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Ultrasensitive proteomic 
quantitation of cellular signaling 
by digitized nanoparticle-protein 
counting
Thomas Jacob1,2, Anupriya Agarwal3, Damien Ramunno-Johnson1,2, Thomas O’Hare4, 
Mehmet Gönen1,5, Jeffrey W. Tyner3,6, Brian J. Druker3,7 & Tania Q. Vu1,2,3

Many important signaling and regulatory proteins are expressed at low abundance and are difficult 
to measure in single cells. We report a molecular imaging approach to quantitate protein levels by 
digitized, discrete counting of nanoparticle-tagged proteins. Digitized protein counting provides 
ultrasensitive molecular detection of proteins in single cells that surpasses conventional methods of 
quantitating total diffuse fluorescence, and offers a substantial improvement in protein quantitation. 
We implement this digitized proteomic approach in an integrated imaging platform, the single cell-
quantum dot platform (SC-QDP), to execute sensitive single cell phosphoquantitation in response to 
multiple drug treatment conditions and using limited primary patient material. The SC-QDP: 1)  
identified pAKT and pERK phospho-heterogeneity and insensitivity in individual leukemia cells 
treated with a multi-drug panel of FDA-approved kinase inhibitors, and 2) revealed subpopulations 
of drug-insensitive CD34+ stem cells with high pCRKL and pSTAT5 signaling in chronic myeloid 
leukemia patient blood samples. This ultrasensitive digitized protein detection approach is valuable 
for uncovering subtle but important differences in signaling, drug insensitivity, and other key cellular 
processes amongst single cells.

Many important proteins, including signaling and regulatory proteins, are present at low copy number and there-
fore difficult to detect and quantitate in individual cells1,2. Protein phosphorylation, for example, underlies ubiq-
uitous and vital signaling processes; however, phosphoactivated proteins exist at extremely low abundance in 
single cells3–5. Moreover, many therapeutic compounds, such as kinase inhibitors, target and suppress protein 
signaling6–11, further decreasing endogenous levels of signaling molecules, and posing additional challenges to 
detecting signaling molecules in single cells. Individual cells in a population are believed to contain differing 
levels of signaling molecules. Such cellular heterogeneity may hold important keys to understanding the degree 
of effectiveness of some therapeutic treatments12–16, as well as understanding important cell biological mecha-
nisms (e.g. cellular proliferation and disease recurrence17–21) but may be challenging to detect. Tools that provide 
increased sensitivity in quantitative detection of low abundant proteins in individual cells would provide impor-
tant, detailed information on subtle cellular differences that otherwise may be overlooked14.

A technical challenge in measuring low abundance proteins is attaining sufficient sensitivity necessary to 
reliably detect and quantify levels of proteins above background noise. We introduce a molecular imaging 
approach to quantify proteins of low abundance by counting discrete fluorescence-tagged proteins. This digi-
tized protein quantification method is implemented within an integrated platform, the single cell quantum-dot 
platform (SC-QDP), which uses quantum dots (QDs) as the fluorescent reporter, by which to count discrete 
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protein complexes. QD are intensely bright, bleaching-resistant semiconductor nanoparticles that have matured 
as valuable probes for multi-color immunofluorescence and for tracking the dynamics of single molecules22,23 yet, 
the advantages of digitized proteomic quantification using QDs, or other dyes have not been fully recognized. 
The SC-QDP also has very high cell retention, enabling assays of limited quantities of cell sample, thereby over-
coming a major bottleneck in assay of primary patient material. We demonstrate that the SC-QDP quantitates 
phosphoresponse heterogeneity in human acute myeloid leukemia MOLM14 cells to kinase inhibitor drugs (KIs) 
and identifies KI-insensitive CD34+  cells in patients diagnosed with chronic myeloid leukemia. The molecular 
sensitivity offered by this digitized proteomic approach is valuable for revealing differences in signaling and other 
important cellular processes in single cells that are otherwise challenging to quantitate.

Results
Single cell quantum-dot platform (SC-QDP). The single cell quantum dot platform (SC-QDP) is a 
microscopy imaging-based platform that implements molecular quantification of protein levels by counting dis-
crete complexes of proteins in single cells. Cells are drug-treated, fixed, permeabilized, deposited into multi-well 
chambers, and labeled sequentially with primary phosphoantibodies and secondary antibody-QDs (Fig. 1a). This 
sequential labeling scheme allows the flexible pairing of any QD color with a phosphoprotein target. Moreover, 
the characteristic narrow fluorescence emission spectra of QDs allow for ease of QD multiplexing and simultane-
ous detection of single cell phosphoactivity with other cellular markers (e.g., nucleus, CD34+ ). The SC-QDP has 
very high post-assay cell retention and therefore can assay small number of cells (> 95%; 250–128,000 cells/well; 
Supplementary Fig. 1), thus overcoming constraints in the screening of limited sample sizes of primary cells from 
patients. Multi-channel, z-stack images of phosphoantibody-QD-labeled cells are acquired (Fig. 1b). Automated 
algorithms count discrete fluorescent complexes of protein molecules in single cells and single-cell phospho-
activity is quantified as the number of discrete QD-tagged phosphoprotein complexes in each cell (Fig. 1c). 
Cellular debris and cell aggregates are automatically removed and each cell and cell aggregates are automatically 
removed, and each cell can be viewed to confirm measurements are made in intact single cells. One-dimensional 
‘bee swarm’ scatter plots depict the phosphoactivity level for single cells sampled from the total cell population 
(Fig. 1d).

