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Abstract: This study was carried out to develop a high-performance liquid chromatography method
for short-time analysis of the main cannabinoids in the inflorescence of hemp (Cannabis sativa L.).
We also performed decarboxylation of the raw material using our advanced analysis technique. In
this study, the UV spectrum was considered to analyze each of the four common cannabinoids,
solvents, and samples, where the uniform elution of acidic cannabinoids without peak tailing and
acids was tested. Optimal results were obtained when readings were taken at a wavelength of 220 nm
using water and methanol containing trifluoroacetic acid as mobile phases in a solvent gradient
system. The established conditions were further validated by system suitability, linearity, precision,
detection limit, and quantitation limit tests. The decarboxylation index (DT50) confirmed that ∆9-
THCA decarboxylated faster than CBDA, and both maintained a linear relationship with time and
temperature. In addition, the loss of cannabidiol was better prevented during the decarboxylation
process in the natural state than in the extracted state.

Keywords: cannabis; decarboxylation; cannabinoid; chromatography; cannabidiol

1. Introduction

Linnaeus classified hemp in Europe as a single species (Cannabis sativa L.) [1], and de
Lamarck separately classified Indian varieties as Cannabis indica Lam. [2]. Janischevsky
classified Russian-born hemp as Cannabis ruderalis Jansich. without any characteristics [3].
Even today, it remains controversial whether all cannabis should be viewed as a single
species of C. sativa or as multiple species divided into C. sativa, C. indica, and C. ruderalis [4].
For convenience, it is indicated as ‘Cannabis sativa L.’.

Hemp (Cannabis sativa L.) is an annual herb belonging to the Cannabaceae family,
first recorded in China for the purpose of obtaining fiber [5]. Since then, it has been
exploited for medical purposes for more than 10,000 years [6]. As many countries have
approved hemp for medical applications, there has been a surge in the use of hemp drug
therapy for pain relief [7]. Hemp contains more than 525 compounds and is known to
express approximately 109 cannabinoids [8]. Cannabinoid refers to the C21 terpenophenol
compound uniquely found in hemp [9]. Although expressed in small amounts in leaves,
cannabinoid is mostly concentrated in the trichome part distributed in the bracts of the
female flower of the plant. Its concentration is higher in the stalked-type trichome among
the two types, ‘sessile’ and ‘stalked’ [10]. They are mostly present in the resin secreted from
the trichomes of female plants, while male C. sativa have few glandular trichomes that can
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produce small amounts of psychoactive molecules [11]. The most abundant of these are the
∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD) families [12]. The compound
∆9-THC is a major psychotropic cannabinoid [13] known to induce transient psychotic and
anxiety symptoms [14,15]. It was recently found to be effective in treating Alzheimer’s
disease and glaucoma [5]. CBD has an effect on anti-anxiety and anti-psychiatric dis-
eases [16,17], and more than 1000 CBD-containing products are available in the market. It
is thought to contain ingredients that can cure mental illness [18]. Each of these neutral
cannabinoids is formed by non-enzymatic decarboxylation of acidic precursor cannabi-
noids called ∆9-tetrahydrocannabinolic acid (∆9-THCA) and cannabidiolic acid (CBDA)
(Figure 1) [19,20], and heating temperature and time are known to significantly influence
this decarboxylation process [21].
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Figure 1. Carboxyl group of acid cannabinoids. (A) Cannabidiolic acid, (B) ∆9-
tetrahydrocannabinolic acid. Carboxyl groups are removed by heat treatment and converted into
neutral cannabinoids.

In this study, high-performance liquid chromatography (HPLC) was used to efficiently
and accurately quantify four major cannabinoids (∆9-THC, ∆9-THCA, CBD, and CBDA)
that can be naturally and artificially converted. These compounds exhibit physiological
activities. Simultaneous analysis conditions were developed, established, and employed to
study the decarboxylation of cannabis inflorescence.

