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Gut microbiome responses to dietary intervention with
hypocholesterolemic vegetable oils
Rachel Rui Xia Lim1,5, Mi Ae Park1, Long Hui Wong 1, Sumanto Haldar2, Kevin Junliang Lim 1, Niranjan Nagarajan3,
Christiani Jeyakumar Henry2, Yuan Rong Jiang4 and Oleg Vladimirovich Moskvin 1✉

Hypercholesterolemia is becoming a problem with increasing significance. Dietary vegetable oils may help to improve this
condition due to presence of phytonutrients with potentially synergistic cholesterol-lowering effects. The objective of this
8-week double-blinded randomized clinical trial was to investigate the effects of consuming 30 g of two different blended
cooking oils, rich in omega-3 alpha-linolenic acid and phytonutrients, or refined olive oil on the intestinal microbiota in 126
volunteers with borderline hypercholesterolemia. Multi-factor analysis of relationships between the gut microbiota composition
at various taxonomic ranks and the clinical trial parameters revealed the association between beneficial effects of the dietary
intervention on the blood lipid profile with abundance of Clostridia class of the gut microbiota. This microbiota feature was
upregulated in the course of the dietary intervention and associated with various plasma markers of metabolic health status,
such as Triglycerides, Apolipoprotein B and Total Cholesterol to HDL ratio in a beneficial way. The relative abundance of a single
species—Clostridium leptum—highly increased during the dietary intervention in all the three study groups. The oil blend with
the highest concentration of omega-3 PUFA is associated with faster and more robust responses of the intestinal microbiota,
including elevation of alpha-diversity. Butyrate production is being discussed as a plausible process mediating the observed
beneficial influence on the plasma lipid profile. Causal mediation analysis suggested that Clostridium genus rather than the
higher rank of the phylogeny—Clostridia class—may be involved in the diet-induced improvements of the blood lipid profile.
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INTRODUCTION
It is becoming increasingly clear that the enormous metabolic
potential of human gut microbiome shaped up by early life,
environment and the diet1 is responsible for a large part of the
interaction between the diet and the human health2,3.
Microbiota-dependent diet modulation affects autoimmunity4,
hypertension5, obesity and diabetes6. Wider appreciation of the
Diet–Microbiome–Health axis resulted in the “Food Pharmacy”
term recently coined7 and “food as medicine” concept being
actively promoted8, with increasing attention to individualiza-
tion of the “food therapies” based on the individual microbiome
signatures9.
The initiatives like Integrative Human Microbiome Project10,

while not being explicitly diet-focused, are helping to understand
general patterns of microbiota-health interaction at a mechanistic
level, and a number of clinical trials aimed to investigate the role of
this interface in particular health conditions are being conducted
across the globe11.
Still, the range of health phenotypes addressed by the HMP is

limited, and specialized studies are needed to address the role of
gut microbiome in conditions such as hyperlipidemia, in context
of the geographically-distinct populations that may have specific
gut microbiome composition. One of the main food components
widely associated with both the improved function of gut
microbiome and host health benefits is dietary fiber demonstrated
to increase the Prevotella/Bacteroides ratio and microbial diversity
in the gut and facilitate production of health-promoting short-
chain fatty acids12. Recently, influence of dietary oils is also

gaining attention. A recent meta-analysis of 17 dietary interven-
tion clinical trials targeting hypercholesterolemic subjects13

revealed that plasma triglycerides may be reduced with omega-
3 fatty acids dietary supplementation. The latter also showed a
trend to reduce total and LDL cholesterol, underlying the
importance of the omega-3 polyunsaturated fatty acids (PUFA)
for decreasing the risk of cardiovascular diseases extensively
explored earlier14. The effects of the dietary lipids on host
phenotype have been also shown to be substantially mediated by
the gut microbiota15; this phenomenon belongs to a more general
interplay between the microbiota and the human metabolism16.
In a recent mouse study, a reversal of detrimental effects

associated with high-fat diet was shown with the supplementa-
tion of three types of dietary oils, detectable as attenuation of
the decrease of Bifidobacteria and suppression of the increase of
the Enterobacteriaceae in the murine gut17. Notably, this
particular study was culture-based rather than metagenomics-
based. Microbiota may affect host’s HDL metabolism18, and
there is accumulating evidence on the gut microbiota mediation
of the beneficial effects of dietary oils on inflammatory
conditions via various effects (either immunostimulatory or
immunosuppressive) of lipopolysaccharide isoforms produced
by different microbes19. The anti-diabetic effects of PUFA were
shown to be mediated by certain microbiota species, including
those of Ruminococcus genus20.
In a recent study of dietary intervention with blended oils21

beneficial effects of two blended oils on blood lipid profile similar
to the effect of olive oil were demonstrated. The present study,
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being a sub-study of that dietary intervention clinical trial is
focused on assessing the responses of the intestinal microbiota of
borderline hypercholesterolemic Chinese adults to an 8-week
supplementation with dietary oils of various compositional
signatures: refined olive oil (high in MUFA) and two novel oil
blends (high in omega-3 PUFA, ALA). Comparison of the results of
two lines of associations: (1) dynamics of the microbiota features
following the dietary intervention and (2) correlations of the
microbiota features with the blood markers of metabolic status
suggested the engagement of Clostridia in diet-microbiota-health
axis via connecting the beneficial oil consumption and improve-
ments of the plasma metabolic marker profiles.

