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Abstract

Paleoindian unifacial stone tools frequently exhibit distinct, sharp projections, known as ‘‘spurs’’. During the last two
decades, a theoretically and empirically informed interpretation–based on individual artifact analysis, use-wear, tool-
production techniques, and studies of resharpening–suggested that spurs were sometimes created intentionally via
retouch, and other times created incidentally via resharpening or knapping accidents. However, more recently Weedman
strongly criticized the inference that Paleoindian spurs were ever intentionally produced or served a functional purpose, and
asserted that ethnographic research ‘‘demonstrates that the presence of so called ‘graver’ spurs does not have a functional
significance.’’ While ethnographic data cannot serve as a direct test of the archaeological record, we used Weedman’s
ethnographic observations to create two quantitative predictions of the Paleoindian archaeological record in order to
directly examine the hypothesis that Paleoindian spurs were predominantly accidents occurring incidentally via
resharpening and reshaping. The first prediction is that the frequency of spurs should increase as tool reduction proceeds.
The second prediction is that the frequency of spurs should increase as tool breakage increases. An examination of 563
unbroken tools and 629 tool fragments from the Clovis archaeological record of the North American Lower Great Lakes
region showed that neither prediction was consistent with the notion that spurs were predominately accidents. Instead, our
results support the prevailing viewpoint that spurs were sometimes created intentionally via retouch, and other times,
created incidentally via resharpening or knapping accidents. Behaviorally, this result is consistent with the notion that
unifacial stone tools were multifunctional implements that enhanced the mobile lifestyle of Pleistocene hunter-gatherers.
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Introduction

There is little doubt that throughout most the 20th century

research on North American Paleoindian flaked stone tools has

traditionally centered on bifaces, especially fluted projectile points

([1]; [2]:142). There were, and still are, very good reasons for this

focus. Questions involving mobility, raw material selection, core

reduction, settlement patterns, and gearing-up can be profitably

examined (e.g., [3]; [4]; [5]; [6]; [7]; [8]; [9]). Fluted point and

biface flaking, resharpening, and shape patterns can reveal stylistic

signatures, evolutionary trends, adaptation to environments, and

evidence of cultural transmission (e.g., [10]; [11]; [12]; [13]; [14];

[15]). Furthermore, the study of bifaces and fluted points is one

avenue for understanding aspects of Paleoindian tool-making and

tool-using efficiency and function (e.g., [16]; [17]; [18]; [19]; [20];

[21]; [22]; [23]; [24]; [25]; [26]; [27]; [28]) and, perhaps, even less

utilitarian aspects of Paleoindian life (e.g., [29]; [30]).

In more recent years, however, Paleoindian archaeologists have

come to realize that while the study of bifacial implements is vital

for answering numerous questions, constructing more holistic

models of Paleoindian behavior requires the consideration of other

stone tool classes ([1]; [2]). Thus, while there were early exceptions

to the priority given to the study of projectile points (e.g., [31];

[32]; [33]), over the last 30 years there has been an increase of

research focusing more heavily on other Paleoindian stone tool

classes, especially unifacially flaked stone tools (e.g., [2]; [34]; [35];

[36]; [37]; [38]; [39]; [40]; [41]; [42]; [43]; [44]; [45]; [46]; [47];

[48]; [49]; [50]; [51]; [52]; [53]; [54]; [55]; [56]; [57]; [58]).

The tools of mobile foragers often possess properties that were

dictated by, as well as helped enhance, a mobile lifestyle. Mobile

tools offered the properties of portability, durability, maintainabil-

ity, reliability, efficiency (effectiveness), and multi-functionality

(versatility and flexibility) ([2]; [59]; [60]; [61]; [62]; [63]; [64];

[65]; [66]; [67]; [68]; [69]; [70]; [71]). Since unifacial stone tools

were important, and often major, components of the Paleoindian

mobile toolkit ([41]; [46]), and since Paleoindians were highly

mobile ([72]; [73]), archaeologists have inferred from the

archaeological record that unifacial tools were often designed for

portability ([3]) and maintainability ([41]). However, one aspect

Paleoindian unifacial tool technology remains unresolved. With

regard to the property of multi-functionality of these tools, one

longstanding question has been chronically debated. Were distinct,

sharp projections–known as ‘‘spurs’’–on Paleoindian unifacial

stone tools functional ‘‘accessories’’ intentionally shaped by

prehistoric flintknappers for the purpose of facilitating tasks such

as ‘‘tattooing, piercing, ripping or tearing hide, and engraving

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e78419

, 



bone, antler, wood, and ivory’’ ([74]:731), or were spurs non-

functional phenomena, the incidental formation of which is best

explained by tool resharpening or knapping accidents?