Validation of digitized nanoparticle tagged-protein counting by the SC-QDP platform. To 
validate the digitized nanoparticle-based protein counting approach, we compared SC-QDP, immunoblotting, 
and FACS assays. We measured pCRKL, pSTAT5, and pSTAT3, surrogate phosphomarkers of the BCR-ABL1, a 
kinase that is constitutively activated in human K562 chronic myelogenous leukemia cells. Untreated CML K562 
cells contain higher levels of QD-pCRKL compared to cells treated with dasatinib kinase inhibitor (KI) treatment 
(Fig. 2a). Negative control experiments omitting the primary phosphoantibody showed few QD-pCRKL probes 
per single cell, indicating low non-specific binding of QD-pCRKL probes (control, Fig. 2a). Counts of QD-tagged 
phosphoprotein complexes for single cells indicate a decrease in mean phosphoactivity level as well as decrease 
in variance of phosphoactivity with increasing concentration of dasatinib KI (pCRKL, Fig. 2a; pSTAT5, pSTAT3, 
Supplementary Fig. 2a). The compiled SC-QDP quantitation data also showed low background noise, as indicated 
by negligible numbers of QDs per cell in the presence of dasatinib (100 nM), which largely suppresses phospho-
activity, and as indicated by controls performed with omission of the primary phosphoantibody (6–7 QDs/cell; 
Fig. 2a and Supplementary Fig. 2a). Bee swarm scatter plots show the heterogeneity of single cell phosphoactivity. 
Untreated cells span a wide range of phosphoactivity levels indicating that CML K562 cells exhibit considerable 
phosphoheterogeneity (pCRKL, pSTAT5, and pSTAT3; Fig. 2a and Supplementary Fig. 2a). Variations in cell 
division contributed to this heterogeneity, as lovastatin-induced cell cycle synchronization reduced this hetero-
geneity (data not shown). With KI treatment at higher dose, cellular phosphoactivity shifts to the left, indicating 
phosphoinhibition, and with a narrowed span, indicating decreased phosphoheterogeneity.

SC-QDP, immunoblotting and FACS analyses were performed in parallel on the same cell samples. 
Immunoblots showed decreasing phosphoactivity with increasing KI dose for all three phosphoproteins (pCRKL, 
Fig. 2b; pSTAT5 and pSTAT3, Supplementary Fig. 2b). Similarly, FACS analysis showed that with increasing KI 
dose, that the peaks of each FACS curve shift to the left, indicating lower phosphoactivity levels, and that the 
width of each FACS curve narrowing, indicating decrease in phosphoheterogeneity (pCRKL, Fig. 2c; pSTAT5 and 
pSTAT3, Supplementary Fig. 2c). Quantitative plots of the mean phospholevels as a function of KI dose showed 
correspondence among all three assays (pCRKL, Fig. 2c; pSTAT5 and pSTAT3, Supplementary Fig. 2c). These 
plots also captured the steep decline in pSTAT5 levels (Fig. 2b) and more gradual decline in pSTAT3 and pCRKL 
phosphoinhibition, as a function of dasatinib dose (Supplementary Fig. 2d). Altogether, these data support the 
validity of the digitized nanoparticle-protein counting approach for quantifying phosphoprotein activity.

Digitized counting provides ultrasensitive phosphoprotein quantitation. We compared digi-
tized counting of discrete QD-tagged phosphoproteins to the conventional method of summing the diffuse flu-
orescence (e.g. FACS, standard immunocytochemistry) in single cells. Digitized protein quantitation provided 
markedly higher S/N ratios compared to phosphoquantitation of diffuse QD fluorescence for the same single 
cell image data (Fig. 3a). Because digitized detection of phosphoprotein levels relies on the number of QDs, 
whereas diffuse fluorescence quantification can include other fluorescent sources (e.g. cellular autofluorescence), 
the digitized phosphoprotein signal is better discriminated from the background noise (dotted line, Fig. 3b,c). 
This improved detection is particularly valuable at high doses of KI in which cellular phosphoprotein content is 
further decreased (Fig. 3a–c). The signal over the background achieved by SC-QDP counting surpasses that of 
quantitating the diffuse fluorescence of QD and Alexa fluorescent reporters. This holds true for other phosphop-
rotein targets (Fig. 3d). The degree of this S/N improvement will depend on the level of abundance of the target 
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phosphoprotein of interest as well as the different binding affinities of the primary antibody. In these experiments, 
care was taken to use the same primary phosphoantibodies for both QD and Alexa dye labeling, and to optimize 
the concentrations of each primary phosphoantibody separately for QD and Alexa assay conditions. All together, 

