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Abstract
Virtual microscopy, which is the diagnostic work on completely digitized histological and cytological 
slides as well as blood smears, is at the stage to be implemented in routine diagnostic surgical 
pathology (tissue-based diagnosis) in the near future, once it has been accepted by the US Food and 
Drug Administration. The principle of content-based image information, its mandatory prerequisites 
to obtain reproducible and stable image information as well as the different compartments that 
contribute to image information are described in detail.  Automated extraction of content-based 
image information requires shading correction, constant maximum of grey values, and standardized 
grey value histograms. The different compartments to evaluate image information include objects, 
structure, and texture. Identification of objects and derived structure depend on segmentation 
accuracy and applied procedures; textures contain pixel-based image information only.  All together, 
these image compartments posses the discrimination power to distinguish between object space 
and background, and, in addition, to reproducibly define regions of interest (ROIs). ROIs are image 
areas which display the information that is of preferable interest to the viewing pathologist. They 
contribute to the derived diagnosis to a higher level when compared with other image areas. The 
implementation of content-based image information algorithms to be applied for predictive tissue-
based diagnoses is described in detail.
Key words: Content-based image information, image standardization, object, predictive diagnosis, 
structure, texture 

INTRODUCTION

Virtual slide technology is already leaving its childhood. 
The velocity of scanning a whole glass slide reaches now 
in less than one minute with a sufficient number of focus 
points, and will probably further decrease with the new 
scanner generation.[1,2] In addition to its main applications 
which are research (such as tissue micro arrays (TMA), 
interdisciplinary case discussion as well as education 
in anatomy and pathology, the aims listed below are 

already under consideration: digital storage of routine 
cases, replacement of the conventional microscope by 
virtual microscopy, adjuvant automated measurements of 
stains and in situ hybridization (immunohistochemistry; 
IHC, fluorescent in situ hybridization (FISH), necessary 
for predictive pathological diagnosis), as well as the 
development of so-called diagnosis assistants to further 
support the pathologist in his/her daily work.[3−6]

In addition to precise, robust, and standardized hardware 
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(scanners and their components such as optics, inbuilt 
cameras, image standards, and display stations), the 
software must communicate with databank systems 
and fulfill image-specific properties.[7−10] Unfortunately, 
generally accepted standards do not exist neither for 
the hardware, nor for display of colored images or 
monitors. Databank handling mainly addresses problems 
and standardization of storage, velocity, and retrieval of 
patients’ data, whereas, image-specific properties address 
features such as brightness, illumination, focus, and 
image size.[11−13] The personal adjustment or general 
standardization of these parameters is mandatory for 
human–machine interaction, that is, a pathologist 
who wants to derive a diagnosis from an electronically 
presented histological image. This standardization is, 
however, not sufficient to investigate in analysis and 
potential-automated quantification and extraction of any 
image information.[14,15] 

What is the information of a histological image? How 
can it be described and measured? Finally, what are the 
basic algorithms to proceed to an automated information 
extraction? Or does this approach belong to the set of 
questions that cannot be answered in principle? 

Basic Considerations
Image information in surgical pathology (or tissue-based 
diagnosis) is the morphology of a disease that can be 
“read by a trained person (pathologist)”. According to 
this definition, it can be defined as “the contribution of 
a microscopic image to the pathologist’s diagnosis” (or to 
limit the pathologist’s “freedom” to state any diagnosis). 
Obviously, not every image possesses information 
according to this definition. In addition, there are 
images which display “a strong association with a certain 
disease”, or allow an “easy” detection of information, 
others “might be related with a broad variety of diseases”, 
and it is difficult to derive a diagnosis. Commonly, an 
image is called to be of “good quality”, if its presented 
information can be “easily” derived.[14−16] On the other 
hand, those images are of “poor quality” if it is difficult 
(or even impossible) to detect a correlation with a 
diagnosis.[17] Thus, image quality is a main feature that 
influences the detection of image information. It is 
usually evaluated by comparing a derived image with the 
original one [Figure 1].

The standardization of image quality is necessary for any 
reproducible measurement or interpretation, and the 
first step if we want to develop a quantitative method 
on image information. Having images of good quality, 
we could then try to look for image properties that are 
related to information. In any image these properties 
are color features in relation to their image position, 
and include objects, structures, and texture.[15,18,19] The 
principle is exemplarily explained in Figure 2. Objects are 
items that can be identified (interpreted) and “directly 

associated” with a meaning, for example, trees, animals, 
buildings, or biological meaningful units such as vessels, 
cells, nuclei, chromosomes, genes, membranes, etc. If 
they are not known to the pathologist (i.e. cannot be 
associated with a diagnosis), they can only be described 
(or measured). Often these objects are multiple in an 
image, and their spatial relationship can be analyzed 
which are called structures.[15,20] Naturally, structures can 
be “condensed” to a new object, if they aggregate and 
display in translational symmetries such as rings, tubes, 
lines, etc.[21−24] The described classic (commonly applied 
by pathologists) “information” approach correlates image 
features that are mainly “detected” objects and structures, 
with external information. The “association function” is 
the knowledge of the viewing pathologist. In other words, 
an object has to be known by the viewer in order to be 