The traditional answer to this question, assumed by numerous

Paleoindian lithic analysts throughout much of the 20th century,

was that spurs were intentionally created functional accessories.

To many of these early researchers this conclusion was so

intuitively obvious that the ‘‘spurred [insert unifacial tool type here]’’

was a commonly listed tool category (e.g., [75]; [76]; [77]).

However, during the last two decades, a more theoretically and

empirically informed interpretation–based on individual artifact

analysis, use-wear, tool-production techniques, and studies of

resharpening–suggested that spurs were sometimes created inten-

tionally via retouch, and other times created incidentally via

resharpening or knapping accidents ([35]; [36]; [39]; [45]; [52];

[54]; [55]; [56]; [78]).

Weedman ([74]:731) strongly criticized the inference that

Paleoindian spurs were ever intentionally produced or served a

functional purpose, asserting that ethnographic research ‘‘demon-

strates that the presence of so called ‘graver’ spurs does not have a

functional significance.’’ Her stance is based on two sets of

ethnographic observations. First, the ethnoarchaeological research

of Clark and Kurashina ([79]) and Nissen and Dittemore ([80])

suggested to her that spurs could form incidentally via resharpen-

ing unifacial stone tools. Indeed, Weedman’s own ethnographic

data from four distinct villages in Ethiopia–whose people did not

intentionally create this functional accessory ([74]:739)–show that

the percentage of used-up scrapers exhibiting a spur ranged from

2.9% to 19.0%. While these observations underscore the

possibility that some Paleoindian spurs were created incidentally

via resharpening, they do not falsify the notion that prehistoric

spurs could also have been created intentionally for functional

purposes. Nevertheless, Weedman ([74]:732) advocated that

‘‘spurs are the result of reshaping or resharpening.’’ Nearly 20

years earlier, Grimes et al. ([81]:165) asserted as much:

‘‘Spurred scrapers seem to represent one extreme of a

spectrum of lateral edge modifications which includes

constriction, notching, and ventral thinning. These modifi-

cations probably represent alternative means of adapting

end scrapers to a haft. Spurred end scrapers may be the end

product of periodic resharpening and bit attrition of notched

specimens. In effect, this process would continually reduce

the bit to notch distance, to the point where they ultimately

converged, producing the characteristic spur. If this

hypothesis is correct, spurred end scrapers may be a

‘diagnostic’ Palaeo-Indian artifact only in the sense that

they are the by-product of a strategy for maximizing to

longevity, a trait associated with Palaeoindian lithic

technology.’’

The second set of observations upon which Weedman ([74])

based her stance involved not only the act of resharpening, but the

practical experience of the ethnographic knappers who were doing

the resharpening. Her ethnographic data showed that ‘‘villages

with the highest percentage of spurred scrapers have more

hideworkers with three or fewer years or more than 30 years of

experience knapping’’ ([74]:738). Thus, the ethnographic record

suggests there exists both a mechanism (i.e., resharpening) for the

incidental creation of spurs, as well as a variable (i.e., age/

experience) that explains how that mechanism may vary to create

the low to high proportions of spurs in different assemblages.

Based on this, Weedman concluded ‘‘ethnoarchaeological evi-

dence eliminates a functional explanation for spurs’’ ([74]:741–

742), and hence, ‘‘it is quite probable that the presence of spurs on

scrapers in archaeological assemblages worldwide contexts repre-

sent not formally made tools, but accidents’’ ([74]:741).

Distinguishing between accidental and intentional spurs has

important implications for understanding Paleoindian technolog-

ical organization. If Weedman ([74]) is correct and spurs on

Paleoindian unifaces are accidents of resharpening, then spur

presence is related only to reduction intensity. Spurs can be used as

a direct indicator of curation but are themselves not related to

other aspects of technological organization. Alternatively, if spurs

are intentionally produced for tool use, then spur presence can be

used to understand other facets of Paleoindian technological

organization including the role of tool multifunctionality.

While ethnographic analogy can provide a range of possible

explanations for particular tool morphologies, documenting and

understanding a pattern in ethnographic data is not a direct test of

archaeological data ([82]; [83]). With regard to the overall

incidental or intentional nature of Paleoindian spurs, it cannot

be assumed that because ethnographic spurs from one small region

in Africa are primarily created incidentally, Paleoindian spurs, or

those present in ‘‘worldwide contexts,’’ were therefore also created

incidentally. Any conclusion made about Paleoindian behavior

can only come from a test of the Paleoindian archaeological record

itself. So, while we disagree that Weedman’s ([74]) conclusions can

Figure 1. Two examples of how the presence of spurs was
determined quantitatively. A box of 3 mm by 1 mm was
constructed (a). A spur was any projection no wider than 3 mm, but
at least 1 mm long (b) (compare with c).
doi:10.1371/journal.pone.0078419.g001
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be universally applied, her ethnographic observations are still

scientifically testable. By using those ethnographic observations as

a foundation for the creation of quantitative predictions of the

Paleoindian archaeological record, this is the first paper to directly

test the hypothesis that Paleoindian spurs were accidents occurring

incidentally via resharpening and reshaping.

