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Abstract
Objective  Niemann–Pick disease type C1 (NPC1) is a rare autosomal-recessive lysosomal storage disorder presenting with a 
broad clinical spectrum ranging from a severe infantile-onset neurovisceral disorder to late-onset neurodegenerative disease. 
Optical coherence tomography (OCT) is established to detect retinal degeneration in vivo. We examined NPC1-patients 
(NPC1-P), clinically asymptomatic NPC1-mutation carriers (NPC1-MC), and healthy controls (HC) to (1) identify retinal 
degeneration in NPC1-disease and (2) to investigate possible subclinical retinal degeneration in NPC1-MC.
Methods  Fourteen NPC1-P, 17 NPC1-MC, and 31 age-matched HC were examined using spectral-domain OCT. Neurologi-
cal examinations, clinical scales [modified Disability Rating Scale (mDRS); Scale for the Rating and Assessment of Ataxia 
(SARA); Spinocerebellar Ataxia Functional Index (SCAFI)], and video-oculography (VOG) were correlated with OCT data.
Results  Macular retinal nerve fiber layer and volumes of combined ganglion cell and inner plexiform layer were signifi-
cantly lower in NPC1-P compared to HC [mRNFL (µm):0.13 ± 0.01 vs. 0.14 ± 0.02; p = 0.01; GCIPL (mm3):0.60 ± 0.05 vs. 
0.62 ± 0.04; p = 0.04]. No significant differences were found in NPC1-MC in comparison to HC. In NPC1-P, the amplitude 
of upward vertical saccades showed positive associations with peripapillary RNFL (ρ = 0.645; p < 0.05), and thinned GCIP 
(ρ = 0.609; p < 0.05), but not in NPC1-MC. In NPC1-P correlations between combined outer plexiform layer and outer 
nuclear layer (OPONL) with mDRS (r = − 0.617; p < 0.05) and GCIP with SARA (r = − 0.622; p < 0.05) were observed. 
Furthermore, in NPC1-MC, motor scores were negatively associated with pRNFL (ρ = − 0.677; p < 0.01).
Conclusions  Using OCT, we showed retinal degeneration in NPC1-P and significant correlation between retinal neuroax-
onal degeneration with clinical measurements. We observed a non-significant trend of retinal degeneration in NPC1-MC 
correlating with subclinical motor abnormalities. Based on these preliminary data, OCT may be an important marker of 
neurodegeneration in NPC1-disease after onset of clinical symptoms.

Keywords  Niemann–Pick type C · Heterozygosity · Clinical biomarker · Optical coherence tomography · Retinal 
neuroaxonal degeneration

Introduction

Niemann–Pick disease type C (NPC) is an autosomal reces-
sively inherited neurovisceral lysosomal disorder caused by 
mutations in the NPC1 or NPC2 gene [1, 2]. The clinical 
phenotype ranges from an infancy-onset progressive, fatal 

disorder to an adult-onset, chronic neurodegenerative dis-
ease with heterogeneous clinical symptoms such as cogni-
tive impairment, cerebellar symptoms, dystonia, vertical 
supranuclear saccade and gaze palsy, psychiatric disorders, 
and, less frequently, epilepsy [3]. Optic nerve pallor and 
perimacular gray discoloration are observed ophthalmologi-
cally, as well as histologically [4]. However, markers reflect-
ing disease progression in NPC are not well established. 
Pathophysiologically, NPC is characterized by abnormali-
ties of intracellular transport of endocytosed cholesterol and 
further lipids with their sequestration in lysosomes and late 
endosomes [5, 6]. Notably, dysregulation of brain choles-
terol homeostasis is also present in some of the common 
neurodegenerative central nerve system (CNS) disorders 
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such as Alzheimer`s disease (AD) and Parkinson’s disease 
(PD) [7–9]. In addition, NPC and AD share common patho-
physiological mechanisms such as neurofibrillary tangle 
formation, increased amyloidogenic amyloid precursor pro-
tein (APP), early development of endosome abnormalities, 
and neuronal death [10–13]. Optical coherence tomography 
(OCT) is a non-invasive, cost-effective, and widely used 
imaging technique of the retinal layers introduced in the last 
few years as a potential marker of neurodegeneration in vari-
ous neuroinflammatory and neurodegenerative disorders [14, 
15]. Furthermore, in metabolic diseases such as Gaucher’s 
disease (GD), which shows pathophysiological similarities 
to NPC [16], retinal neuroaxonal degeneration can be meas-
ured with OCT [17]. To our knowledge, OCT has not been 
used to study possible neurodegeneration in NPC yet.