RESULTS
Preservation of the individual microbiome signatures during
the dietary intervention
Figure 1 shows sample-centric shares of the most common
bacterial genera (36 genera, selected by being detected in at least
40% of the samples across the dataset), as well as sample profiles
at phylum level of the taxonomy. From comparison of the profiles
on the top and bottom rows for each taxonomy level (i.e., data for
the same study subjects before and after the clinical trial), it is
evident that the degree of the variance between the individuals
exceeds any changes that may be caused by the 8-week dietary
intervention. We respected this observation by choosing the
analytical strategy that prioritizes detection of the within-subject
changes during the intervention.
More detailed profile of the microbial entities at 6 phylogeny

ranks is given Suplementary Table 2. Out of 387 bacterial species
ever detected in the dataset, only 1 (Ruminococcus obeum) was
found in all the 378 samples. Median value of the share of samples
with non-zero detection of a particular bacterial species is 5%. As
expected, this number increases when we move up the phylogeny
tree, reaching 10% at the Class level. Still, individual signatures are
preserved at this phylogeny level as well, beyond the 6 classes
that are detected in over 95% of the samples. At the species-level,
relationship between the overall abundance in the dataset and
frequency of the detection in an individual sample is not
straightforward: the enterotype-associated Prevotella copri, while
being the most abundant overall (6.4% of the pooled dataset,
almost an order of magnitude more than the “housekeeping” R.
obeum at 0.77%) was detected in 39% of the samples only,
showing an “on-off” detection pattern.
A more formal analysis of relative contribution of different study

factors in the metagenomic data variance (PCA, Fig. 2) shows that
the landscape formed by the 3 first principal components is not
significantly influenced by either Group or Time factors of the
study (Fig. 2a). At the same time, restricting the visualization of the
same PCA analysis to the pre-intervention time points (Week 0)
shows conservation of the PCA landscape; thus, the latter is
formed by the differences in the pre-existing individual micro-
biome signatures. PERMANOVA (Supplementary Table 4) analysis
shows that indeed, 48.17% of variance (p= 0.0009), was explained
by inter-individual variability, while the variance explained by
group and time was 0.75% (p= 0.0009) and 0.57% (p= 0.0009),
respectively. This phenomenon prompted us to choose a
conservative approach of identification the intervention-related
microbial changes that relies on the individual-centric temporal
changes of the feature abundance (see Methods).

Microbiome dynamics in the course of the dietary
intervention
Diet-related changes in the microbial diversity. One of the
characteristics of the gut microbiome that is constantly being
referred to as beneficial for the human health in different
phenotypic contexts is microbial diversity. We computed two

statistics describing the phenomenon—the Shannon Diversity
Index, as well as Simpson Evenness Index, in our metagenomics
dataset. By the end of the dietary intervention, the diversity
indices increased in all the 3 groups (Fig. 3a, b), being statistically
significant in groups B and C and borderline significant in group
A (Table 1, Week 8 vs. Week 0, all data), according to the paired
Wilcoxon test. Notably, if we restrict the dataset to the 50% of
the subjects that demonstrated the lower Shannon diversity
before the start of the trial (“bottom 50%”), subsequent increase
in the diversity indices in the less responding groups (A and B)
become more significant (Fig. 3c, d and Table 1 “Bottom 50%”).
This suggests that the dietary intervention increased the
microbial diversity preferably in the subjects that had lower
initial microbial diversity.
Comparing the inter-group differences of the effect on

Shannon diversity (i.e., progressive rise in both the magnitude
and speed-of-establishment of the elevated microbial diversity
from groups A to B to C) with the differences in the compositions
of the oil supplements (Supplementary Table 1), a compositional
pattern that follows this trend is the concentration of the alpha-
linolenic acid, ALA (0.8/20.9/34.0 percent of the total fatty acids
in groups A/B/C) and the corresponding omega-3 to omega-6
PUFA ratio (0.09/0.70/1.44). Table 1 from the earlier publication21

shows that no other oil compounds accounted for in this study
have similar distribution across the 3 oils. While we cannot
exclude a combinatorial effect of some unaccounted minor
components of the oil blends, the ALA concentration pattern
across the three oil types stays as a possible explanation of the
effect on diversity.

Species dynamics. In the course of the dietary intervention, 11
bacterial species changed their relative abundance (FDR < 0.05,
Maaslin2), including 3 Clostridium species (Fig. 4). Five Clostridium
species were among the top 37 species ranked by significance; 4
of them showed a tendency to increase in abundance in the
course of the clinical trial. Within the Ruminococcus genus, we see
species-level restructuring, with R.obeum and R.callidus increased
and R.bromii decreased. Among the four species on Fig. 4 that
show a trend to be downregulated by the intervention, the next-
largest coefficient after R. bromii belongs to the pathogenic
Klebsiella pneumoniae, however, without reaching the formal
statistical significance. Representatives of known metabolically
beneficial Roseburia22, Vellionella23 belonged to the top 11 list
and showed a trend to increase their abundance, while
Prevotella24 and Sutterella25 demonstrated the uptrend with
lower significance. The top responsive species, Clostridium
leptum, showed the statistical significance level 4 orders of
magnitude better compared to the next responder species in the
ranked list, as well as the highest coefficient of the association.
No associations with the study group (with FDR < 0.05) were
detected (Supplementary Table 6).
C. leptum could also be detected as a species increased in