2. Materials and Methods
2.1. Standard and Sample Preparation

A sample of the inflorescence part of cannabis (Cannabis sativa L.) was received from
the Korea Cannabis Genetic Resource Center (Chuncheon, Korea). An inflorescence sample
of a plant grown for 105 days (50 days after flowering treatment) in a nutrient solution
cultivation system after sowing was used. The standard products cannabidiol (CBD)
and ∆9-tetrahydrocannabinol (∆9-THC) were obtained from CAYMAN (Ann Arbor, MI,
USA), the cannabidiolic acid (CBDA) standard product was from Cerilliant (Round Rock,
TX, USA), and the ∆9-tetrahydrocannabinolic acid (∆9-THCA) standard product was
manufactured by Sigma-Aldrich (St. Louis, MO, USA).

The inflorescence of freeze-dried hemp was pulverized using a chopper (YPT-1402,
Young Polymer Tech Co., Incheon, Korea) certified by Korea Conformity Laboratories and
filtered through a 12-mesh test sieve. The furnace particles were found to be homogeneous.
In brief, 0.1 g of hemp sample was sonicated (JEIO TECH Co., Ltd., Daejeon, Korea) for
30 min with 30 mL extra pure grade MeOH (Daejung Chemicals and Metals Co., Ltd.,
Siheung, Korea) as an extraction solvent. After ultrasonic extraction at room temperature
(23 ± 2 ◦C), the supernatant was sampled, filtered using a 0.45-micrometer syringe filter
(Advantec, Tokyo, Japan), and used for HPLC analysis.

All solutions except CBDA in stock state were precisely weighed and then diluted
using MeOH. The standard products and samples used in this study were received and
tested with the approval of the Seoul Regional Food and Drug Administration (approval
number: 1806).
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2.1.1. HPLC Condition Setting

HPLC was performed using a Shimadzu LC-20AT system with an SPD-20A detector
(UV-Vis, Shimadzu Co., Kyoto, Japan) and a Zorbax SB-C18 column (Rapid Resolution,
4.6 × 100 mm, 3.5 µm, Agilent Technologies, Inc., Santa Clara, CA, USA). HPLC-grade
ultrapure water, methanol (CH3OH), and acetonitrile (CH3CN) were purchased from
Mallinckrodt Baker (Phillipsburg, NJ, USA). The ∆9-THC, ∆9-THCA, CBD, and CBDA
standards were mixed at a final concentration of 100 µg/mL and subjected to analysis.

To determine the absorption region of each component, the absorbance spectrum was
measured in the UV region of 190–400 nm. The spectra of methanol and acetonitrile were
also measured in the same region to avoid the cut-off section of the solvent.

We analyzed the mixture of ultrapure water and selected organic solvents at concen-
trations of 60%, 70%, 80%, and 90% to improve kurtosis and skewness by adjusting pKa.
Formic acid (FA, Merck, Darmstadt, Germany), trifluoroacetic acid (TFA, Sigma-Aldrich
Co., St. Louis, MO, USA), and phosphoric acid (PA, Junsei Chemical Co., Ltd., Tokyo,
Japan) were added at concentrations of 0.01%, 0.05%, and 0.10%, respectively, to explore
optimal mobile conditions.

2.1.2. Validation for Establishing Analysis Conditions

To determine the suitability of the developed analysis conditions, tests of the system
suitability, specificity, linearity, range, accuracy, precision, detection limit, and quantitation
limit were conducted with reference to the ICH guideline Q2 (R1) [22]. The United States
Pharmacopeia (USP) was used to determine the suitability of the system.

2.2. Investigation of the Correlation between Hemp Inflorescence and Decarboxylation

Samples ground in the same manner as previously described were placed in a pre-
heated, closed, dry oven (Sungchan Science Co., Pocheon, Korea) and sampled at 5-min
intervals for 60 min. The temperature conditions were 90, 105, 120, and 135 ◦C.

To compare the decarboxylation of the extract and the natural product, two different
types of cannabis extract were additionally prepared, extracted by applying the above
extraction method, and concentrated at 30 ◦C using a rotary evaporator (Tokyo Rikakikai).
The moisture was removed using a freeze-dryer (FD8512, IlShinBioBase Co., Ltd., Dong-
ducheon, Korea). After decarboxylation at 135 ◦C for 30 min in the absence of any solvent,
the product was recovered with MeOH and used for analysis.