In this study, we examined NPC1-P, clinically healthy 
NPC1-MC, and HC using OCT to (i) identify retinal degen-
eration in NPC disease using a non-invasive OCT technique 
and (ii) to investigate for possible subclinical retinal atro-
phy in NPC1-mutation carriers (MC). We aimed to show a 
correlation between OCT examinations and the clinically 
recorded scores to establish neuroaxonal degeneration as a 
disease-monitoring tool in NPC.

Materials and methods

Study population

Twelve NPC1-P with biallelic NPC1 gene mutations and 
two patients with one identifiable mutation, a classical or 
variant filipin test in cultured fibroblasts and a typical NPC 
phenotype (vertical supranuclear saccade palsy, cerebellar 
ataxia, dysarthria, cognitive impairment, dystonia; mean 
age 24 [range 9–38]; 8 male) were recruited from the uni-
versity hospital specialized unit (Table 1). Mean duration 
of the disease was 14 ± 6.5 (SD) years. Seventeen of their 
asymptomatic first-degree family members, all confirmed 
heterozygous NPC1-MC (i.e., carrying one muted allele; 
mean age 50 [range 21–65]; 8 males) were included (Table 
2). No neurological comorbidity was diagnosed based on 
a detailed examination by experts in movement disorders 
(TBE and SAS). The motor examinations were not evalu-
ated blinded. Two HC groups age-matched for patients and 
carriers were also enrolled (14 HC for NPC1-P: mean age 
27 [range 12–38] 7 males; 17 HC for NPC1-MC: mean age 
51 [range 21–66]; 9 male). In the NPC1-P group, only 26 of 
the 28 eyes could be examined. Two patients discontinued 
the examination incompletely after examination of the first 
eye. Eight out of fourteen patients suffered from an organic 
psychiatric disorder due to NPC disease and took antipsy-
chotic drugs. To our knowledge, there is no evidence of an 
effect of psychiatric medication on the OCT data shown 

here. This also applies to the anticonvulsive drugs. Subjects, 
and single eyes, respectively, with concomitant potentially 
OCT-confounding diseases (glaucoma, diabetes mellitus, 
retinal surgery, retinal disease, and ametropia > 6 diopters) 
were also excluded. Evaluation criteria for this study were 
retinal thickness/volume and visual disability measured 
by high and low contrast visual acuity (VA). Patients and 
mutation carriers underwent neurological examination and 
demographic information was obtained as summarized 
in Tables 1 and 2. Other causes that could explain motor 
anomalies were excluded by anamnesis and examinations 
as needed. Written informed consent was obtained from all 
patients participating in the study. The study was performed 
in accordance with the Helsinki II Declaration and approved 
by the ethics committee of the Ludwig-Maximilians-Univer-
sity, Munich, Medical Faculty (part of project no 280-16). 
All participants (or their legal representatives) gave written 
informed consent.