abundance following the dietary intervention, when running
MaAsLin2 separately within the three study groups, albeit with
attenuated but still statistically significant FDR values.
While testing for the differential abundance within each study

group separately may have less power, especially in detecting
common signals preserved across groups (illustrated by the just-
mentioned C.leptum case), it is a cleaner method to detect a
group-specific signals, considering the existence of a false group-
related signals in the dataset driven by individual variations, that
might not be entirely removed by the multivariate model. To
achieve this, we used paired Wilcoxon test between the time
points within each study group. This provides both group
isolation and a natural way of handling the subject-specificity
(paired test mode). Supplementary Table 7 shows the results of
this test for the species dataset. Clostridium leptum was
confidently detected in all the 6 comparisons (3 groups, 2 time
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points per group) as a species with highly increased abundance,
with 6-to-31-fold change difference above the Week 0 level in
different comparisons (column B) and an absolute shift in relative
abundance nearly an order of magnitude larger than the

corresponding value of the second strongest responder species
(column C). Visualization of per-subject differences in C.leptum
abundance across the study groups and time point comparisons
is given on Fig. 5.

Fig. 1 Sample-level relative abundances at different ranks of taxonomy. a–f the 36 most common bacterial genera; g–l, phyla. a–c and g–i,
study groups A,B,C before the dietary intervention (Week 0); d–f and j–l study groups A,B,C at the completion of the trial (Week 8).
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Dynamics at higher levels of phylogeny. Since higher ranks of the
phylogeny are often discussed as representative for differential
microbiome changes in various studies (up to the phylum-level
Firmicutes to Bacteriodites ratio6), we further analyzed the
intervention parameters associations with microbiome features
at other ranks of the phylogeny via Maaslin2 multivariate model.
Similar to the case of species-centric associations, the “Group”
factor was not significantly associated with any microbial feature
across the higher phylogeny ranks, while the “Time” factor was
(Supplementary Table 8).
The top upregulated entity at the family level was Clostridia-

ceae, with the largest coefficient and a highly significant FDR level
of 2.05 × 10−13. While this was not the only responsible entity at
this phylogeny rank according to the multivariate model, others
were neither supported by an independent Wilcoxon test for the
difference between the time points (Supplementary Table 7) nor
showed up in blood marker association test (below). An order-
level upregulation signal, Clostridiales, does not seem to be a
consequence of the single-species C. leptum effect but the result
of summarization of smaller upregulation effects (with lower
statistical significance) for other genera within this class, such as
Dorea: D.unclassified, D. formicigenerans, D. longicatena are found
high on the ranked list in different explicit time point comparisons
(Supplementary Table 7), Eubacterium (high ranks of E. ramulus,
E. limosum, E. hallii and E. eligens in Supplementary Table 7), as
well as other less upregulated Clostridium species (C. asparagi-
forme, C. nexile, C. symbiosum). This branch of the phylogeny also
shows stronger statistical upregulation at a higher taxonomical
level—class Clostridia.
Moving forward, Clostridia response across the levels of the

taxonomy was observed in a different type of analysis—
associations between taxa abundance and the blood markers of
metabolic health status.

Associations between the microbiome composition and the blood
markers of metabolic health. In the earlier publication based on
the clinical data of this trial, improvements in the readings of the
blood markers of the metabolic health as a result of the dietary
intervention have been reported21. This included decrease in total
and LDL cholesterol, triglycerides, apolipoprotein B, as well as the
ratios of Apolipoprotein B to A1 (ApoB/ApoA1) and the total
cholesterol to HDL cholesterol.

Based on previous reports associating gut microbiota with
blood markers of metabolic health26,27 or lipid metabolism28 we
hypothesized that the gut microbiota changes due to the
consumption of different oils in this study may be involved in
regulating the blood lipid profile. The overview of the
associations between the blood marker levels and relative
abundance of bacterial genera is presented on Fig. 6. Nine
genera showed at least borderline associations (FDR < 0.25) with
two or more of the 10 blood parameters indicated by non-black
patches. The complete association data is recorded in the
Supplementary Table 9. Veillonella genus demonstrated the
highest number of the individual associations with the clinical
parameters that passed the relaxed FDR cutoff (6 out of 10), with
4 associations passing the FDR < 0.1 cutoff, demonstrating
consistently beneficial type of the association by being
negatively associated with Total Cholesterol, LDL, ApoB,
Triglycerides and Total Cholesterol to HDL ratio. Veillonella was
associated with increased athletic performance23 due to its
lactate utilizing capability. Roseburia genus, already noticed
earlier as a beneficial phylogeny branch that increased in
abundance during the dietary intervention, showed the stron-
gest beneficial association with ApoB level. Clostridium genus
was the second in the beneficial list by the number of favorable
associations (5) with the blood markers.
In an earlier work exploring microbial associations with the

blood metabolic health markers, 2 out of 3 microbial clusters
that showed strong association with blood HDL levels are
related to Clostridiaceae26. The study also reported negative
correlations of the abundance of Clostridiaceae family with BMI
and triglycerides levels. In our study, we see metabolically
beneficial association patterns for this phylogeny branch at
several levels, starting from C.leptum species to Clostridium
genus to Clostridiaceae family to Clostridiales order to Clostridia
class (Supplementary Table 9). This table also shows that when
moving up the taxonomy tree, the strength of blood marker
associations tends to increase.
Figure 7 illustrates the underlying sample-centric relationships

between the abundance of entities of this taxonomy branch and
the Triglycerides (TG) levels, comparing species-centric (a) and
class-centric (b) results. Each scatter plot provides the basis for
the summarized, single-number representation of the associa-
tions seen on Fig. 6. This suggests that the class-level beneficial