We identify two predictions stemming from Weedman’s ([74])

hypothesis. The first prediction is that if Paleoindian spurs were

predominantly the incidental result of resharpening as Weedman

([74]) suggests, then we can predict that there will be increasingly

higher frequencies of spurs present in sets of unifacial stone tools

that are relatively more resharpened than there will be in sets of

unifacial stone tools that are relatively less resharpened. This

prediction is based on two reasons. First, as Grimes et al. ([81])

notes above, spurs may be the result of resharpening and bit

attrition of notched specimens. In effect, the process would

continually have reduced the working edge to notch distance, to

the point where they ultimately converged, producing a spur.

Second, as a unifacial stone tool is resharpened and becomes

progressively smaller, rounder, and thicker, more force is required

for retouch. The combination of increased retouch force and

increasingly undesirable tool shape fosters a situation where

mistakes (like spurs) are not only more likely to happen, but one in

which those mistakes are harder to rectify (see [46]:328). In

aggregate, these two reasons allow us to reasonably predict, on the

population level, that tools resharpened to a greater degree would

be more likely to possess spurs when discarded than those tools

that are relatively less resharpened.

Table 1. Number of unifacial stone tool specimens (total, unbroken, and broken) recorded for this study relative to the actual or
estimated number of specimens per assemblage.

Site

Number of recorded
unifacial stone tool
specimens

Number of recorded
unbroken unifacial
stone tool specimens

Number or recoded
broken unifacial
stone tool specimens

Actual (A) or Estimated
(E) number of specimens
in the assemblage

Arc 250 135 115 700 (E)

Butler 70 63 7 100 (E)

Gainey 64 31 33 90 (E)

Leavitt 71 33 38 71 (A)

Paleo Crossing 401 160 241 401 (A)

Potts 123 41 82 123 (E)

Udora 210 97 113 Unknown

doi:10.1371/journal.pone.0078419.t001

Figure 2. Box plots of tool mass vs. spur count.
doi:10.1371/journal.pone.0078419.g002
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Second, because ‘‘spurs frequently occur in assemblages with

high breakage rates’’ ([74]:741), if spurs are primarily the result of

resharpening accidents we can predict to see a significant positive

relationship between the percentage of broken unifacial stone tools

at a site and spur frequency. If we do not see these patterns in the

Paleoindian archaeological record, then the notion that Paleoin-

dian spurs were primarily the accidental result of resharpening is

not supported, and instead, they might be the result of intentional

shaping.

Materials and Methods

Samples
To examine the first prediction data were recorded from 563

unbroken unifacial stone tools from seven Clovis sites in the North

American Lower Great Lakes region. The analyzed class of

‘‘unifacial stone tools’’ was explicitly defined following Eren et al.

([43]). To examine the second prediction an additional 629

specimens were counted (TABLE 1).

These specimens are curated at the Cleveland Museum of

Natural History, Cleveland, Ohio (Paleo Crossing site); the State

Museum of New York, Albany, New York (Potts site); the Royal

Ontario Museum, Toronto, Canada (Udora site); the Museum of

Anthropology at the University of Michigan, Ann Arbor,

Michigan (Leavitt site); and by the private collectors Donald B.

Simons in Michigan (Butler, Gainey sites) and Stanley Vanderlaan

in New York (Arc site). No permits were required for the described

study, which complied with all relevant regulations. All that was

needed was permission from the museums or private collectors

where the archaeological specimens are curated, and this was

given freely.

The regional designation of these sites as ‘‘Clovis’’ is based on

the presence of diagnostic artifacts of the Clovis period, namely

fluted projectile points with relatively parallel lateral edges and the

lack of full-face flutes. Furthermore, the Paleo Crossing site

possesses a significant prismatic blade component ([84]), and the

Arc site exhibits overshot flakes ([22]), both characteristics of

Clovis sites in southern regions of North America. Two of the sites,

Paleo Crossing and Sheriden Cave, have yielded average

radiocarbon ages of 10,980675 B.P. and 10,915630 B.P.,

respectively ([85]; [86]).