Optical coherence tomography (OCT)

OCT examination was performed using an SD-OCT (Spec-
tralis, Heidelberg Engineering, Heidelberg, Germany) with 
automatic real-time (ART) function for image averaging. 
We acquired peripapillary retinal nerve fiber layer thick-
ness (pRNFL), macular RNFL (mRNFL), and volumes of 
combined ganglion cell and inner plexiform layer (GCIP), 
and combined outer plexiform layer and outer nuclear layer 
(OPONL). All macular layers were calculated as a 3 mm-
diameter cylinder around the fovea from a macular volume 
scan (20° × 20°, 25 vertical B-scans, ART ≤ 49). The peri-
papillary RNFL (pRNFL) was measured with activated eye 
tracker using 3.4 mm ring scans around the optic nerve (12°, 
1536 A-scans, ART ≤ 100). Segmentation of all layers was 
performed semi-automatically using software provided by 
the OCT manufacturer (Eye Explorer 1.9.10.0 with viewing 
module 6.3.4.0, Heidelberg Engineering, Heidelberg, Ger-
many). One experienced rater (JH), blinded for the diagno-
sis, carefully checked all scans for sufficient quality and seg-
mentation errors and corrected if necessary. OCT data in this 
study are reported and analyzed according to the APOSTEL 
and OSCAR-IB recommendations [18, 19]. The data were 
correlated with VOG measures and clinical scores.

Video‑oculography (VOG)

Since patients with NPC demonstrate characteristic ocular 
motor deficits, including, but not limited to vertical supranu-
clear saccade palsy (VSSP), video-oculography (VOG) was 
performed in both NPC1-P and NPC1-MC, using a video-
based eye-tracker system (EyeSeeCam®, Munich, Germany) 
as previously described [20, 21]. Briefly, reflexive saccades 
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that reflect brainstem function and smooth pursuit for cer-
ebellar function were assessed.

Clinical assessment

To assess the overall neurologic status in NPC disease, 
the modified Disability Rating Scale (mDRS) by Pineda 
et al. [22] was applied; the mDRS is a four-domain scale 
(ambulation, manipulation, language, and swallowing) in an 
extended form [23], which also includes seizures and ocu-
lar movements, that assesses the severity of the disease and 
monitors the effect of treatment. All patients were exam-
ined by the same experienced neurologist (TBE) to reduce 
inter-rater variability. Cerebellar function was evaluated by 
administrating the Scale for the Rating and Assessment of 
Ataxia (SARA) [24] an eight-item clinical rating scale (gait, 
stance, sitting, speech, fine motor function, and taxis; range 
0–40, with 0 being the best neurological status and 40 the 
worst). Moreover, NPC1-P were assessed by the Spinocer-
ebellar Ataxia Functional Index (SCAFI), comprising the 
8-m-Walking-Test (8MW), performed by having patients 
walking twice as quickly as possible from one line to another 
excluding turning, 9-Hole-Peg-Test (9HPT), and the number 
of “PATA” repetitions over 10 s (PATA) [25]. NPC1-MC 
were clinically assessed by an experienced neurologist in the 
field of movement disorders (SAS) with a particular focus 
on signs and symptoms of NPC disease: 1 point each was 
given for presence of a reduced arm swing, intention tremor, 
increased muscle tone, ankle clonus, and/or gait abnormali-
ties resulting in a final motor score [26]. Scores ≥ 1 were 
considered pathological.

Statistical analysis

The groups of patients and carriers were separately com-
pared to a group of age-matched healthy controls. Data are 
presented as mean and standard deviation for continuous 
parameters and frequency and proportion for categorical 
variables. To compare OCT measures between subpopula-
tions, and to consider within-patient inter-eye correlation, 
we used generalized estimation equation models (GEEs), in 
which the correlation matrix parameter was set to ‘exchange-
able’. In these models, OCT measures were the dependent 
variables, while patient’s disease status was the (main) inde-
pendent variable. Furthermore, in adjusted GEE analyses, 
the additional independent variables gender and age were 
added. To evaluate the strength of relationship between 
relevant OCT measures that were significantly decreased 
in homozygotes and clinical variables, we calculated the 
Spearmen´s correlation coefficients. Due to the fact that the 
correlations were not random but based on patient findings 
and were, therefore, limited in number, we did not perform 
a post-hoc correction. Statistical significance was achieved 

at p < 0.05. Data were analyzed with SAS version 9.3 (SAS 
institute, Cary, NC, USA) by a statistician (RS). Clinical 
correlations were performed in SPSS version 25.0.0 (IBM, 
Armonk, NY; done by TBE).