3. Results
3.1. HPLC Condition Setting

The absorbance spectrum of the standard solution in the UV region was measured
and compared with the mAU value. As a result, ∆9-THC, ∆9-THCA, CBD, and CBDA had
their maximum absorbance at 210.50, 221.24, 209.09, and 221.51 nm, respectively (Figure 2).
Cannabinoids in the form of acidic precursors had relatively low absorbance in the UV
region. The cut-off section of the mobile phase allowed us to judge whether it was easy
to analyze at the selected wavelength (Figure 3). Acetonitrile and HPLC water showed
an absorbance lower than or similar to that of the baseline at 220 nm, and methanol had
a slightly higher absorbance than that of the baseline. This observation was consistent
with that reported by Welch et al. [23]. We chose 220 nm as the optimal wavelength
and acetonitrile as the organic mobile phase to facilitate sensitive peak detection, solvent
absorption, and simultaneous analysis.

Peak tailing tends to lower the peak height and increase the limit of detection (LOD)
and limit of quantitation (LOQ). As the area of the peak cannot be accurately determined,
the reliability of quantification is automatically reduced. In the case of ∆9-THCA, which
was eluted at the end, tailing occurred due to diffusion in the column and unstable kurtosis;
therefore, the flow rate was set to 1.5 mL/min.

We used water as the polar solvent and 60%, 70%, 80%, and 90% as ACN. Separation
was performed for 40 min using the isocratic method. Based on the last eluted THCA, 60%
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of cases were not detected within 40 min; at 70% RT, 10.314 (∆9-THCA); 80% RT, 5.922
(∆9-THCA); and 90% RT, 3.059 (∆9-THCA). The peaks of all spiked standards except for
those with 90% ACN were isolated; however, CBDA peak splitting occurred in the presence
of 80% or higher ACN. Thus, 70% ACN was selected as the optimal solvent.

The organic acids 0.05% TFA, 0.10% PA, and 0.10% FA were used under gradient
conditions, and the gradient eluent set to simulation was used as the elution method to
increase the elution rate (initiation, 70% ACN; 2 min, 70% ACN; 8 min, 85% ACN; 9 min,
70% ACN; 12 min, 70% ACN). FA and TFA showed a raised baseline (Figure 4). However,
TFA was selected as the optimal organic acid because PA is not very compatible with mass
spectrometry (MS), such as liquid-chromatography–mass-spectrometry (LC-MS) or liquid
chromatography quadrupole time-of-flight (LC-Q-ToF).

The chromatography conditions were as follows: mobile phase A was water containing
0.05% TFA and mobile phase B was ACN containing 0.05% TFA. The gradient conditions
were as follows: 70% B initially, 70% B for 2 min, 85% B for 8 min, 70% B for 9 min, and
70% B for 12 min. All four cannabinoids were measured at 220 nm using a UV–Vis detector.
The flow rate was 1.5 mL/min. The injection volume was 10 µL, and the column oven
temperature was set to 35 ◦C to prevent the destruction of acid-type cannabinoids and to
reduce the retention time.
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acid (PA).

3.2. Validation
3.2.1. System Suitability Test

A standard stock solution was prepared, and four types of standard products were
mixed and measured nine times at the same concentration. The retention time did not ex-
ceed 2.00% of the relative standard deviation in % (RSD%) values for all four cannabinoids,
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and the peak area was less than 1.00%. The tailing factor was less than 2.0, and all theo-
retical plates had values of 1000 or more, thus meeting all USP standards. For resolution,
CBDA, CBD, ∆9-THC, and ∆9-THCA with similar retention times were compared, thus
showing excellent resolution (Table 1).

Table 1. Results of system suitability test (n = 9).