Fig. 2 The top 3 principal components of the PCA analysis. a Entire set of the 378 samples (126 subjects, 3 time points); b Visualization is
restricted to the 126 Week 0 (pre-intervention) samples. Green, study group A; blue, group B; cyan, group C. Circles, Week 0; squares, Week 2;
triangles, Week 8.
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Fig. 3 Effect of the dietary intervention on the per-subject changes in gut microbial diversity. Distributions of the differences in the
diversity statistics (a and c—Shannon Diversity Index, b and d—Simpson Evenness Index) for 6 combinations of study group and the time
point number. Group/Time labels: A2—per-subject differences between the second time point (Week 2) and Week 0. A3—per-subject
differences between the third time point (Week 8) and Week 0, the same for study groups B and C. Panels a and b, the entire dataset. Panels c
and d, dataset restricted to 50% subjects (within each group) demonstrating the lower Shannon diversity before the start of the trial. Ranges
of the absolute values of the indices across the entire dataset: Simpson Evenness: 0.025 to 0.377, Shannon Diversity: 1.41 to 3.71.

Table 1. p-values of the paired Wilcoxon test for differences between the Shannon diversity indices and Simpson Evenness Indices, computed for
the Week 2 or Week 8 samples, as compared to the diversity indices in the samples of the respective individuals collected before the intervention
(Week 0).

Comparison Statistic Dataset version Group A Group B Group C

Week 2 vs. Week 0 Shannon Diversity All data 0.79 0.69 0.0012

Bottom 50% 0.059 0.032 0.00039

Simpson Evenness All data 0.98 0.26 0.00013

Bottom 50% 0.030 0.010 0.00048

Week 8 vs. Week 0 Shannon Diversity All data 0.11 0.016 0.00032

Bottom 50% 0.00015 0.011 0.00048

Simpson Evenness All data 0.064 0.035 0.0042

Bottom 50% 0.000081 0.0080 0.00032

Datasets versions: “All data”, the complete sets of samples, “Bottom 50%”—subset of samples restricted to subjects that had below the group-wide median
value of the Shannon diversity index (22 subjects out of 44 in Group A, 21/42 in Group B and 20/40 in Group C).

R.R.X. Lim et al.
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metabolic health association for Clostridia is not an echo of a
more particular phenomenon existing at the lower phylogeny
rank but rather a true class-level association.
Among other order-level associations we see in Supplemen-

tary Table 9, a long metabolically disadvantageous association
pattern for Enterobacterales is not surprising because members
of this order largely contribute to dysbiotic state of the intestine
typically associated with health conditions29. Besides Clostri-
diales, Burkholderiales order also show beneficial blood markers
associations. Burkholderiales encompasses such genera as
Delftia, Oxalobacter, Parasutterella and Sutterella, from the
inspection of the species- and genus-level signals it looks like
this signal is driven by Sutterella. For Clostridia, a combination of
beneficial blood marker associations at several taxonomy ranks
with increase in their relative abundance in response to the
hypocholesterolemic oils—also at several taxonomic levels—
represents a consistent story on the beneficial gut microbial
compositional pattern. It is tempting to interpret the fact of
increasing beneficial correlation strength from lower to higher
phylogeny ranks of the Clostridia branch as an indication of the
functional importance of the class-level phylogenetic entity in
promoting the metabolic health of the host. However, the
relation between the correlations and the functional importance
is not that straightforward.

Considering the biological functionality, we expected to see a
differential abundance signal related to Time (and possibly,
Group) factor when the metagenomic data is represented as
pathway abundance. After applying the same statistical
approaches to pathway-level data, no pathways passed the
FDR cutoff (Supplementary Tables 10 and 11). To avoid coming
up with unreliable conclusions, we do not discuss pathway-level
changes here.
To shed some light on the question if the observed

phylogeny to blood markers correlations indicate any causal
link between the changes in microbiota composition and the
levels of blood markers, we applied causal mediation analysis30

to the select taxa—blood marker pairs (Table 2). In context with
the previous analysis, Clostridia-related pairs, especially those
showing the highest correlation levels (i.e., TG) were of the main
interest. Table 2 shows that the proportion of the diet
intervention-caused decrease in Triglyceride levels mediated
by the increase in Clostridium genus is estimated to be around
15%, with uncertain confidence interval that goes up to 55%.
Still, the p-value to call the mediation effect was not significant
(0.136). While the upper confidence intervals for mediation
effects in the case of Clostridia class and C.leptum species in
relation to Triglycerides reached 25% and 47%, respectively, the
statistical significance was even lower than for the genus case.