Figure 1. Digitized phosphoprotein quantitation by the single cell quantum-dot platform. (a) Drug-treated 
cells are fixed, permeabilized, deposited in a multi-well glass chamber, and labeled with primary antibodies, 
and multicolor secondary antibody-QD probes. (b) 3D multichannel z-stack images are acquired. (c) Discrete 
QD-tagged protein complexes are counted from image stacks and tabulated for individual cells. (d) Single cell 
phosphoprofiling showing CD34 and pSTAT5 staining. Bee swarm plots depict the phosphoactivity (# of QDs/
cell, x axis) for untreated cells and drug-treated cells.
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these data show that digitized nanoparticle-protein counting provides significant improvement that is substantial 
in detecting differences in important conditions of decreasing in protein abundance, such as by kinase inhibition.

SC-QDP capture of KI-induced phosphoheterogeneity and insensitivity in single cells. We 
applied the SC-QDP to assess the phosphoresponse of single acute myeloid leukemia (AML)-derived MOLM-
14 cells treated with a panel of 16 FDA-approved KIs (Fig. 4a). Bee swarm scatter plots show that the SC-QDP 
captures differing degrees of KI-induced phosphinihibition and single cell phosphoheterogeneity (Fig. 4b). For 
example, ibrutinib induced marked pERK and pAKT phosphoinhibition in the overall total cell population but 
there remain individual cells whose pERK levels are similar to that of the untreated cell population (Fig. 4b). 
Erlotinib produced a less pronounced inhibition of pERK and pAKT compared to ibrutinib but there also remain 

Figure 2. Validation of the SC-QDP approach by immunoblot and FACS. CML K562 cells were processed 
by SC-QDP, immunoblotting, and FACS assays. pCRKL data are shown; pSTAT5 and pSTAT3 data shown in 
Supplementary Fig. 2. (a) Micrographs of K562 cells processed by SC-QDP for pCRKL in three conditions: 
untreated, dasatinib-treated (100 nM, 4 h), and no primary antibody (control). Images are collapsed z-stack 
overlays of pCRKL-QD (magenta) and brightfield DIC channels. Scale bar is 10 μ m. Bar graphs show the mean 
pCRKL activity (y axis), computed as the average number of discrete QD counts in single K562 cells at various 
dasatinib concentration (x axis). Error bars are standard deviation of the mean. Numbers of cells sampled are: 
142, 159, 130, 117, 130, 181, left to right on bar graph. Bee swarm plots show phosphoactivity (# of QDs per cell, 
x-axis) of cells for conditions of untreated, dasatinib-treated, and no primary antibody control. (b) Immunoblot 
showing pCRKL and CRKL levels in K562 cells treated with increasing concentrations of dasatinib. Quantitative 
pCRKL/CRKL ratios are indicated below the blots. UT =  untreated. (c) FACS histograms show pCRKL levels 
in K562 cells treated with increasing concentrations of dasatinib (DT). UT =  untreated. FACS curves at mean ±  
std: 1,574 ±  971, 1,137 ±  788, 170 ±  115, respectively for untreated, 1 nM, 100 nM conditions. (d) Plots compare 
phosphoactivity (y axis) measured by SC-QDP (blue), FACS (magenta), and quantitation of pCRKL/CRKL 
from immunoblots (green). Phosphoactivity value at each point is normalized to the mean of the values over the 
range of drug treatment. Additional validations for pSTAT5 and pSTAT3 are shown in Supplementary Fig. 2.
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insensitive cells with phospholevels similar to that of cells in the untreated population. Rapamycin induced strong 
pAKT inhibition and less pERK inhibition in the total cell population; however, there in the rapamycin-treated 
cell population still remain cells with pAKT levels similar to that of the untreated cell population. These, and 
additional data (Supplementary Fig. 3), demonstrate the SC-QDP capability to capture single cell phosphoheter-
ogeneity under different KI-treatment conditions.

We examined the cells that are less sensitive to KI treatment (Fig. 3b). Outlier cells had high pAKT and/or 
pERK levels equal to or greater than the mean pERK and pAKT values of untreated cells (cells outside red box, 
Fig. 4c, data from experiment Fig. 4a). Many outlier cells showed correlated pAKT and pERK insensitivity (crizo-
tinib, ruxolitinib; Fig. 4c), indicating that these cells were KI-insensitive in a dependent manner between pAKT 
and pERK pathways. In instances of other KIs, outlier cells showed less correlated pERK and pAKT insensitivity 
(ponatinib, sorafenib; Fig. 4c), indicating KI-insensitivity in one pathway is independent of the other in these cells 
(e.g. ponatinib, sorafenib, plot, Fig. 4c).