Cannabinoid 1 2 3 4 5 6 7 8 9 Aver. RSD%

Resolution

∆9-THCA 5.995 5.971 5.99 5.98 5.997 5.984 5.987 5.987 5.983 5.986
-∆9-THC

CBD 4.042 4.043 4.029 4.028 4.024 4.04 4.041 4.061 4.034 4.038CBDA

T. plate
number

∆9-THCA 25,869 25,501 25,438 25,804 25,857 25,816 25,420 25,769 25,804 25,698
-∆9-THC 18,632 18,672 18,611 18,596 18,642 18,606 18,601 18,571 18,591 18,614

CBD 6914 6947 6806 6921 6838 6917 6911 6908 6911 6897
CBDA 5980 5893 5987 5987 5900 5983 5980 5973 5980 5963

Tailing
factor

∆9-THCA 1.4 1.4 1.39 1.4 1.38 1.39 1.39 1.39 1.39 1.39
-∆9-THC 1.38 1.38 1.38 1.38 1.37 1.37 1.37 1.37 1.38 1.38

CBD 1.34 1.34 1.34 1.35 1.35 1.35 1.34 1.32 1.35 1.34
CBDA 1.4 1.4 1.41 1.4 1.41 1.39 1.39 1.39 1.4 1.4

Peak area

∆9-THCA 1,500,678 1,497,089 1,494,576 1,489,975 1,498,975 1,509,757 1,509,785 1,498,546 1,509,901 1,501,031 0.484
∆9-THC 1,245,445 1,253,876 1,247,264 1,247,879 1,249,487 1,254,579 1,250,047 1,251,057 1,226,789 1,247,380 0.663

CBD 477,667 477,348 473,487 476,402 477,259 472,008 476,834 472,695 479,546 475,916 0.539
CBDA 1,775,767 1,779,756 1,766,487 1,769,487 1,767,534 1,776,789 1,779,785 1,773,246 1,775,875 1,773,858 0.282

Retention
time

∆9-THCA 8.815 8.82 8.809 8.804 8.813 8.806 8.806 8.798 8.804 8.808 0.076
∆9-THC 7.423 7.431 7.419 7.416 7.425 7.418 7.417 7.411 7.415 7.419 0.081

CBD 4.204 4.214 4.206 4.206 4.216 4.205 4.203 4.202 4.203 4.207 0.119
CBDA 3.384 3.392 3.386 3.386 3.394 3.385 3.384 3.382 3.384 3.386 0.118

3.2.2. Linearity

To test linearity, standard products were prepared at concentrations of 20, 40, 80,
160, 320, and 640 µg/mL, and calibration curves were measured using newly developed
analysis methods. The coefficient of determination (R2) of the evaluated calibration curve
was as follows: CBDA, R2 = 0.9916; CBD, R2 = 0.9993; ∆9-THC, R2 = 0.9944; and ∆9-THCA,
R2 = 0.9994. Thus, we observed excellent linearity above R2 ≥ 0.9900. However, in the
case of CBDA and ∆9-THC, the R2 values were 0.9999 and 0.9986, respectively, when the
maximum concentration of 640 µg/mL was removed. This observation was associated with
the high concentration, which violates the Beer–Lambert law because of the characteristics
of the calibration curve. In the case of quantitative analysis, CBDA and ∆9-THC should be
analyzed by excluding 640 µg/mL (Figure 5).

3.2.3. Precision

To establish the precision of the analysis method, intra-day and inter-day analyses
were performed over 2 days with five repetitions. The intra-day RSD% was 0.053–0.157
for CBDA, 0.641–1.203 for CBD, 0.689–1.329 for ∆9-THC, and 0.424–0.486 for ∆9-THCA.
The inter-day RSD% for CBDA, CBD, ∆9-THC, and ∆9-THCA was 0.181, 1.944, 1.018, and
0.590, respectively.