Shott ([54]) suggested that the Leavitt site possessed ‘‘Parkhill

style’’ projectile points, a Clovis point variant assumed to occur

slightly later in time (though there is no chronometric evidence

supporting this assertion in the Lower Great Lakes). Having

investigated the Leavitt fluted projectile points ourselves, we agree

with others (e.g. [87]; [88]) who classify the points, thus the site, as

Clovis. Indeed, even Shott ([54]:102) suggested that site exhibited

similarity to Clovis with respect to particular variables. However,

given that Shott ([54]:102) ultimately concluded that the site is the

‘‘earliest Parkhill phase assemblage under study’’, and given that

the Parkhill Paleoindian phase is estimated to have commenced ca.

10,700 B.P. ([89]), even if one wishes to classify Leavitt as a

Parkhill phase site rather than a Clovis one, a case can be made

that the site is still representative of the initial colonization stages of

the region.

A Quantitative Definition and Measurement of ‘‘Spurs’’
A spur was defined as any projection no wider than 3 mm, but

at least 1 mm long. A box of these dimensions was rendered on

paper for an easy, objective, replicable means of quickly assessing

whether projections met our metric criteria of a spur (see figure 1).

Tool Resharpening Proxies
In order to assess whether spurs increased in frequency as

resharpening advanced, two unifacial stone tool resharpening

proxies were used. First, following Buchanan and Collard ([17];

Table 2. Comparison of tool mass and spur count.

n Mass Avg. (g) Standard Deviation Spur Count

321 11.5 10.6 0

192 10 9.3 1

47 8.5 7.9 2+

Kruskal-Wallis chi2 = 6.137; df = 2; p-value = 0.046

Spearman’s r= 20.100, p = 0.018

doi:10.1371/journal.pone.0078419.t002

Table 3. As unifacial stone tool size gets smaller (reduction
proceeds) the spurs-per-uniface value significantly increases
(r= 0.644, p = 0.044).

Size
Groups

#
Spurs

Mass
Range n

Spurs/
Uniface

1 (Largest
specimens)

20 80.2–22.9 56 0.3571

2 22 22.72–14.9 56 0.3929

3 26 14.8–11.6 56 0.4643

4 24 11.5–8.8 56 0.4286

5 37 8.8–7.2 56 0.6607

6 36 7.2–6.1 56 0.6429

7 24 6.1–5 56 0.4286

8 38 5–4.4 56 0.6786

9 32 4.3–3.4 56 0.5714

10 (Smallest
specimens)

34 3.4–0.8 59 0.5763

This result supports the notion that spurs were created incidentally or
accidentally via resharpening. In this instance, the size groups were of equal
sample size.
doi:10.1371/journal.pone.0078419.t003

Table 4. As unifacial stone tool size gets smaller (reduction
proceeds) the spurs-per-uniface value significantly increases
(r= 0.943, p = 0.005).

Size
Groups

#
Spurs

Mass
Range n

Spurs/
Uniface

1 (Largest
specimens)

17 .25 g 46 0.3696

2 7 20 g–25 g 23 0.3043

3 16 15 g–20 g 41 0.3902

4 42 10 g–15 g 86 0.4884

5 111 5 g–10 g 203 0.5468

6 (Smallest
specimens)

100 ,5 g 164 0.6098

This result supports the notion that spurs were created incidentally or
accidentally via resharpening. In this instance, the mass range of each group
was equal.
doi:10.1371/journal.pone.0078419.t004
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[90]) and Iovita ([91]; [92]), we used tool size as a proxy for tool

resharpening extent (mass loss). Although tool size is not always an

appropriate proxy for stone tool reduction, for flaked tools that

were likely hafted–like Clovis unifaces ([40]; [52]; [54]; [55])–it

seems reasonable to use size as a rough proxy for reduction on the

grounds that smaller tools are more likely to have been

resharpened than larger tools within the same tool class

([90]:262; see also [93]). Size itself can be measured numerous

ways, and here simple tool mass (g) was used.

The second proxy used for tool resharpening was tool shape. A

number of lithic analysts have shown that the allometry of

unifacial stone tools changes as resharpening advances (e.g., [94];

[95]); namely, tool thickness plays a progressively larger role in

tool shape because tool thickness is minimally effected by retouch

([2]; [5]; [50]). Indeed, Eren ([41]) has already shown for the data

used here that there is a statistically significant relationship

between tool size and shape and, specifically, that as tools got

smaller, they also got rounder. Like tool size, tool shape

(roundness) can be measured numerous ways, and here shape

was assessed as geometric mean size-adjusted thickness (Tsa) ([41]).