Results

Cross‑sectional group differences

For statistical analysis, we evaluated 26 eyes of 14 NPC1-P 
and 34 eyes of 17 NPC1-MC. These eyes were compared 
with 28 eyes of 14 age- and sex-matched HC. NPC1-P had 
a significantly lower mRNFL (mean ± SD, 0.13 ± 0.01 mm3) 
and GCIPL (0.60 ± 0.05 mm3) compared to HC (mRNFL 
0.14 ± 0.02 mm3; p = 0.01; GCIP 0.62 ± 0.04 mm3; p = 0.04) 
(Fig. 1). pRNFL showed a trend, but the difference was 
non-significant (98.12 ± 11.46 µm vs. 104.61 ± 8.39 µm; 
p = 0.06). No significant differences were observed for 
PMB, TMV, and OPONL. Furthermore, there were no 
significant differences between NPC1-MC and HC for all 
studied parameters (summarized in Table 3). An orienting 
comparison of visual acuity data showed a reduced Snellen 
Visual Acuity Equivalent (SVAE) and a reduced number of 
recognized letters (100%/2.5% Low-Contrast Sloan Letter 
Chart Testing (2 m), see Table 3) in the group of NPC1-P. 
A statistical analysis was not performed for unequally dis-
tributed missing VA values.

Correlation OCT with clinical scores

In NPC1-P, mean mDRS score correlated only with mean 
OPONL (ρ = − 0.617, p < 0.05). Mean SARA score was neg-
atively related to GCIP (ρ = − 0.622, p < 0.05) (Fig. 2a, b). 
In NPC1-MC, motor scores (Table 1) were negatively asso-
ciated with mean pRNFL (Average: ρ = − 0.719; p < 0.01) 
(Fig. 2c). No further correlations with clinical scores were 
seen.

Correlation OCT with saccades and smooth pursuit

Amplitude of upward vertical saccades to 20° stimulus 
in NPC1-P showed positive associations with averaged 
pRNFL (ρ = 0.645, p < 0.05) and averaged GCIP (ρ = 0.609, 
p < 0.05) (Table 1, Fig. 3a, b). Mean peak velocity of hori-
zontal saccades to 30° stimulus correlated with averaged 
pRNLF (ρ = 0.650, p < 0.05) and averaged GCIP (ρ = 0.750, 
p < 0.01) (Table 1, Fig. 3c, d). Mean duration of horizontal 
saccades correlated negatively with pRNLF (ρ = − 0.727, 
p < 0.01) (Table 1, Fig. 3e). Averaged GCIP tracked with 
vertical smooth pursuit gain (ρ = 0.622, p < 0.05) (Table 1, 
Fig. 3f). In NPC1-MC, there were no significant associations 
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between the retinal and video-ocular motor measures (data 
not shown).

Discussion

In this study, we examined NPC1-P, clinically asymptomatic 
NPC1-MC, and HC using OCT to identify retinal degenera-
tion and to evaluate the potential eligibility of OCT measures 
as biomarkers of neurodegeneration and disease progress. 
OCT proved to be a precise and reproducible method [27] 
for non-invasive visualization and quantification of retinal 
layers, and plays a crucial role in analyzing retinal changes 
in various neurodegenerative [15] and neuroinflammatory 
diseases [28–30]. Due to its anatomical, embryological, and 
physiological similarities with the brain, the retina offers a 
unique and easily accessible "window" to study correlates 
and consequences of subclinical pathology in the brain [31].

The major findings of this study are as follows: first, 
retinal neuronal and axonal degeneration in NPC1-P was 
significantly related to clinical disease scores. Second, for 
asymptomatic heterozygous NPC1-MC, there was no sig-
nificant retinal degeneration. However, the extent of retinal 
neurodegeneration was significantly related to subclinical 
abnormalities in carriers.