3.2.4. LOD and LOQ

The LOD and LOQ were measured using the standard products at low concentrations
of 10.0, 1.0, 0.5, and 0.1 µg/mL. The qualitative limit was judged to be effective when the
signal/noise (S/N) value was at least 3.000, and it was <0.1 µg/mL for CBDA (S/N: 10.181),
<0.5 µg/mL for CBD (S/N: 6.985), <0.5 µg/mL for ∆9-THC (S/N: 16.654), and <0.5 µg/mL
for ∆9-THCA (S/N: 28.372). The LOQ was judged to be effective when the S/N value was
at least 10.000, and it was found to be <0.1 µg/mL for CBDA (S/N: 10.181), <1.0 µg/mL for
CBD (S/N: 13.272), <0.5 µg/mL for ∆9-THC (S/N: 16.654), and <0.5 µg/mL for ∆9-THCA
(S/N: 28.372). All cannabinoids were detected at or below 0.5 µg/mL, and quantification
was possible at or below 1.0 µg/mL.
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3.3. Evaluation of Industrial Decarboxylation Efficiency of Hemp Inflorescence

Heat is a major factor in cannabis decarboxylation [24]. Therefore, we analyzed
the decarboxylation graph according to temperature and heating time using the newly
established simultaneous analysis conditions. Figure 6 shows the decrease in the acidic
form of cannabinoid and the increase in its neutral form. This decarboxylation reaction
was accelerated as the temperature and time increased and showed a pattern similar to
that reported in previous studies [21,25].
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Hemp without additional processing also undergoes decarboxylation in its natural
state owing to the effects of environmental factors such as light, and also generates neutral
cannabinoids [26]. We selected the DT50 parameter (when acid cannabinoids are reduced
by half; half-life) to accurately evaluate the rate of decarboxylation by removing the
cannabinoid factors that are oxidized during heating and naturally generated neutral
cannabinoids. DT50 was not achieved at 90 ◦C in either CBDA or ∆9-THCA after 60 min.
The DT50 was 44.4 for CBDA and 39.1 for ∆9-THCA at 105 ◦C, 32.6 for CBDA and 27.3
for ∆9-THCA at 120 ◦C, and 25.8 for CBDA and 21.1 for ∆9-THCA at 135 ◦C. As for
decarboxylation, ∆9-THCA had a DT50 value of approximately 5.1 ± 0.3 at the same
temperature as CBDA, suggesting that ∆9-THCA decarboxylated faster than CBDA did
under the same conditions (Figure 7).

The purpose of this study was to compare the loss of neutral cannabinoids from
natural products and extracts in response to heating at a maximum temperature of 135 ◦C
for 30 min using randomly selected CW21-13 and RDA-35 varieties. The DT50 values of the
acidic cannabinoids were not noticeably different for both extracts and natural products.
Thus, neither the extract nor the natural product had any effect on the decarboxylation rate.
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Upon incubation for 30 min at 135 ◦C, the yield of neutral cannabinoids increased in
CW21-13. The CBD content of the raw material and extract was 33,786 and 10,046 µg/mL
(about 3.4 times), respectively, and the ∆9-THC content was 956 and 235 µg/mL (about
4.0 times), respectively. In the case of RDA-35, the CBD and ∆9-THC contents of the
raw material were 19,756 and 792 µg/mL, respectively, and those of the extract were
6306 µg/mL (about 3.1 times) and 155 µg/mL (about 5.1 times), respectively. Thermal
destruction of neutral cannabinoids in the raw material was significantly lower in both
varieties (Figure 8). Even during visual evaluation, the neutral cannabinoid levels increased
over time in the extract and decreased in the second half. On the other hand, the natural
product had a pattern of increase or did not continue to decrease even at 30 min, the
end-point of the experiment.
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4. Conclusions

We have successfully developed a fast and reliable analytical method using the widely
employed HPLC–UV/Vis system. The validation tests demonstrated the high suitability
of the method. The decarboxylation process of hemp was analyzed using this chromato-
graphic method, which successfully isolated four major cannabinoids within 10 min. The
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overall decarboxylation rate may vary depending on factors such as the volume of the
reactor due to the nature of the closed oven [27]. However, ∆9-THCA occurred more
rapidly at a lower temperature than CBD did in natural products under the same condi-
tions. The thermal destruction of cannabinoids occurred more in extracts than in natural
products. The results of this study are of great value. This method allows for quick quantifi-
cation and selection of the main cannabinoids in hemp breeding for industrial applications.
In addition, it provides justification about the various processes that occur during the
decarboxylation of hemp in its natural state.
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