KIs were scored by the probability of finding insensitive cells following drug treatment (Fig. 4d) and defined  
by an index of drug insensitivity. A Wilcoxson rank sum test was employed to numerically calculate the likelihood 
of finding cells from KI-treated populations that have higher phosphoactivity than in cells from the untreated 
populations (Fig. 4d). Merits of the Wilcoxson scoring approach are that it is independent of any assumptions of 
the nature of the cell population data (e.g. Gaussian distribution) and that it is not based on (arbitrary) threshold 
selection (see Methods). Indices of insensitivity that equal 50% indicate the highest levels of drug insensitivity, as 
drug-treated and untreated cell populations are identical. Scores of decreasing probability (< 50%) indicate the 
decreased likelihood of finding insensitive cells in KI-treated conditions; that is, cells that have the same phos-
phoactivity levels as that found in untreated conditions. The charts show that different KIs in the panel exerted 
varying degrees of mean pAKT and pERK phosphoresponses (Fig. 4d). As expected, KIs that induce increas-
ingly mean phosphoinhibition response correspond to a decreased likelihood of finding KI-insensitive cells. The 
SC-QDP captures the wide-ranging levels of cells that remain insensitive following drug-treatment (21–45% for 
pERK, and 16–45% for pAKT, Fig. 4d). Calculated p-values provide additional confirmation that drug-treated 
cell populations are statistically different from the untreated cell population (blue font, p<0.05, right hand bar 
plot, Fig. 4d). These data show that the SC-QDP approach enables assessment of the potency of a KI not only by 
its mean phosphoinhibition level, but also by the completeness of its inhibitory effect in the entire cell population.

SC-QDP identifies KI- insensitive CD34+ cells in chronic myeloid leukemia patients. The identi-
fication of kinase inhibitor insensitivity in rare primitive cell populations from primary leukemia patient samples 
by direct phosphoresponse measurement has been challenging to routinely accomplish using standard immunob-
lotting and FACS methods14. We tested the detection capability of the SC-QDP for identifying rare kinase inhib-
itor insensitive cells by assaying single CD34+  cells obtained from patients with chronic myelogenous leukemia 
(CML). SC-QDP analysis was performed on peripheral and bone marrow-derived mononuclear cells (MNCs) 
from 5 patients with newly diagnosed CML (Fig. 5a). These patients had high leukemic cell burden; FISH cytoge-
netics showed that 85–99% of undifferentiated blood cells (blasts) were positive for BCR-ABL1, the chromosomal 

Figure 3. SC-QDP digitized counting sensitivity supersedes conventional summing of diffuse fluorescence 
in single cells. (a) Plot of signal-to-noise (S/N) ratio for pCRKL quantification in K562 cells comparing the 
SC-QDP method of QD-nanoparticle counting (QD count) to QD diffuse fluorescence (QD DF) averaging in 
single cells, at increasing dasatinib concentrations. S/N is calculated by dividing the pCRKL level to that of the 
isotype control. UT is untreated cells. Dashed line is isotype control value. Numbers of cells sampled: 142, 159, 
130, 117, 130, and 181 (left to right, x-axis). (b) Box plots showing the numbers of QDs/per cell in the SC-QDP 
from which S/N ratios were computed in Fig. 3a. Dashed line represents the noise which is the QD count for 
the isotype control. (c) Box plots showing the QD-DF per cell for a range of dasatinib concentrations. Dashed 
line represents the noise, which is the QD DF for the isotype control. Numbers of K562 cells sampled are same 
as given in panel a. (d) Single-cell phosphoquantification using the SC-QDP method of single cell QD-probe 
counting produces superior detection sensitivity compared to QD DF and Alexa DF per cell. Phosphoactivity 
levels (y-axis) computed in single untreated K562 cells for pSTAT5, pSTAT3, pERK, and pAKT. S/N ratio 
calculated by normalizing the phosphoactivity levels in untreated cells to the isotype control. Error bars are 
standard deviation. P values are calculated by the Holm-Sidak multiple comparison test, asterisks denote p value 
≤ 0.0001. Inset shows representative images of pCRKL labeling by QD655 and Alexa 488 reporters in untreated 
K562 cells. The same primary phosphoantibody used for QD and Alexa labeling. Numbers of cells sampled are 
n =  637 (+ /− 169) for QD-labeling, and n =  940 (+ /− 118) for the Alexa 488- labeling.
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Figure 4. SC-QDP capture of KI-induced phosphoheterogeneity and insensitivity in single cells. (a) 
Multi-well, high-throughput SC-QDP KI screen on MOLM-14 AML cells performed at the IC50 dose for cell 
death, respectively for each drug (blue, Nuclear Mask). Adjacent images show cells labeled with pAKT-QD 
(magenta), pERK-QD (green), and Nuclear Mask for untreated and vandetinib treated cells. Scale bar, 10 μ 
m. (b) Bee swarm plots show pERK and pAKT levels measured simultaneously in single cells before and after 
ibrutinib, erlotinib, and rapamycin treatment. Additional plots for vandetanib, axitinib, and imatinib are given 
in Supplementary Fig. 3. (c) Example plots of pERK vs. pAKT levels measured in single cells illustrate a span 
of correlation values for different kinase inhibitors. Outlier cells exist with pERK and pAKT values equal to or 
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abnormality that underlies most CML. These patients also exhibited low blast levels (1–4%, Fig. 5a) that is consist-
ent with early stages of CML. MNCs from these patients were treated with the potent BCR-ABL1 kinase inhibitor, 
dasatinib (100 nM, 4 h). SC-QDP identified single CD34+  cells, a marker of undifferentiated leukemic cells, in 
these patients, whereas, as expected, a healthy control subject was negative for CD34+  cells (Fig. 5a). SC-QDP 
measured the levels of pCRKL and pSTAT5, two surrogate markers of overactive BCR-ABL1 signaling, in single 
CD34+  cells in 5 new CML patients10,24,25.