Fig. 4 Associations of bacterial species with “Time” parameter of the MaAsLin2 multivariate regression model. The top 37 species by the
significance of the association are shown (p < 0.05). Associations with the q-values below 0.05 are marked with asterisks. Positive associations
—species which abundance increased in the course of the dietary intervention; negative associations—species with decreased abundance.
Error bars represent standard deviation.
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With the highest rank (class) the signal seems to disappear,
suggesting that other genera of Clostridia, beyond Clostridium,
while showing the beneficial correlation, probably do not
participate in the Triglyceride lowering effect.
Mediation analysis with the strongest genus-level correlation

shown on the Fig. 6 (Roseburia—ApoB) has demonstrated a clearly
zero mediation signal, setting the “no-signal” level for such analysis
and making Clostridium—Triglyceride mediation result deserving
some attention in comparison. Interestingly, mediation analysis of
Clostridium—ApoB pair demonstrated very clear mediation signal
of 41%, with pronounced statistical significance (Table 2). This
signal disappears when we take the class-level taxa (Clostridia) into
the analysis (not shown). This analysis suggests that Clostridium
genus may participate in mediation of the diet-induced blood
marker improvement, while other genera of the same class may be
passengers rather than drivers of this process. Still, the purely
statistical nature of this result does not allow to have an
unequivocal conclusion about the functional link between
Clostridium taxon abundance and the blood metabolic markers.
The latter requires more detailed mechanistic studies that involve
cultured microorganisms in question.

DISCUSSION
The study highlights the prevalence of the common effects of the
dietary intervention with the three types of oils on the gut
microbiota over specific effects observed in any given study
group. The only exception is the magnitude and dynamics of the
responses of the overall bacterial diversity that was more robust in
the blended oil groups (especially Group C), as compared to the
refined olive oil group. Previous research has shown similar effects
of the three oil treatments on the blood lipid profiles suggesting
an intervention-related boost in the overall content of unsaturated
fatty acids as compared to the background diet of the participants
rich in saturated fat, that is common to South East Asian diets21.

Hence, the pronounced increase in intestinal Clostridium leptum
species observed consistently in all the 3 groups of this study, may
be related to the increase in the unsaturated fatty acids.
C.leptum is typically being discussed as a species contributing to

butyrate production in the gut31, which mediates the beneficial
influence of this species on a number of phenotypes, both related
to intestinal health per se and beyond32. Another known
mechanism of development of C.leptum beneficial effects on the
hosts is via bile acid modification due to presence of 7-alpha-
dehydroxylase, which is not found in Bacteroides species33.
There are several phenotypes that have a beneficial association

with C.leptum abundance in the gut, according to previous studies.
C. leptum was more abundant in lean women as compared to
obese study participants34. It was found to be depleted in variety of
health conditions, including those affecting body sites distant from
the gut, such as non-small-cell lung cancer35.
With relevance to dietary patterns, C.leptum was depleted in a

clinical study group that received a pro-inflammatory diet36, and
increased with Goji berry supplementation, which helped to
alleviate colitis in a mouse study37. Similar phenomena was also
observed in a recent murine study; C.leptum was enriched following
a dietary fiber supplementation across different fiber types38. It also
increased in cecum of the piglets supplemented with inulin39. We
mentioned earlier that the elevation of butyrate-producing capacity
of the gut is the common theme for both dietary fiber and omega-3
PUFA supplementation. C.leptum is a known butyrate producer that
can thrive in the gut microbial community in response to dietary oil
supplementation, the phenomenon we see in the context of
Singapore microbiome signatures. Reproducibility of this effect in
other geographic locations and local microbiome composition
contexts would require further studies.
While Clostridiales represent a consistent case of beneficial

intestinal microbial taxa, this trend is not universal in other clades.
Some taxons largely differ in the signs of their host health
associations, which cannot be generalized towards the upper
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Fig. 5 Distribution of per-subject shifts in relative abundance of Clostridium leptum after 2 and 8 weeks of the dietary intervention.
a–c Differences between Week 2 and Week 0; d–f Differences between Week 8 and Week 0. a, d—study group A (green); b, e—study group B
(blue); c, f—study group C (cyan). Borders of the box plot represent upper and lower quartiles, the bold line—median value, and the whiskers
—the most distant data points that stay within 1.5 of the interquartile range from the median.
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ranks of phylogeny. For example, with Bacteriodaceae, the
situation is more complex because of a strong species-level
dependence of the direction of the effect on the metabolic health.
For example, the opposite role of different Bacteroides species in
human metabolic health status was reported previously in an T2D
study, where 5 Bacteroides species were found to be differentially
abundant in T2D patients and controls40, including two (B.plebeius
and B.eggerthii) enriched in T2D cases and three (B.fragilis, B.
uniformis and B.ovatus) enriched in controls.
When associating microbiome features with clinical study

factors or the blood markers of metabolic health, the choice of
the most representative level of phylogeny rank is not obvious.
Historically, the most used ranks used as descriptive of the
microbiota changes are happened to be the two extreme ranks of
the phylogeny: species and phylum (Firmicutes to Bacteriodites
ratio belongs to the latter). We systematically scanned the
intermediate ranks of the phylogeny for associations with both
clinical trial factors and the blood markers of the metabolic health.
At species level, C leptum was upregulated during the course of
intervention but its correlation to plasma markers was relatively
weak. At class level, Clostridia was both upregulated during the
course of intervention and correlated with plasma markers across
subjects. The involvement of Clostridia at the both ends of the
diet-microbiota-health axis, i.e., both abundance-increase by the
beneficial oils and the beneficial association with the blood
markers of metabolic health, creates a stronger connection
between the microbiota-level changes (this study) and the
observed improvement of the plasma markers in the study