In NPC1-P, we found a significantly lower thickness 
of mRNFL as well as a non-significant trend of reduced 
pRNFL compared to controls. The reduction of pRNFL 
has been described as a retinal marker of a possible demen-
tia development, including AD [32], and may serve as a 
marker of disease progression in PD, AD, and frontotempo-
ral dementia [33–35]. Our data are in line with those find-
ings; however, only the reduction of mRNFL but not of the 
pRNFL reached the level of significance. The non-congruent 
effect of pRNFL and mRNFL might be due to the small 
volume of the RNFL measurement or a consequence of the 
small sample size. Our findings on reduced thickness of the 

Fig. 1   OCT results of NPC1-P, NPC1-MC, and HCs. NPC1-P: 
NPC1-Patients and NPC1-MC: NPC1-Mutation Carriers; Box plots 
of cross-sectional OCT data for NPC1-MC vs. HC (A1, B1, C1) and 

NPC1-P vs. HC (A2, B2, C2). A: peripapillary retinal nerve fiber 
layer (pRNFL), B: macular retinal nerve fiber layer (mRNFL) and C: 
ganglion cell and inner plexiform layer (GCIP)
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retinal nerve fiber layer strengthen the hypothesis of a com-
mon pathomechanisms in NPC and other neurodegenerative 
diseases. pRNFL atrophy has also been reported in AD, PD, 
and other neurodegenerative diseases including rare diseases 
such as Leber’s hereditary optic neuropathy (LHON), OPA1-
related dominant optic nerve atrophy (DOA) [36], Wilson`s 
disease [15], Friedreich`s ataxia [37], and spinocerebellar 
ataxias [38]. Histologic and OCT studies in AD and PD 
showed a significant loss of retinal ganglion cells [39, 40]. In 
line with these data, we found a significantly lower thickness 
of GCIP in NPC1-P compared to HC. However, the patho-
physiology leading to retinal degeneration in NPC remains 
unclear. GCIP atrophy might be explained by the predomi-
nant mitochondrial dysfunction and oxidative stress [41]. 
In line with this hypothesis, functional studies in NPC have 
shown an increase in autophagy markers in the ganglion cell 
layer and the upregulation of proteins that mediate cellular 
cholesterol release in the retina [42]. Finally, inflammation 
has been suggested to play a key role in the pathogenesis of 
NPC [43]. In analogy to the known GCIP degeneration in 

multiple sclerosis [44], one might speculate that the atrophy 
of the ganglion cells in NPC1 could be at least be partly 
explained by inflammatory processes.

Recently, various subclinical abnormalities in asymp-
tomatic heterozygote NPC1-mutation carriers have been 
described including hepatosplenomegaly, increased 
cholestantriol, and plasma chitotriosidase and features of 
early neurodegenerative disease, e.g., impaired cognitive 
function, hyposmia, features suggestive of REM sleep 
behavior disorder, and decreased glucose metabolic rates on 
PET imaging [26]. We found no retinal neuronal and axonal 
degeneration in our NPC1-MC, but we did observe a non-
significant trend towards lower mRNFL as seen in NPC1-P. 
Notably, peripapillary retinal nerve fiber layer thickness in 
NPC1-MC correlated with suspicious motor scale scores. 
These preliminary observations are of special interest, as 
they are in line with OCT findings in a related metabolic 
disorder, Gaucher’s disease (GD), in which heterozygous 
mutations in the GBA gene are the most frequent genetic 
risk factor for developing late-onset Parkinson’s disease 