The SC-QDP identified subpopulations of single-cell MNCs with CD34 positivity and quantified phosphoac-
tivity in CML patients. Bee swarm plots show that at baseline, there exists a wide range of heterogeneity of pCRKL 
and pSTAT5 in single CD34+  cells (Fig. 5c). Dasatinib treatment induced overall pCRKL inhibition; however, 
in all 5 patients, there remain insensitive cells with pCRKL levels that were similar to that of the untreated cells 
(Fig. 5c). Numerical scores obtained from Wilcoxson rank sum test showed that the CML3 patient had effective 
treatment whereas the other 4 patients showed a ~20% probability that there remain cells with pCRKL levels 
similar to cells in untreated cell populations (Fig. 5d). P-value calculations show that treated and untreated cell 
populations are significantly different from one another (blue text, Fig. 5d). SC-QDP analysis performed on the 
healthy control subject’s CD34−  cells showed that pCRKL levels were low in both dasatinib-treated and untreated 
conditions and comparable to the noise level of the control isotype (Fig. 5d). Adjusted p-value tests show that 
while dasatinib-treated vs untreated cell populations derive from statistically different distributions (blue text, 
adjusted p-value plots for p< 0.05, Fig. 5c), the likelihood of finding cells with pCRKL similar to that of untreated 
populations was close to 50%, indicating both distributions are similar. These data demonstrate the ultrasensitive 
ability of the SC-QDP to clearly identify dasatinib- insensitive CD34+  cells within leukemia patient samples.

SC-QDP’s readily expandable panel of markers facilitated identification of insensitive cells in these same five 
patients using pSTAT5, a surrogate marker of BCR-ABL1 activity that is further downstream of pCRKL10,24,25. 
With the exception of the CML5 patient who showed dasatinib-induced inhibition (index score =  28%), dasatinib 
treatment provided only mild reduction of pSTAT5 levels (index score =  38–43%) (Fig. 5c). This higher phos-
phoinsensitivity of pSTAT as compared to pCRKL suggests that other signaling pathways could compensate for 
STAT5 phosphorylation25. As expected, pSTAT5 levels measured in MNCs from a healthy subject were close to 
assay noise in dasatinib-treated, untreated, and isotype control conditions with an index score of 48%, indicating 
similar distribution in this patient of dasatib-treated and untreated cell populations (Fig. 5c).

Overall, these data demonstrate the capability of the SC-QDP to sensitively identify rare subpopulations of 
cells that are insensitive to kinase inhibitors in primary leukemia patients. Other methods have not provided such 
direct phosphorylation-based identification of cellular phosphoinsensitivity12,14.

Discussion
Many important proteins are expressed in low abundance and therefore difficult to detect and quantitate in sin-
gle cells. We demonstrate a digitized molecular counting approach that addresses limitations in attaining suffi-
cient sensitivity necessary to reliably detect and quantify levels of activated proteins above the background noise. 
By counting discrete fluorescent nanoparticle-tagged protein complexes, we show that this digitized molecu-
lar counting approach achieves a detection sensitivity in single cells that supersedes conventional fluorescence 
averaging measurements (Fig. 3). Digitized quantitation detects discrete fluorescent signal and therefore is less 
susceptible to background noise that may arise from diffuse fluorescent sources (e.g. cellular autofluorescence). 
Given that many proteins of interest and disease importance, such as signaling and regulatory proteins, are pres-
ent at low abundance in single cells3–5,26, and that such proteins can be further reduced by treatment with ther-
apeutic compounds, this digitized molecular counting approach is of broad value for the quantitative study of 
major cellular signaling processes, as well as to detect other molecules of expected low abundance (e.g. ligands, 
drugs, viral particles) in single or rare populations of cells.