Figure 1: Survey of basic image quality measurements - Machine-
oriented methods commonly deal with signal/noise ratio and 
compare image copies with the original one, whereas, subjective 
methods try to evaluate the influence of certain image parameters 
(brightness, contrast, etc.) on the interpretation of the viewer. In 
interactive virtual microscopy, image parameters can be modified 
according to the individual “taste” of the viewing pathologist. In 
automated application, an original image that serves for virtual 
slides derived from glass slides of different laboratories does not 
exist and has to be computed by normalization of grey value range 
and distribution

Figure 2: Illustration of an original image (epithelioid mesothelioma, 
immunohistochemically stained with Calretinin – a positive marker 
for mesothelioma), segmented objects, derived structure, and image 
texture (computed with an autoregressive algorithm)
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identified.[25] It is the implementation of the well-known 
sentence: ˝You only do see what you see, i.e., what you 
have seen and identified previously, and, therefore, you do 
already know˝ (<Man erblickt nur, was man schon weiß 
und versteht>, in a letter of J.W. Von Goethe to F. V. 
Müller, dated 24.4.1819).

A different approach is the analysis of the basic image 
elements which are the pixels (or voxels) and their 
individual grey values.[14,15,19] The result of pixel-based 
image analysis is called image texture.[15] It is crudely 
defined, and includes terms like Coarseness, Contrast, 
Directionality, Line-likeness, Regularity, and Roughness.[26] 
Voss[27] calculated image texture by an autoregressive 
algorithm which results in reproducible and stable 
extraction of image information.[28,29] The prerequisite 
for a reproducible and stable automated application of 
any of the mentioned algorithms is an image that has 
been normalized in order to minimize the influence of 
different laboratories (fixation, tissue processing, staining 
intensity, etc.). 

Image Quality and Standardization
It is not a simple task to describe image quality, although 
every pathologist intuitively can judge the quality of a 
histological image. In the literature, two different terms 
of image quality are distinguished: a) that of individual 
(emotional) judgment and b) that of parameter-based 
measurements.[3,13,16,25,30,31] In addition, the influence 
of the image display (monitor) plays an important role 
and should be discussed separately. Individual judgment 
of histological virtual slides has been performed in 
relation to image compression, to brightness, focus, and 
field of view.[25,32] An image compression of 1:20 (in jpg 
compression technique) has been considered not to affect 
the pathologist’s ability to state a diagnosis.[13,14,30,33]

Image presentation on a monitor should take into 
account Nyquist’s theorem (relationship between color 
wavelength and the resolution of the human eye) as 
well as the natural field of view which is the angle of 
overlapping fields of view of the two human eyes).[13,31,34] 
The computation yields a maximum display of about 
25  cm  ×  35  cm (height × length) on a monitor at 
a distance of 1  m to the observer.[25,34] To evaluate a 
diagnosis from larger fields of view takes more time and 
is more tiring, that is, one has to move the eyes or head, 
smaller ones are felt to have lost information.[25,34]

The color display of virtual slides is of additional 
significance if a diagnosis should be evaluated, although 
images derived from histological glass slides do not 
correspond to an original, that is, natural image.[25,35] 
Therefore, a standardized glass slide with several main 
colors has been developed.[36,37] Investigations of color 
measurements between the standard glass slide and 
the acquired virtual slides revealed striking differences 
in color presentation between scanners of different 

companies and even between different scanners of the 
same company. An analysis of a “standard image” derived 
from a color standardized hematoxylin/eosin (H&E) 
stained glass slide could allow an adjustment of display 
in order to correct electronically the variation in color, 
etc., of the glass slides. Such a still missing standardized 
virtual H and E slide could allow corrections in virtual 
microscopy prior to being viewed by a pathologist. 

For other than human–machine interaction purposes such 
as automated feature extraction, etc., virtual slides have 
to be spatially standardized for background grey values 
(vignetting), the range of grey values in each color space, 
and for the normalization of the grey value histogram 
(having approximately the same grey values in the same 
number of pixels).[15,25,35] These image corrections should 
be done for the original virtual slide. It is also useful to 
perform the corrections after a gradient transformation 
on the original image (differentiated image). The work 
on a differentiated image is an appropriate technique to 
search for membranes or other objects automatically.[25,38] 
An example on how image standardization affects 
segmentation and grey value distribution is shown in 
[Figure 3]. 