participants in the course of the trial21. Still, our mediation analysis
demonstrated that the stronger beneficial correlation with blood
markers at the class level (Clostridia) does not translate to larger
mediation signal (in fact, the mediation signal disappears at the
class level). However, the genus level does show the mediation
effect on the “diet–metabolic health” axis. Intermediate ranks of
the same branch, between the genus and class, were shown to be
beneficial for human health in other studies. For example, a recent
large-scale study identified Clostridiales as the top health-
beneficial taxon of the gut microbiota with widespread and
statistically significant associations across multiple health state
markers41. Notably, in that study employing serum lipid measures,
the family Clostridiacea was associated not only with HDL but the
largest-size HDL particles. In a recent extensive cross-sectional
study that involved ~3400 US individuals and 150 phenotypic
features, the order-level associations for Clostridiales were found to
be both statistically most significant among other considered
microbiome features and widespread across the study features,
being consistently positively associated with health-related, and
negatively—with disease-related features42.
Another aspect of the present study is to detect microbiota

changes related to particular oil blends. While the multifactorial
linear modeling could not detect reliable associations to the study
groups, the paired tests for differences between the time points
assessed separately in each group revealed a common pattern of
increase in the magnitude and speed of the response from group
A (refined olive oil) to groups B and C (blended oils), as seen in the
changes in alpha-diversity over time. The oil compositional

*

*
* *

**

*

*
*

*

*
*
*

*

*
**

Fig. 6 Associations of the bacterial genera abundance and the blood markers of metabolic health. The represented features passed the
default Maaslin2 significance cutoff (FDR < 0.25) in association with at least 2 out of 10 parameters: ApoA1, ApoB, ApoB/ApoA1 ratio, insulin,
triglycerides (TG), total cholesterol (T. Chol), measured and computed LDL-C (LDL-C(m), LDL-C(c)), HDL-C and the Total Cholesterol to HDL
ratio (T.Chol / HDL). Negative logs of the False-Discovery Rate are visualized, with values corresponding to FDR > 0.25 set to zero (black) and
values multiplied by –1 for cases of negative associations. Stars, FDR < 0.1.
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pattern that corresponds to this is concentration of Omega-3
PUFA (mainly ALA). If this projection is correct, then higher
concentration of ALA/Omega3 PUFA promotes faster microbiota
responses to the dietary intervention. Previous studies have
demonstrated that Omega-3 dietary supplementation increase the
abundance of the beneficial bacterial genera in the intestine43.
Also, omega-3 PUFA consumption modulates obese intestinal
microbiota by shifting it towards the state similar to normal
weight subjects44. In mouse models, ALA was found to improve
both the metabolic status and gut microbiota composition in
animals fed with high-fat diet45. In a review focusing on the
influence of dietary omega-3 on gut microbiota, multiple
beneficial effects are listed, including stimulation of short-chain
fatty acid production, beneficial effects on gut-brain axis and
immunity46. In a rodent study, omega-3 supplementation induced

intestinal expression of genes encoding fatty acid-oxidizing
enzymes that contributing to a better metabolic phenotype47.
Higher omega-3 to omega-6 ratio is able to attenuate the
destructive effects of alcohol on intestinal homeostasis48. A large
meta-analysis of omega-3 supplementation related clinical trials
assessing cardiovascular health consequences49 summarized
across 86 clinical trials (162,796 participants) came to conclusion
that ALA supplementation can “slightly reduce risk of cardiovas-
cular events and arrhythmia”. Since ALA is essential for humans
and may be utilized as a precursor for synthesis of other omega-3
PUFA—EPA, DHA, which levels in the blood elevate following the
ALA supplementation50—some effects of the ALA supply with the
beneficial oils may be, in fact, mediated by EPA and/or DHA,
suggesting to discuss the effect of omega-3 PUFA in general,
before more mechanistic studies are conducted.

Fig. 7 The beneficial association between Clostridia abundance in the gut microbiome and plasma triglyceride levels is more pronounced
at higher ranks of the phylogeny. a Species-level association (C. leptum); b Class-level association.

Table 2. Casual mediation analysis of the negative association of either Clostridium leptum species, Clostridium genus or Clostridia class with the
blood Triglycerides or ApoB levels, as well as negative association of Roseburia genus with ApoB in context of the dietary intervention.