The value of the high sensitivity achieved by digitized proteomic quantitation is illustrated by our implemen-
tation of an integrated SC-QDP platform to measure phosphoprotein signaling in individual leukemia cells. 
SC-QDP enabled identification of single or small number of outlier cells with high pAKT and/or pERK insensitiv-
ity to a number of KI drugs in current clinical use. SC-QDP also provided metrics for assessing KIs based on single 
cell quantitative phosphomeasurements. This, in turn, showed the diverse and complex dose-dependent modula-
tion of different kinase inhibitors on phosphotargets, including some behaviors that are not necessarily expected 
for classic phosphoinhibition, and enabled assessment of KI potency by the completeness of its inhibitory effect 
(e.g. KI- drug insensitivity) in entire sampled cell populations. In addition to drug-screening capabilities, the 
value of molecular-sensitive SC-QDP measurements was illustrated in clinical samples by identification of CD34+  
cells that are phosphoinsensitive to the kinase inhibitor, dasatinib, the standard KI for many leukemia patients 
with CML. While the existence of dasatinib-insensitive cells has been identified by genomic and cell proliferation 
studies14,20, technical limitations in immunoblotting and FACS methods have impeded the direct identification 

greater than the mean pERK and pAKT values of untreated cells (blue dots outside red rectangles in the plots).  
(d) Compilation of degree of cellular drug insensitivity for the kinase inhibitor panel at the IC50 dose that 50% 
cell death for each drug. Each drug elicits varying degrees of mean phosphoinhibition in the drug-treated cell 
population. Mean phosphoresponse is calculated as the difference between the inhibitor-treated mean and the 
untreated mean, divided by units of standard deviation (σ ) of the untreated cells. Scores of phosphoresponse 
insensitivity are given by the Wilcoxon rank sum test (see Methods). An index of 0.5 indicates untreated and 
treated cell populations are similar; an index <  0.5 indicates the likelihood that a cell from the drug-treated 
population has a higher level of phosphoactivity than a cell from the un-treated population. Adjusted p values, 
blue font shows values where p <  0.05 that indicates a significant difference between untreated and drug-treated 
cell populations. Number of cells sampled is n =  205 (+ /− 54) per condition.
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Figure 5. SC-QDP identifies dasatinib kinase inhibitor-insensitive CD34+ cells in newly diagnosed CML 
patients. (a) Cell type, blast percentage and BCR-ABL1 positivity for CML specimens. PB =  peripheral blood, 
BM =  bone marrow, dashes =  unavailable/not applicable data. (b) QD-labeled CML patient cells show heterogeneity 
in CD34 positivity (green) and pSTAT5 (magenta) expression. Framed areas show representative CD34+  (green) 
and CD34−  cells, with varying numbers of pSTAT5-QD probes in each cell (magenta). Scale bar =  10 μ m. (c) Bee 
swarm scatter plots of pCRKL and pSTAT5 profiles of CD34+  cells from CML patients and CD34−  cells from a 
healthy subject. Cells were treated with 100 nM dasatinib for 4 h. Scored values of phosphoresponse insensitivity 
are given by the Wilcoxon rank sum test (see Methods). An index of insensitivity of 0.5 yields the highest level of 
insensitivity as untreated and treated cell populations are equal; an index that approaches zero indicates the lower 
likelihood of insensitive cells. Adjusted p-values indicate a significant difference between untreated and drug-
treated cell populations (blue text indicates values of p <  0.05). The number of CD34+  cells sampled for pCRKL 
activity for the five patients was: 80, 87; 195, 196; 160, 191; 91,108 and 56, 45 for untreated and inhibitor-treated 
conditions, respectively. CD34+  cells sampled for the measurement of pSTAT5 activity for the five CML patients 
was n =  82, 91; 179, 190; 177, 159; 100, 112 and 47, 47 for untreated and inhibitor-treated conditions, respectively. 
The healthy subject stained negative for CD34+  cells; the number of CD34- MNCs sampled from the healthy 
subject for pCRKL measurements was n =  274; 216 for untreated and inhibitor-treated conditions, respectively; and 
for pSTAT5 measurements was n =  268; 226 for untreated and inhibitor-treated conditions, respectively.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:28163 | DOI: 10.1038/srep28163

of phosphoactivity in rare subpopulations of dasatinib-insensitive cells14. Our findings of dasatinib-insensitive 
CD34+  cells (Fig. 5c and Supplementary Fig. 4), in the CML patients sampled point to incomplete inhibition 
of BCR-ABL gene, or downstream phosphoprotein target activity as an underlying mechanism in CML persis-
tence. Given that protein phosphorylation is a key regulator of fundamental cell signaling processes and aberrant 
protein phosphorylation is implicated in hundreds of human diseases, including cancer and neurodegenerative 
disorders27, the highly sensitive measurement of phosphotarget inhibition is of value for uncovering mechanisms 
that may contribute to cellular heterogeneity in disease persistence28–30 as well as for identification for aberrant 
signaling in rare outlier cell subpopulations that may be important for guiding drug selection in individuals.