The average grey value distance between the standardized 
and the original image can serve as a measure of quality 
of the original image.[14] Kayser et al, have shown that the 
measured corrections are smaller in fluorescent images 
compared to H&E stained or IHC (diaminobenzidine; 
DAB, alkaline phosphatase; AP) stained images.[15] The 
documentation of the measured aberrations allows the 
construction of so-called running curves.[35] These can 
be used to evaluate or control the constancy or potential 
dynamics of image quality [Figure 4]. An internet 
assessable automated IHC, FISH, nuclear organizer 
regions (AGNoR), and Comet FISH measurement system 
(EAMUSTM, www.Diagnomx.eu) has already implemented 
the described quality evaluation algorithms.[35] 

Having assessed the basic image quality, the next steps 
of image quality control depend upon the aims of the 
virtual microscopy system. Most of the systems are 
constructed to segment and identify objects such as 
nuclei or membranes. The segmentation of objects only 
makes sense if object features can be derived from the 
detected objects. These include at the basic level area, 
mean grey value content, grey value distribution within 
the object, and the form factor.[25] Additional features 
such as moments, entropy, etc., are derivatives from 
the basic features.[25] Thus, the amount of pixels that 
present an object is closely related to the statistical 
accuracy to measure the basic and derived features. The 
magnification of a virtual slide should be relative to the 
size of the objects to be measured. An object should cover 
about 1000 pixels in order to allow a feature extraction 
with an accuracy of 3%.[17]
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All object segmentation algorithms are based upon grey 
value thresholds. The detection of maxima and minima 
in the grey value histogram is, therefore, an indicator 
of the accuracy to potentially segment objects.[17] In 
addition to the normalization of the grey value histogram, 
the number and significance of grey value maxima 
and minima are characteristics that describe suitable 
potential thresholds to separate an object area from the 
background.[2,14,17,18,38−40] The grey value difference between 
a maximum and the associated minimum should amount 
to at least 5% of the histogram peak, if reproducible 
object segmentation is aimed.[20,25,40,41] An example 
of evaluated potential thresholds in a standardized 
histological image (epithelioid mesothelioma) together 
with the summary of object segmentation prerequisites is 
depicted in [Figure 5].

An additional important, however not frequently 
implemented, image information parameter is the 
spatial arrangement of objects, which is called image 
structure.[23,25,29,42] The majority of automated (or semi-
automated) image analysis systems do not analyze 
structures, although the spatial arrangement of objects 
such as cancer cells is of great biological significance. It 
reflects, for example, to the approved grading of cancer 
cell types.[43−45] A reproducible measurement of an 
image structure requires a) reproducible identification 
of objects, b) a sufficient number of objects, and c) a 
reproducible (and spatial independent) definition of the 
applied neighborhood condition.[25]

Independent from the applied neighborhood condition, 
at least 100 objects should serve to construct an image 
structure.[15] If substructures (clusters) should be 
detected, the minimum number of image objects should 
amount to 1000 or even greater. Virtual slides can meet 
these conditions as they allow investigations of different 
magnifications of the same selected tissue area. Voronoi’s 
neighborhood condition (and the derived Dirichlet’s 
tessellation) is the most frequently used one.[25,27,34,46] 
The application of graph theory and the construction of 
the minimum spanning tree (with or without distance 
limitations), or O’Callaghan’s approach are also useful, 
especially in detection of clusters within the obtained 
structure.[28,43,47]

Extraction of Image Information
Potential histological image features that “contain” all 
image information are the described texture, objects, and 
structure. The viewing pathologist associates a certain 
“meaning” with the image information, which can be 
called the “reaction” of the pathologist. In mathematical 
terms, the pathologist’s meaning is a set of discrete items, 
such as diagnosis and differential diagnosis. The items 
are overlapping, if the pathologist is “only” able to derive 
a differential diagnosis. The maximum of the mapping 
procedure is directly related to the final or definite 

Figure 3: Example of influence of image standardization (shading 
correction) on the derived grey value histogram and accuracy 
of object segmentation (artificial image consisting of randomly 
distributed balls and fibers)

Figure 4: Example of monitoring formal image quality (mean grey 
value distance of the original image from the “corrected” one)

Figure 5: Illustration of grey value histogram, derived segmentation 
thresholds, and segmented objects (epithelioid mesothelioma,          
H and E, same case as displayed in Figure 2)

diagnosis.[19,20,25,38] In a next step, the different contributors 
to the set of diagnosis (texture, object, and structure) can 
be separately analyzed. A consideration of the functions’ 
extremes reveals: a) a detectable texture is a prerequisite 
to segment objects, and b) segmented objects are a 
prerequisite to measure the built structure.[19,20,25,38] 