Size-adjustment of the data proceeds on a specimen-by-specimen

basis, dividing each variable in turn by the geometric mean of all

variables for that individual specimen. This procedure effectively

equalizes the volume of all specimens in a sample, creating a

dimensionless scale-free variable while maintaining the original

shape information of the data ([96]:854). The variables measured

on each specimen to calculate geometric mean size-adjusted

thickness were length, width and thickness (see [41]:Figure 5).

Length was measured as the distance parallel to the axis of

percussion between the platform (or most proximal point) and the

most distal point on the specimen. Width was measured as the

distance between the two lateral edges of the specimen at the mid-

point of and perpendicular to the length measurement. Thickness

was measured as the distance between the dorsal and ventral faces

of the specimen at the same location as the width measurement.

Unifacial Stone Tool Breakage Rates Per Site
In order to estimate the number of broken unifacial stone tools

as a percentage of all unifacial stone tools at an archaeological site,

the number of broken specimens was simply divided by the

number of all specimens. Although the samples of broken vs.

unbroken specimens were acquired from a larger population of

unknown size (because none of the sites have been fully excavated),

the robust sample sizes that were counted suggest that we were at

least approaching an accurate estimate of the true ratio of broken

to unbroken tools (TABLE 1).

Statistical Analyses
To thoroughly compare the relationships between tool size,

shape, and breakage and the presence of spurs, we employ

multiple, independent statistical tests. Shapiro-Wilk tests demon-

strate that tool mass is not normally distributed (W = 0.762,

df = 560, p,0.001) and size-adjusted-thickness is normally distrib-

uted (W = 0.996, df = 560, p = 0.247). Therefore, we chose to use

different statistical tests to assess comparisons involving these two

Figure 3. Box plots of tool mass vs. spur presence/absence.
doi:10.1371/journal.pone.0078419.g003

Table 5. Comparison of tool mass and spur presence/
absence.

n Mass Avg. (g) Standard Deviation Spur Presence

321 11.5 10.6 Absent

239 9.7 9 Present

Mann-Whitney U = 34,310.000; p-value = 0.032

Spearman’s r= 20.090, p = 0.032

doi:10.1371/journal.pone.0078419.t005

Paleoindian ‘Spurs’: Accessories or Accidents?
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measures. To test for differences in group means in comparisons

involving mass, we use the Mann-Whitney U and Kruskal-Wallis

non-parametric tests, and for comparisons involving size-adjusted-

thickness, we use T-test and Analysis of Variance (ANOVA) with

subsequent pair-wise Bonferroni comparisons (for significant

results only). To test for correlations between these variables and

spur count and spur presence, we performed Spearman’s rho

correlation analyses.

Results

Does Spur Frequency Increase as Resharpening
Advances?

The relationship between tool mass (as a proxy for reduction)

and tool spurs was evaluated using both total spur count and spur

presence/absence. Beginning with spur count, tool mass does

significantly (Kruskal Wallis chi2 = 6.137; df = 2; p = 0.046)

decrease with increasing numbers of spurs (TABLE 2,

FIGURE 2). This result does support the hypothesis that most

spurs are created incidentally or accidentally via resharpening.

There also appears to be a significant (p = 0.018), negative

correlation between tool mass and spur count, however, the

Spearman’s rho of 20.100 shows this correlation to be extremely

weak. This result is equivocal with regard to the notion that

most spurs are created incidentally or accidentally via resharpen-

ing. To further test this relationship, a series of Spearman’s rho

correlation analyses were applied to ranked groupings of the tool

dataset. The 563 unifacial stone tools were divided into 10 groups

of 56 specimens each (except for the last group, which has 59

specimens). Because some unifacial tools have more than one spur,

and others have none, the total number of spurs can be counted

and divided by the number of unifacial tools in each group to get a

‘‘spurs per uniface’’ value (TABLE 3). As unifacial stone tool size

gets smaller (reduction proceeds) the spurs-per-uniface value

significantly increases (r= 0.644, p = 0.044). This result does
support the notion that spurs are created incidentally or

accidentally via resharpening. The problem with groups of equal

sample size is that the range of masses becomes smaller in each

group. Regrouping the tools into groups of equal, 5 g mass ranges

gives 6 groups (TABLE 4). Spearman’s rho correlation analysis

comparing these 6 groups to spurs-per-uniface yields a significant

relationship that does support the notion that a greater number of

spurs are a result of resharpening (r= 0.943, p = 0.005).