Our study suggests that ultrasensitivity afforded by digitized quantitation may be a broadly useful approach to 
protein quantitation. Examples of discrete counting of RNA has revealed variation in expression levels for genes 
amongst cells31 and a recent study employed proteomic quantitation in single cells using counts of fluorescent 
bar-coded reporters32 however, a direct comparison of discrete molecular counting versus diffuse quantitation 
of proteins or other molecules has not, to our knowledge, been reported. Digitized protein quantitation can be 
implemented in different formats in single cells or tissue. Labeling of cell or tissue by discrete probes need not 
be limited to quantum dots, but other bright discrete imaging probes, using existing software packages such as 
ImageJ and Cell Profiler to perform cell segmentation and particle counting. Our specific implementation of the 
SC-QDP incorporates several additional advantageous features to apply the power of digital protein counting. 
The microscope-based platform of the SC-QDP offers the capability to better visually discern single cells from 
artifact (e.g. debris, aggregates), which is practically useful for accurate identification of rare cells. Another val-
uable feature of the SC-QDP platform is its capability to accommodate smaller samples of limited cell number 
with minimal cell loss (< 5% cell loss at 250–128,000 cells, compared to 46–75% cell loss in FACS (Supplementary 
Fig. 1). This overcomes severe bottlenecks that currently exist in multi-drug/combinatorial proteomic profiling in 
samples using limited primary patient materials.

In summary, digitized protein quantitation and its implementation by SC-QDP are powerful proteomic tools 
for evaluating drug response and developing new treatment strategies for protein targets that may be difficult to 
reliably detect and quantitate in single cells. In this emerging era of precision medicine, such tools, when coupled 
with other proteomic and next-generation, single-cell sequencing approaches33–35, can help to provide a more 
complete picture of disease and effective remedies.

Methods
Cell culture and kinase inhibitor treatment. Primary mononuclear cells (MNCs) were isolated from 
peripheral blood or bone marrow of newly diagnosed, untreated CML patients. Study protocols for using human 
cells were reviewed and approved by the institutional review board of Oregon Health & Science University. All the 
methods were carried out in accordance with the approved IRB guidelines (IRB# 4422). All patients signed an IRB-
approved informed consent prior to study participation. MNCs isolated by Ficoll-Hypaque (Sigma-Aldrich) den-
sity gradient centrifugation and cultured in serum-free media consisting of IMDM supplemented with 20% BIT 
(Stem Cell Technologies), 40 μ g/ml low-density lipoprotein (Sigma-Aldrich), 10–6 M β -mercaptoethanol, and the 
following cytokines: 100 ng/ml SCF (Stem Cell Technologies), 100 ng/ml G-CSF, 20 ng/ml FLT3 ligand, 20 ng/ml  
IL-3, and 20 ng/ml IL-6 (Sigma-Aldrich). MNCs were grown at a density of 5 ×  105 cells/ml at 37 °C, 5% CO2, 
overnight in a humidified incubator before drug treatment. The CML (K562) and AML (MOLM-14) cell lines 
were grown in suspension culture, in RPMI with 10% fetal bovine serum (Invitrogen), 1% L-glutamine (100 mM), 
and 1% penicillin/streptomycin (100 μ g/ml), in a humidified incubator at 37 °C, 5% CO2.

K562 cells and MNCs were treated for 4 h with dasatinib, at a concentration of 100 nM unless otherwise 
specified. For the multipanel kinase inhibitor screening, MOLM-14 cells were treated for 48 h with a panel of 
FDA-approved kinase inhibitors. Drug doses were equivalent to the IC50 drug dose that elicits 50% cell death 
(drug concentrations listed in Supplementary Methods). IC50 cell death values were obtained by kinase panel 
screening performed on the same MOLM-14 cell lines by MTS assay (CellTiter 96-Aqueous One Solution, 
Promega); as previously described36.

Immunoblotting analysis. K562 cell lysate was prepared by boiling cells in a SDS-PAGE loading buffer. 
Equivalents of 5 ×  105 cells per untreated or dasatinib-treated conditions were subjected to SDS-PAGE and 
were immunoblotted with primary antibodies; pCRKL, CRKL, pSTAT5, STAT5, pSTAT3 and STAT3 (see 
Supplementary Methods for details). Phosphoprotein signal was imaged on a Lumi Imager.

FACS analysis. Untreated and kinase inhibitor-treated K562 cells were fixed and permeabilized according 
to the manufacturer’s instructions (BD Biosciences); incubated with antibodies: pCRKL, pSTAT3 or pERK (see 
Supplementary Methods for details); and analyzed on a FACS Aria instrument (BD Biosciences).

SC-QDP phosphoprotein labeling. Cells were fixed, permeabilized and dispersed onto multiwell 
cover glass chambers (Lab-Tek; Nunc, or custom-made). The cells were blocked and treated with primary 
anti-phosphoprotein antibodies: pCRKL, pSTAT5, pSTAT3 or pERK1/2 (see Supplementary Methods for details). 
The anti-CD34 was used for selection of CD34+  primitive cells. Following primary antibody incubation for 2 h, 
cells were treated with secondary anti-IgG-QD or anti-IgG-Alexa 488 antibodies (Life Technologies).