Mediator entity/target parameter Statistic Estimate Lower CI Upper CI p-value

C.leptum/TG ACME −0.000182 −0.000544 0.00 0.252

ADE −0.001337 −0.002314 0.00 0.006

Total Effect −0.001519 −0.002476 0.00 <2*10−16

Prop. Med. 0.114 −0.100 0.47 0.24

Clostridium/TG ACME −0.000232 −0.000589 0.00 0.136

ADE −0.001317 −0.002273 0.00 0.014

Total Effect −0.001550 −0.002496 0.00 <2*10−16

Prop. Med. 0.146 −0.056 0.55 0.136

Clostridia/TG ACME −6.89e-05 −2.86e-04 0.00 0.43

ADE −1.43e-03 −2.41e-03 0.00 <2*10−16

Total Effect −1.50e-03 −2.46e-03 0.00 <2*10−16

Prop. Med. 0.041 −0.100 0.25 0.526

Clostridium/ApoB ACME −0.0207 −0.0346 −0.01 <2*10−16

ADE −0.0288 −0.0639 0.01 0.11

Total Effect −0.0495 −0.0829 −0.02 0.01

Prop. Med. 0.411 0.157 1.23 0.01

Roseburia/ApoB ACME 0.000459 −0.004611 0.01 0.920

ADE −0.050068 −0.080881 −0.02 0.002

Total Effect −0.049608 −0.081674 −0.02 0.002

Prop. Med. −0.004 −0.177 0.09 0.918

ACME average causal mediation effects, ADE average direct effect; Total Effect the sum of direct and indirect effects, Prop. Mediated the proportion of the effect
of Time on Triglyceride level mediated by the microbial entity, Lower CI lower 95% confidence interval, Upper CI upper 95% confidence interval.
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Alternative explanations of more robust effects of the oil blends
compared to the olive oil may be based on phytonutrients that
distinguish the blends from the olive oil (Supplementary Table 1).
Oryzanol in the blended oils, from the rice bran oil, was previously
shown51 to shift the microbial compositional pattern by lowering
the Firmicutes/Bacteroidetes ratio, even though the change in the
overall diversity was not reported. By supplying ferulic acid as one
of its components, oryzanol increases the relative abundance of
the ferulate-metabolizing bacteria such as Lactobacilli52, possibly
shifting the gut microbial community equilibrium towards the
healthier state by promoting short-chain fatty acids production
and bile acids metabolism. Also, tocopherol content is higher in
the oil blends compared to the refined olive oil, and its
antimicrobial properties towards a number of pathogenic species
in the gut are established53. Suppression of overrepresented
pathogens by tocopherol may contribute to an increase in
microbial diversity. On the other hand, higher content of
phytosterols in the oil blends, as compared to olive oil, may
increase the abundance of beneficial bacterial genera54, however,
their effect on the diversity index per se has not been shown.
On a more mechanistic note, in a recent 6-week dietary

intervention clinical trial, supplementation with omega-3 was
found to increase isobutyrate and butyrate levels55. This may
provide a connection between the enrichment in known butyrate-
producing bacterial taxa we observed and omega-3-induced
butyrate levels in an external study. The beneficial effect of
butyrate at the microbiota-host interface and the key role of
Clostridia in butyrate production are well established56. A
combination of ecological and functional studies considering the
intricate network of functional inter-dependencies between the
intestinal bacterial species is required to gain detailed under-
standing of the phenomena observed in this study. The study
provides the link between the beneficial effects of the new oil
blends on the blood lipid profile and the microbiota changes in
the gut, possibly via activation of the butyrate production.

METHODS
Clinical intervention design
The 8-weeks single-blind, parallel-design, randomized controlled dietary
intervention with 30 g per day of a dietary oil engaged 143 volunteers of
Chinese origin. Selection criteria included borderline hypercholesterolemia
(LDL cholesterol: 3.06–4.51mmol/l), age in the range of 50 and 70 years
and BMI ≤ 27.5. The study groups: Group A, refined olive oil; Group B,
blended oil #1; Group C, blended oil #2. The oil blends contained refined
rice bran oil, refined flaxseed oil, and refined sesame oil. The key
differences between the oil blends in terms of fatty acid and
phytonutrients content are given in Supplementary Table 1. Further
details are given in the clinical report on this trial21. At 3 out of 5 time
points of the original study—Week 0, Week 2, and Week 8—fecal samples
were collected from participants who have chosen this option at the time
of taking the informed consent, before the randomization was done.
Hence, this metagenomics sub-study is restricted to 126 subjects (out of
the 143 in the study, 88%) that had provided complete set of three fecal
samples. Each intervention group had at least 40 participants (44, 42, and
40 in intervention groups A, B, and C, respectively, with gender
composition of 21M/23F, 22M/20F, 18M/22F).
To test the degree of randomization, a post-randomization comparison

of age, gender, weight, BMI, total body fat, blood pressure and levels of
10 serum markers (LDL, HDL, total cholesterol, triglycerides, ApoB, ApoA1,
Total cholesterol to HDL ratio, ApoB to ApoA1 ratio, glucose and insulin)
was performed. No statistically significant differences between the 3
intervention groups by any of those parameters were found21. We also
tested for the baseline inter-group differences within the subset of
126 subjects who provided samples for metagenomic analysis. Similarly, no
differences were detected in this case (Supplementary Table 2). The
subjects’ adherence to the protocol was >98% for all three intervention
groups, according to daily intervention food records.
The study was approved by a Domain Specific Review Board ethics

committee, Singapore (reference: C/2018/00861). The participants signed
the informed consent during their initial Screening and Consent visit.

The study is registered on clinicaltrials.gov (Identifier No. NCT03964857).