Turning from spur count to spur presence/absence, there a

significant (Mann-Whitney U = 34,310.000; p = 0.032) relation-

ship between tool mass and spur presence/absence (TABLE 5,

FIGURE 3). This significance is driven by differences in the heavy

range of scrapers, and it does support the notion that spurs are

created incidentally or accidentally via resharpening. There are

more very large scrapers (with masses larger than 30 g) that have

no spurs. However, at the opposite end, it is clear that many small

scrapers also have no spur. There does appear to be a significant

(p = 0.032), negative correlation between tool mass and spur

presence, however, the Spearman’s rho of 20.090 shows this

Table 6. As unifacial stone tool size gets smaller (reduction proceeds) the % of unifaces with a spur does not significantly increase
(r= 0.542, p = 0.106).

Size Groups # Unifaces With a Spur Mass Range n % of Unifaces With Spur

1 (Largest specimens) 18 80.2–22.9 56 32%

2 18 22.72–14.9 56 32%

3 24 14.8–11.6 56 42%

4 21 11.5–8.8 56 37%

5 30 8.8–7.2 56 53%

6 28 7.2–6.1 56 50%

7 18 6.1–5 56 32%

8 30 5–4.4 56 53%

9 25 4.3–3.4 56 44%

10 (Smallest specimens) 27 3.4–0.8 59 45%

This result does not support the notion that spurs were created incidentally or accidentally via resharpening. In this instance, the size groups were of equal sample size.
doi:10.1371/journal.pone.0078419.t006

Table 7. As unifacial stone tool size gets smaller (reduction proceeds) the the % of unifaces with a spur significantly increases
(r= 0.829, p = 0.042).

Size Groups # Unifaces With a Spur Mass Range n % of Unifaces With Spur

1 (Largest specimens) 15 .25 g 46 32%

2 7 20 g–25 g 23 30%

3 13 15 g–20 g 41 31%

4 37 10 g–15 g 86 43%

5 89 5 g–10 g 203 43%

6 (Smallest specimens) 79 ,5 g 164 48%

This result supports the notion that spurs were created incidentally or accidentally via resharpening. In this instance, the mass range of each group was equal.
doi:10.1371/journal.pone.0078419.t007

Paleoindian ‘Spurs’: Accessories or Accidents?
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correlation to be extremely weak. This result is equivocal with

regard to the notion that most spurs are created incidentally or

accidentally via resharpening. Spearman’s rho correlation analyses

of the 10 equal-count groups (TABLE 6) shows that as unifacial

stone tool size gets smaller the percentage of unifacial stone tools

possessing a spur increases, but the relationship is not significant

(r= 0.542, p = 0.106). This result does not support the notion

that most spurs are created incidentally or accidentally via

resharpening. Spearman’s rho analyses of equal-mass-range

groups (TABLE 7) shows that as mass decreases, the percentage

of unifacial stone tools possessing a spur increases, and the

relationship is significant (r= 0.829, p = 0.042). This result does
support the notion that most spurs are created incidentally or

accidentally via resharpening.

The relationship between tool size-adjusted-thickness (as a

second proxy for reduction, Tsa) and tool spurs was evaluated

using both total spur count and spur presence/absence. Beginning

with spur count, Tsa does not significantly vary (ANOVA

p = 0.245) with spur count (TABLE 8, FIGURE 4). This result

does not support the notion that most spurs are created

incidentally or accidentally via resharpening. Likewise, there is

no significant (Spearman’s r= 0.053, p = 0.215) correlation

between Tsa and spur count. This result does not support the

notion that most spurs are created incidentally or accidentally via

resharpening. Spearman’s rho correlation analyses of equal-count

Figure 4. Box plots of TSA vs. spur count.
doi:10.1371/journal.pone.0078419.g004

Table 8. Comparison of TSA and spur count.

n TSA Mean Standard Deviation Spur Sount

321 0.415 0.74 0

192 0.426 0.80 1

47 0.416 0.76 2+

ANOVA p-value = 0.245

Spearman’s r= 0.053, p = 0.215

doi:10.1371/journal.pone.0078419.t008

Table 9. As unifacial stone tools get thicker and rounder
(size-adjusted thickness, Tsa, increases) the spurs-per-uniface
value does not significantly increase (r= 0.394, p = 0.260).