SC-QDP image acquisition. Cells were imaged with an inverted fluorescent microscope (Zeiss 
AxioObserver) equipped with high magnification objectives, QD filter sets (Semrock), and a Luca-R camera 
(Andor) suitable for detecting discrete QD fluorescence. Data acquisition consisted of acquiring multiple fields 
of view randomly for each well of the multi-well chamber. The microscope was controlled by Micromanager 
(https://www.micro-manager.org/)37. For each field of view, z-stacks were acquired in appropriate QD fluorescent 

https://www.micro-manager.org/
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channels (inter-slice distances of 275–300 nm, total z-depth of 18 μ m for K562 cells, and 10–12 μ m for MOLM-14 
cells and MNCs from patients) along with a DIC image at mid-stack. Image acquisition was performed manually 
or by automated high-throughput scanning. For automated high-throughput scanning, we used a custom-written 
Java plugin for Micromanager that allows scanning of user-selected wells in multiple channels.

Discrete SC-QDP counting and diffuse fluorescence quantification in single cells. Phosphoprotein  
activity levels were quantified in single cells using automated software imaging algorithms. Cell segmentation 
was first performed manually and then optimized for speed and accuracy by threshold-based object detection 
in CellProfiler38 (see Supplementary Methods for details). Cell outline coordinates were exported for subsequent 
single cell QD counting in MATLAB software.

Discrete QD fluorescence was detected, localized and tabulated on a per cell basis using automated algorithms 
written in MATLAB. Detection of discrete QD probes was accomplished using radial symmetry localization39 of QDs 
in single-cell z-stacks (see supplementary methods for details). The QDs were identified as discrete, non-aggregated 
units comprised of single or a few QDs, as confirmed by intensity profile measurements of QD fluorescence40,41.

Measurements of single-cell total diffuse fluorescence of QD and Alexa dyes were obtained for each cell by 
summing pixel values from all slices in a single z-stack corresponding to each cell and subtracting the global back-
ground value for each field of view from the image. The global background value was computed as the mean of the 
minimum pixel value corresponding to each y-column of the entire field of view in each image.

SC-QDP single-cell phosphoresponse profiles and scoring of drug insensitivity. We use the 
Wilcoxon rank-sum test (also known as the Wilcoxon-Mann-Whitney test or the Mann-Whitney U test42,43, to 
make statistical comparisons between the populations of untreated and drug-treated cells. This non-parametric 
test is robust in that it does not rely on the type of distribution of underlying cellular populations (e.g. assumption 
of normal distributions such as for the t-test). We apply the Wilcoxon rank-sum test to determine whether two 
populations (X, untreated cells and Y, drug-treated cells) have similar distributions or, as an alternative hypoth-
esis, whether one population tends to have significantly lower values of phosphoactivity than the other. The null 
hypothesis (H0) is that X (untreated) and Y (drug-treated) have similar distributions. If the null hypothesis is 
true, then probability that an observation from X is less than an observation from the Y equals the probability of 
an observation from Y is less than an observation from X, which can be represented as: P(X <  Y) =  P(X >  Y) or 
P(X <  Y) + 0.5P(X =  Y) =  0.5. We approximate these probabilities using the samples we have (i.e., QD counts in 
cells from both populations). We define an ‘index of drug insensitivity’ as: P(X <  Y) + 0.5P(X =  Y), which com-
pares the QD counts of cell pairs from X and Y and gives the probability that the cell in Y has a higher QD count 
than the cell in the X for a random pair of cells. Let X =  {x1, x2, … , xM} and Y =  {y1, y2, … , yN} be the number of 
QD counts of cells in untreated and drug-treated cell populations, respectively, where M and N are the numbers 
of cells in these populations. The index of drug insensitivity can be approximated by:
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where 𝛿 represents the Kronecker delta function that returns 1 if its argument is true and 0 otherwise. If drug 
treatment is ineffective, then X and Y will have similar distributions, P(X >  Y) =  P(X <  Y), and the index score 
should be close to 0.5. If drug treatment is effective, then the Y population should have significantly lower values 
of phosphoactivity, and the index score should be smaller than 0.5.

We calculate adjusted p-values to provide a measure of confidence that there is a statistically significant dif-
ference between population X and Y. The adjusted p-values provide statistically more meaningful p-values that 
account for hypothesis testing of multiple drugs as a group. Thus, if p <  0.05, we can conclude that the populations 
X and Y are statistically different and that we have high confidence that the score obtained from index of drug 
insensitivity is statistically significant. If p >  0.05, then we can not reject the null-hypothesis that the two popula-
tions may be from the same population even if the index of drug insensitivity may be different than 0.5.
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