To furthermore tune the algorithm, a virtual slide can 
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be spatially analyzed for regions which display with no 
or only a few textures, and consequently do not contain 
objects and structures. These areas are called background. 
Obviously, they do not contribute to image information. 
Thus, the image can be divided into two non-overlapping 
areas, namely, the object space and the background. The 
same procedure can then be applied for the object space 
only, and sub-areas displaying with the “maximum of 
textures, objects, or structures” can be separated.[15,18,19,25] 
These areas are called “busy” and correspond to ROI. 
They can be reproducible identified by measures of 
the texture entropy and structural entropy based upon 
segmented objects [Figure 6],[38] as well as by application 
of spectral analysis,[48] or by mimicking the pathologist’s 
pathway through a histological image.[49,50]

Applications
The traditional histological diagnosis which comprises a 
reproducible and detailed morphological description of 
the underlying disease has been extended by the terms 
“predictive diagnosis” and “risk-associated diagnosis”.[51,52] 
Risk-associated diagnosis is related to the individual 
risk of developing a certain disease (for example, breast 
cancer associated with the BRCA1/2 gene expression), 
whereas, predictive diagnosis guides the individual 
patient’s therapy by analyzing the expression of certain 
genes in association with that of associated cellular or 
nuclear receptors.[53] Both diagnoses require precise and 
reproducible measurements or morphology-associated 
object features,[54,55] either in the complete virtual slide or 
in carefully selected ROIs. 

Algorithms to reproducibly measure the ROIs and to verify 
the correct selection have been successfully tested.[48,49] 
Experienced pathologists have been asked to state 
a diagnosis viewing the ROIs only, and, in addition, 
independently state the diagnosis by viewing the whole 
image. Concordant diagnoses have been obtained in 
97−100% of the cases. ROIs are, in addition, useful to 
select the biological important areas for TMA, which is 
another technique to invest in predictive diagnosis or so-
called individual cancer therapy.[56]

The described issues are the main promoters of virtual 
microscopy. Its present stage can be described as follows:

Commercially available scanners to acquire virtual slides 
and to perform virtual microscopy are in use for image 
storage and for educational purposes for several years.[25] 
Although they have not been approved by the FDA to 
our knowledge, they have been remarkably matured, 
and are currently already equipped with software that 
addresses to reproducible measurements of image objects, 
especially for application in predictive diagnosis.[19,53]

The implementation of structure analysis is still in its 
childhood as well as the analysis of textures.[18] Image 
standardization focuses on the implementation of medical 

standards such as (digital imaging and communications 
in medicine, DICOM3), and pathology-related changes 
of picture archiving and communication systems (PACS). 
The necessary working groups have announced a release 
of a pathology addressed PACS in the near future.[18] 

Investigations on additional standardization of virtual 
slides to be applied for automated object segmentation 
and derived image information are in the stage of 
individual tests at present.[50]

CONCLUSION

Diagnostic surgical pathology or tissue-based diagnosis 
is changing its face as it combines the latest progress 
and knowledge of molecular biology and genetics with 
innovative development of computerized information 
technology.[18,19] Images of cellular morphology are still 
its basis. They serve, however, only as starting point to 
invest in biological properties and gene expressions of 
individual patient’s disease, especially cancer.[15,25] Tissue-
based diagnosis is now-a-days the trusted guide in the 
treatment of a broad variety of cancer such as breast, 
colon, or lung cancer.[25] Quantification of content-based 
image information is the contribution of information 
technology to furthermore develop and expand the 
combination of alteration, expression, and disease-
associated impact of genes and their interaction.[19]

The analysis of this information is based upon three 
main components only, namely image texture, objects, 
and structure.[15,38] The most interesting component 
is the structure, which probably frequently precedes 
gene expressions. It could, therefore, serve for reliable 
forecasting of disease development.[38]

A precise definition of a suitable neighborhood condition 
that includes functional properties and the evaluation of 
“rare events”, which act only as catalytic converters are 

Figure 6: Demonstration of automated selection of ROI in a pleural 
biopsy (epitheloid mesothelioma, H & E). The accuracy of the tested 
algorithm (2227 slides, biopsies obtained from colon, lung, pleura, 
and stomach) revealed >97%)
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still missing to our knowledge. Therefore, the described, 
already implemented tools of tissue-based diagnosis 
and content-based image information analysis can be 
considered as now-a-days detected entrance into a new 
world of disease understanding and treatment.

As a result, diagnostic surgical pathology is getting more 
responsibility and closer to the treatment and fate of 
patients, because it is incorporating recently developed 
biology and IT technology.
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