Tsa Groups # Spurs Tsa Range n
Spurs/
Uniface

1 (Rounder
specimens)

32 .4739–.2649 56 0.5714

2 33 .2642–.2287 56 0.5892

3 25 .2286–.2077 56 0.4464

4 36 .2076–.1876 56 0.6428

5 29 .1873–.1759 56 0.5178

6 37 .1756–.1618 56 0.6607

7 21 .1615–.1456 56 0.3750

8 24 .1454–.1292 56 0.4285

9 30 .1292–.1055 56 0.5357

10 (Flatter
specimens)

27 .1052–.0353 59 0.4576

This result does not support the notion that spurs were created incidentally or
accidentally via resharpening. In this instance, the size groups were of equal
sample size.
doi:10.1371/journal.pone.0078419.t009
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groups (TABLE 9) shows no significant relationship between Tsa

and spurs-per-uniface (r= 0.394, p = 0.260). This result does not
support the notion that most spurs are created incidentally or

accidentally via resharpening. Spearman’s rho correlation analyses

of equal-mass-range groups (TABLE 10) shows no significant

relationship between Tsa and spurs-per-uniface (r= .257,

p = 0.623). This result does not support the notion that most

spurs are created incidentally or accidentally via resharpening.

Moving from spur count to spur presence/absence, there is no

significant relationship (T-test p = 0.142) between average Tsa and

spur presence/absence (TABLE 11, FIGURE 5). This result

does not support the notion that most spurs are created

incidentally or accidentally via resharpening. Likewise, there is

no significant correlation (Spearman’s r= 0.061, p = 0.152)

between Tsa and spur presence/absence. This result does not
support the notion that most spurs are created incidentally or

accidentally via resharpening. Spearman’s rho correlation analyses

of equal-count groups (TABLE 12) shows no significant relation-

ship between Tsa and the percentage of unifacial stone tools

possessing a spur (r= 0.470, p = 0.171). This result does not
support the notion that most spurs are created incidentally or

accidentally via resharpening. Spearman rho correlation analyses

of equal-mass-range groups (TABLE 13) shows no significant

relationship between Tsa and spurs-per-uniface (r= 0.600,

p = 0.208). This result does not support the notion that most

spurs are created incidentally or accidentally via resharpening.

Does Spur Frequency Increase with Increased Tool
Breakage?

Spur frequency does not increase with increased tool breakage

(TABLE 14). When the breakage percentage of unifacial tools per

Table 10. As unifacial stone tools get thicker and rounder
(size-adjusted thickness, Tsa, increases) the spurs-per-uniface
value does not significantly increase (r= .257, p = 0.623).

Tsa Groups # Spurs Tsa Range n
Spurs/
Uniface

1 (Rounder
specimens)

15 .0.30 23 0.6521

2 30 .30–.25 54 0.5555

3 54 .25–.20 114 0.4736

4 105 .20–.15 186 0.5645

5 62 .15–.10 137 0.4525

6 (Flatter
specimens)

26 .10–.05 46 0.5652

This result does not support the notion that spurs were created incidentally or
accidentally via resharpening. In this instance, the Tsa range of each group was
equal.
doi:10.1371/journal.pone.0078419.t010

Figure 5. Box plots of TSA vs. spur presence/absence.
doi:10.1371/journal.pone.0078419.g005

Table 11. Comparison of TSA and spur presence.

n TSA Mean Standard Deviation Spur Presence

321 0.415 0.74 Absent

239 0.424 0.78 Present

T-test p-value = 0.142

Spearman’s r= 0.061, p = 0.152

doi:10.1371/journal.pone.0078419.t011
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site is plotted against the percentage of unifacial stone tools with

spurs per site there is no relationship (Spearman’s rho = 0.143,

p = 0.760). Similarly, when the breakage percentage of unifacial

tools per site is plotted against the spurs per uniface value per site

there is no relationship (Spearman’s rho = 0.0336, p = 0.939). With

regard to our second prediction, the analyzed data do not
support the hypothesis that spurs were created accidentally

during resharpening.

Discussion

Examination of both the empirical predictions shows that they

are inconsistent with the notion that sharp projections on unifacial

stone tools were predominately created via incidental or accidental

mechanisms. The first prediction, spur frequency increases with

reduction, can be confidently rejected for this Paleoindian dataset.

Using mass as a proxy for reduction produced equivocal results.

Some statistical tests suggest that spur count and spur presence/

absence significantly vary inversely with mass, but other tests

suggest the opposite. When size-adjusted-thickness is used as a

proxy for reduction, however, every statistical test yields results

which allow us to reject the null hypothesis that spur count or spur

presence increase with reduction. Likewise, the second prediction,

spur frequency increases with tool breakage, shows that there is no

relationship between these two variables.

Why do some of the mass comparisons appear to contradict

other results, including all of the size-adjusted-thickness results? In

our opinion, the most likely explanation involves the use of mass as

a reduction measure. It is highly possible that mass is an imperfect

measure of reduction given that initial flake-blank size (mass) likely

varied. For example, a scraper made on a small initial flake-blank,

but given intentional spurs, would appear to be resharpened if only

mass is used as a reduction proxy. Size-adjusted-thickness, on the

other hand, measures changes in tool shape, possibly providing a

more reliable measure of tool reduction intensity that is

independent of initial blank size.

