Food and water level in

each chamber was checked once on a daily basis at approximately 8:30 AM and the amount of food

left in the cage from the previous 24 hr of chamber time was collected and measured. All mice were

acclimatized to monitoring cages for 12 hr prior to recording. Sample air was dried and passed

through an oxygen sensor for determination of oxygen content. Oxygen consumption was deter-

mined by measuring oxygen concentration in air entering the chamber compared with air leaving

the chamber. The sensor was calibrated against a standard gas mix containing defined quantities of

oxygen, carbon dioxide and nitrogen. Constant airflow (0.5 L/min) was drawn through the chamber

and monitored by a mass-sensitive flow meter. The concentrations of oxygen and carbon dioxide

were monitored at the inlet and outlet of the sealed chambers to calculate oxygen consumption.

Measurement in each chamber was recorded for 30 s at 30 min intervals for a total of 72 hr. Ambula-

tory activity (both horizontal and vertical) was also monitored by dual axis detection using infrared
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photocell technology. Metabolic parameters were analyzed using CalR software as previously

described (Mina et al., 2018). Young (n = 8), adult (n = 22), and old (n = 18) mice were studied.

Blood and serum markers and HOMA-IR calculation
Glucose concentrations in blood were measured from the submandibular vein in 6 hr fasted mice

with the Blood Glucose Monitoring System Breeze 2 (Bayer, Mishawaka, IN). Coagulated blood was

centrifuged at 12,000 x g at 4˚C for 10 min. Serum was aliquoted and kept frozen at �80˚C. Insulin

levels were determined according to the manufacturer’s protocol (Crystal Chem, Inc, Downers

Grove, IL). Homeostasis model assessment-insulin resistance (HOMA-IR) was calculated to assess

group differences in insulin resistance using the HOMA2 Calculator software available from the

Oxford Centre for Diabetes, Endocrinology and Metabolism Diabetes Trials Unit website (http://

www.dtu.ox.ac.uk/homacalculator/index.php).

Metabolomics analysis
Metabolomic analysis was performed by the West Coast Metabolomics Center at UC Davis (Davis,

CA) in brain, heart, liver, skeletal muscle, and serum from nonfasted animals as previously described

(Mitchell et al., 2018; Mitchell et al., 2016). In brief, tissue and serum were extracted in an acetoni-

trile:isopropanol:water (3:3:2) solution, vortexed, centrifuged, and the supernatants aliquoted for

downstream analysis. After a series of evaporation and reconstitution steps in 50% acetonitrile, inter-

nal standards (C08-C30, fatty acid methyl esters) were added to the dried sample, which was then

derivatized for trimethylsilylation of acidic protons. Data were acquired using the method as

described by Fiehn, 2008 and summarized by Mitchell et al., 2016. In brief, metabolites were mea-

sured using a rtx5Sil-MS column (made of 95% dimethyl, 5% diphenyl-polysiloxane coated on fused

silica; Restek Corporation; Bellefonte PA) protected by an empty guard column. This chromatogra-

phy method yields excellent retention and separation of primary metabolite classes (amino acids,

hydroxyl acids, carbohydrates, sugar acids, sterols, aromatics, nucleosides, amines, and miscella-

neous compounds) with arrow peak widths of 2–3 s and very good within-series retention time

reproducibility of better than 0.2 s absolute deviation of retention times. The mobile phase consisted

of helium, with a flow rate of 1 mL/min, and injection volume of 0.5 mL. The following mass spec-

trometry parameters were used: a Leco Pegasus IV mass spectrometer with unit mass resolution at

17 spectra s-1 from 80 to 500 Da at �70 eV for elution of metabolites. As a quality control, for each

sequence of sample extractions, one blank negative control was performed by applying the total

procedure (e.g. all materials and plastic ware) without biological sample. Result files were trans-

formed by calculating the sum intensities of all structurally identified compounds for each sample,

and subsequently dividing all data associated with a sample by the corresponding metabolite sum.

The resulting data were multiplied by a constant factor in order to obtain values without decimal pla-

ces. Intensities of identified metabolites with more than one peak (e.g. for the syn- and anti-forms of

methoximated reducing sugars) were summed to only one value in the transformed data set. The

original non-transformed data set was retained. Relative metabolite levels represent the MS peak

amplitude normalized with respect to the total metabolites returned, but disregarding unknowns

that might potentially comprise artifact peaks or chemical contaminants.