Fig. 2   Relationships between OCT measures and disease sever-
ity scales in NPC1-P (a, b) and in NPC1-MC (c). mDRS modified 
disability rating scale, SARA​ scale for the assessment and rating of 
ataxia. Motor score: one point each for presence of a reduced arm 
swing, intention tremor, increased muscle tone, ankle clonus, and gait 

abnormalities. Scores ≥ 1 were considered pathological. R2 represents 
a goodness-of-fit measure for linear regression model. pRNFL peri-
papillary retinal nerve fiber layer thickness, GCIP volumes of com-
bined ganglion cell and inner plexiform layer, OPNL combined outer 
plexiform layer and outer nuclear layer
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[45]. In GD ganglion cell layer atrophy was found in GD 
patients but also in asymptomatic mutation carriers [17]. 
Indeed, animal studies in NPC1-mutant mice demonstrated 
preclinical retinal degeneration and lipofuscin accumulation 
in the pigment epithelium and ganglion cells, electrodense 
inclusions in various cell types, photoreceptor defects, and 
hyperactivity of glial cells [42, 46], as well as optic nerve 
pallor and per macular grey discoloration [47]. Given the 
pathomechanistic similarities between NPC and GD, we 
encourage additional work in NPC heterozygotes to shed 
further light on potential similar risks.

As we did observe a correlation between OCT values 
and subtle neurologic findings in clinical tests and scores 
in patients and in heterozygous mutation carriers, we were 
able to evaluate the potential eligibility of OCT measures as 
biomarkers of neurodegeneration and disease progress. In 
NPC1-P, a clear negative correlation between a decrease in 

GCIP as a sign of retinal neurodegeneration and an increase 
in cerebellar ataxia as a sign of severity of the NPC1-pheno-
type could be shown. In addition, the extent of the decrease 
in OPONL correlated with the severity of motor impairment 
(mean mDRS). Furthermore, we correlated saccadic and 
smooth pursuit measures with retinal characteristics. The 
amplitude of upward vertical saccades to 20° stimulus and 
the mean peak velocity of horizontal saccades to 30° stimu-
lus in NPC1-patients showed positive associations with aver-
aged pRNFL and averaged GCIP. In NPC1-MC, there were 
no significant associations between the retinal and ocular 
motor measures. In line with the VOG study of a large NPC 
cohort [20], horizontal saccades peak velocity and duration 
are related to the disease characteristics. This is due to the 
functional impairment of burst neurons in rostral interstitial 
nucleus of the medial longitudinal fascicle (riMLF) in the 
rostral mesencephalon. Based on the correlations shown, 

Fig. 3   Relationships between OCT measures and video-oculography 
data. In a and b correlation with upward vertical saccades to 20° 
stimulus, in c and d with mean peak velocity (PV), in e with the dura-
tion of horizontal saccades, and in f with vertical smooth pursuit (SP) 

gain are shown. pRNFL peripapillary retinal nerve fiber layer thick-
ness, GCIP volumes of combined ganglion cell and inner plexiform 
layer, OPONL combined outer plexiform layer and outer nuclear layer
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it might be considered to monitor disease progression in 
NPC1-P after clinical manifestation by measuring retinal 
axonal and neuronal degeneration.

The study has several limitations. Due to the rarity of 
this metabolic disease, the sample size is small and con-
firmation by an independent group is encouraged. We took 
a cross-sectional approach, but future longitudinal studies 
may help to validate the described retinal pattern. In addi-
tion, NPC1-P with the presumably most pronounced reti-
nal pathology could not be included in the study. Due to 
their severe clinical affection such as pronounced cerebellar 
ataxia and dementia, they had difficulties to undergo OCT.

In summary, by retinal imaging using the OCT tech-
nique, we provided additional and complementary diagnos-
tic information in symptomatic NPC1-P. Since OCT is a 
non-invasive, safe, and highly precise diagnostic tool, we 
expect an increasing impact of OCT in the diagnostic work-
up of NPC, particularly of adult-onset NPC1, in which the 
clinical symptoms are often mild and non-specific. Further-
more, longitudinal OCT analyses will help to understand 
the disease specificity of our findings and the opportunities 
to integrate this technique into the daily clinical practice. 
Finally, on the basis of our findings, the role of OCT to 
monitor disease progression and treatment response in NPC1 
has to be evaluated.
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