Fecal samples collection and DNA isolation
Self-collection kits for the fecal samples were distributed to the study
participants. Each kit contained a thermal bag, thermal pouches, ice packs
(2 × 350 g), 50 ml Falcon tube for fresh (unfixed) sample and OmniGene
Gut tube for DNA-preserved sample (DNA Genotek, Ottawa, Canada). The
participants were instructed to collect the fecal samples within 24 h of a
measurement visit at baseline (Week 0), then Week 2 and Week 8. The
collected fecal samples were stored cold in the cooler bag with the
provided pre-frozen ice packs.
Upon arrival, the fresh stool samples were aliquoted into 250mg

portions in 2ml tubes and frozen at −80 °C. Samples fixed in OmniGene
Gut were frozen at −80 °C upon arrival.
DNA isolation was performed using QIAamp PowerFecal spin column kit

(Qiagen, USA). The cell disruption step was custom optimized for better
balance between the DNA yield and integrity and consisted of four 1-min
homogenization cycles at 6 m/s speed, with placing the tubes on ice for
15 s between the cycles and for 1 min at the end. All other steps were
performed according to the manufacturer’s protocol. DNA integrity was
checked with TapeStation 4200 (Agilent Technologies, USA) and purity was
assessed by measuring A260/A280 and A260/A230 ratios with Qubit
fluorometer (Thermo Fisher Scientific, USA).

Metagenomic sequencing and low-level data processing
The purified DNA (1.5 mkg) was used for Illumina sequencing library
construction (2x 150 bp, 300 bp insert). The library was sequenced on
Illumina HiSeq2000 platform to the target depth of 3 Gbases per sample.
This exceeds the depth used in the key publications from of the Human
Microbiome Project (for example, 2 Gbases per sample in IBD study57) and
is chosen to ensure the above-conventional level of the sensitivity of the
species detection.
After adaptor sequences removal, the FASTQ files were subject to a

2-stage filtering: (1) with Trimmomatic58 version 0.33 tuned to retain the
reads that pass a minimal average Q-score of 28 in a sliding window of size
3 and remained at least 50 bp long after the procedure and (2) with
kneaddata59 version 0.6.1 tool to remove the reads matching either host
(H. sapiens hg19) genome or rRNA gene sequences of various origin from
Silva60 database. Pairs of reads with both forward and reverse read passed
the filtering criteria were kept for all the subsequent analyses.
The pre-processed sequencing reads were analyzed with Metaphlan

version 261 in pair-end mode. The resulting abundance table was
normalized to get the sum of abundances of all the species in each
sample equal to 1. Over 99% of reads were mapped to Bacteria
(Supplementary Table 3), and the downstream results are interpreted in
terms of bacterial phylogeny.
Pathway-centric representation of the data was generated with

HUMAnN262.

Downstream data analysis
Data analysis was performed in an R statistical environment63 using a
combination of custom scripting with vegan, microbiome, gplots, Maaslin2
and ggplot2 packages.

Multivariate analysis and differential abundance testing
With the strong contribution of subject-specific microbiome composition
to the overall data structure (see Results), direct comparison of data
between the groups is prone to false positives, and indeed, in preliminary
tests, we noticed that the differential abundance signatures detected this
way are overwhelmed by the outlier species-driven signals and cannot be
interpreted as the effects of the dietary intervention: some apparent
“study group effects” were visible at Week 0, before the start of the actual
clinical trial (not shown). This phenomenon may drive false-positive
results in some published studies that use direct comparison of the data
between the study groups. To overcome this issue, we leveraged the
existence of a time course in our study and used two complementary
statistical approaches (below).
Differential abundance of microbiota features relevant to the clinical trial

(temporal changes and differences between the study groups) were
assessed in multivariate analysis setting using Maaslin264 version 1.3.2. The
analysis was run with min_abundance= 0.0001 and min_prevalence= 0.1
parameters, setting parameters of interest (Group and Time) as target
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variables, and subject ID as random effect. The latter (achieved by
random_effects= “Subject”parameter) switched Maaslin2 analysis to Linear
Mixed-Effects Models mode that leverages the longitudinal design of the
study and suppresses potential false-positive results coming from
extensive differences in microbial composition of the individual intestines
(see Results).
As an alternative, paired two-sided Mann–Whitney–Wilcoxon test between

different time points was applied to detect dietary intervention-related
changes in the microbiota features. To obtain the false-discovery rates (FDR),
the p-values of the Wilcoxon test were corrected according to
Benjamini–Hochberg procedure65.
Associations between the microbial taxa abundance and the blood

markers of metabolic health were performed using Maaslin2 by correlating
the levels of a blood marker with the relative taxa abundance in the
corresponding fecal samples, using the Linear Mixed-Effects model
described above, across the dataset of the 378 subject—time point
combinations.
Causal Mediation Analysis30 was performed using mediation R package

and was based on the two linear models: (1) abundance of the bacterial
taxa as a function of the intervention dynamics, corrected for the Subject
ID and (2) level of the blood marker as a function of the bacterial taxa,
intervention dynamics and the Subject ID. Subsequently, the models were
used as arguments for the “mediate” function, with “mediator” parameter
set to the bacterial taxa and “treatment”—to the day of intervention.
PERMANOVA was performed using vegan R package. Total variance

explained by each variable was assessed by marginal effects and their
corresponding statistical significance reported accordingly. For variables of
repeated measurements such as group and time, the variances and
statistical significances were computed by a permutation test that was
designed around blocks of samples repeated across time points. For inter-
individual variances, variances and statistical significances were computed
by a permutation that was freely randomized.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are openly available in NCBI
Sequence Read Archive, BioProject PRJNA728374. The clinical metadata part of this
dataset, utilized here for association analysis, was first discussed in the initial
publication21.
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