Quantification and statistical analysis
No statistical method was used to predetermine sample size. GraphPad Prism version 7.0 was used

to determine whether data sets passed the D’Agostino and Pearson normality test (a = 0.05). Those

that failed included body composition data (NMR-generated morphometric analysis), physical per-

formance/motor coordination results and MRI quantitative data, whereas metabolic outputs, loco-

motor activity between light/dark cycles, and bone imaging followed a normal data distribution.

One-way ANOVA or Kruskal-Wallis H test was performed to determine if there were statistically sig-

nificant differences between the three age groups for any given outcome. All regression models

were either quadratic or linear regressions based on data’s fit. The R2, F-statistic and p-value are cal-

culated through these models. Outliers were not omitted. As the mice aged, the different assess-

ments took place. At times, the experiments were 3 or 6 months apart from previous assessments,

which is why 36-month-old mice were enrolled in some measured outcomes, and not in others.

The polynomial variables for all curvilinear lines fitted to parameters are as follow:
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Figure 1K (Glucose vs Age): �0.11821x2 + 3.22945x + 149.09292
Figure 2A (Body Weight vs Age): y = -0.046141x2 + 1.632253x + 25.087950
Figure 2A (%Fat vs Age): y = -0.040847x2 + 1.266635x + 11.621481
Figure 2A (%Lean vs Age): y = 0.021048x2 + �0.593099x + 62.762510
Figure 2C (%Lean Tibia vs Age): y = 0.003239x2 + �0.127683x + 3.903823
Figure 2D (Energetic cost vs Age): 0.8025x2 + �18.182x + 572.9071
Figure 2D (Heat vs Age): �0.001791x2 + 0.011949x + 5.174154
Figure 2K (RER vs Age, dark phase): y = 3.390e-04x2+�1.088e-02x+9.216e-01

Multiple linear regression analysis was used to examine the determinants of frailty index and gait

speed, including, as covariates:

1. Frailty index vs. age + gait velocity + BW + mean tail height + latency to fall from wire hang +
glucose + HOMA-IR;

2. #1 + %Lean mass + subcutaneous fat/visceral fat ratio;
3. #1 + trabecular BMD + cortical thickness + %fat around tibia/BW + %lean around tibia/BW;
4. #1 + Metabolic treadmill outputs (energetic cost + mean heat + RER).

The models were fitted with all explanatory variables as well as models that included interactions

of Age with each of the other explanatory variables. All the interactions were then tested to assess

whether they added anything to the original model (with only main effects). In almost all cases, the

interactions did not improve the models. A backward elimination was then performed to obtain the

final regression model. There was likely not enough power to detect significant interactions; how-

ever, these findings do not mean that significant interactions do not exist, but simply that we were

not able to detect any significant interactions due largely to the limited size of this dataset. All analy-

ses were performed with R Version 4.0.2 (R Development Core Team, 2020) with RStudio Version

1.3.1073.

Although dozens of different health parameters were evaluated on the same animals, these were

largely the results of independent experiments to test distinct hypotheses. Therefore, no correction

for multiple comparisons to the p-values was made as each experiment was considered to be a sepa-

rate question. p Value � 0.05 was considered statistically significant.

The software MetaboAnalyst, an integrated web-based platform for comprehensive analysis of

metabolomics data, versions 3.0 (Xia and Wishart, 2016) and 4.0 (Chong et al., 2019), was utilized.

Univariate (ANOVA), clustering (heat map, correlation matrix) and multivariate (partial least square

discriminant; PLSD) statistical analyses were applied to the metabolite profiles (See Figures 3–6, Fig-

ure 3—figure supplement 1, Figure 4—figure supplement 1, Figure 6—figure supplement 1).

PLSD analysis revealed that all tissues exhibited good separation as a function of age, and a subset

of 49 metabolites responsible for the separation was identified. The autoscaling function of Metab-

oAnalyst used to normalize the metabolomics data closely resembles the Z ratio expression and

requires the detection and removal of outliers.

One-way ANOVA (Prism 7.0, GraphPad Software, San Diego, CA, USA) was performed with

Tukey’s multi-comparison test for the three age groups (young, adult, old) within each tissue. The

statistical significance of the effect of age was evaluated for those metabolites that exhibited a sig-

nificant difference in at least one of the tissues analyzed. Venn diagrams were plotted with Canvas-

Draw v. 5.0 for Mac (Canvas GFX, Inc, Plantation, FL).
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