Overall, these results do not support Weedman’s assertion that

‘‘it is quite probable that the presence of spurs on scrapers in

archaeological assemblages worldwide contexts represent not

formally made tools, but accidents’’ ([74]:741). Instead, our

examination of spurs present on unifacial tools made by Clovis

foragers in the North American Lower Great Lakes region is

consistent with the viewpoint that spurs were at least on occasion

created intentionally via retouch. Given that sharp projections of

spur-like morphology can arise from either intentional, as

demonstrated in this paper, or incidental knapping, as suggested

by Weedman ([74]), the status and function of worldwide

collections of unifacial stone tool spurs must be empirically

established on a case by case basis rather than assumed ([55]:60).

Our results demonstrate that spurs in this Paleoindian sample

cannot be explained as predominately incidental.

The obvious and perhaps most direct way spur status and

function can be demonstrated is via microwear analysis. In spite of

several microwear studies that showed spurs to be highly worn

Table 12. As unifacial stone tools get thicker and rounder (size-adjusted thickness, Tsa, increases) the % of unifaces with a spur
does not significantly increase (r= 0.470, p = 0.171).

Tsa Groups # Unifaces With a Spur Tsa Range n % of Unifaces With Spur

1 (Rounder specimens) 25 .4739–.2649 56 0.4464

2 31 .2642–.2287 56 0.5535

3 21 .2286–.2077 56 0.3750

4 29 .2076–.1876 56 0.5178

5 22 .1873–.1759 56 0.3928

6 25 .1756–.1618 56 0.4464

7 18 .1615–.1456 56 0.3214

8 21 .1454–.1292 56 0.3750

9 26 .1292–.1055 56 0.4642

10 (Flatter specimens) 20 .1052–.0353 56 0.3571

This result does not support the notion that spurs were created incidentally or accidentally via resharpening. In this instance, the size groups were of equal sample size.
doi:10.1371/journal.pone.0078419.t012

Table 13. As unifacial stone tools get thicker and rounder (size-adjusted thickness, Tsa, increases) the % of unifaces with a spur
does not significantly increase (r= 0.600, p = 0.208).

Tsa Groups # Unifaces With a Spur Tsa Range n % of Unifaces With Spur

1 (Rounder specimens) 13 .0.30 23 0.5652

2 26 .30–.25 54 0.4814

3 46 .25–.20 114 0.4035

4 78 .20–.15 186 0.4193

5 55 .15–.10 137 0.4014

6 (Flatter specimens) 20 .10–.05 46 0.4347

This result does not support the notion that spurs were created incidentally or accidentally via resharpening. In this instance, the Tsa range of each group was equal.
doi:10.1371/journal.pone.0078419.t013
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with parallel striations indicating the slotting of bone ([75];

[77]:90; [97]), Weedman ([74]:723) argued that ‘‘there is notably

an absence of microwear studies to verify suggested functions for

spurs’’ because ‘‘the presence of wear, polish, and striations on

spurs may be a consequence of contact with mastic or the hafting

itself rubbing on the spur.’’ As such, the creation and analysis of

experimental middle-range data sets might provide tremendous

insight as to whether spur microwear resulting from direct versus

incidental use is truly equifinal (e.g., [57]). Even then, however,

demonstrating specific instances of Paleoindian spur function will

probably remain challenging. Loebel’s ([46]) microwear analysis of

Clovis endscrapers from Hawk’s Nest (Illinois), Gainey (Michigan),

Nobles Pond (Ohio), and Shawnee-Minisink (Pennsylvania)

suggested that wear on spurs could form via failed ‘‘last-ditch’’

resharpening attempts as edge angles became too steep to execute

satisfactory edge rejuvenation. Thus, microwear resulting from

inferred spur functions such as tattooing, piercing, ripping, or

tearing hide, and engraving bone, antler, wood, and ivory might

be obscured or eliminated entirely. Yet, on a unifacial tool from

the Paleo Crossing site (Ohio), Miller ([98]) documented bright,

pitted polish confined to lateral margins of flaked spurs indicating

it was used to engrave bone or antler. Finally, Waters et al. ([58],

see also [99]) report documented use-wear traces on end scrapers

from the Gault site (Texas). Based on polish locations and striation

directions, Wiederhold [99] argues that some end scrapers served

multiple use-functions during their use-lives. One of those

important functions produces extensive wear on spurs of 9 out

of the 10 end scrapers examined. They do not, however, discuss

what tasks these spurs may have been used for.

To our knowledge, the predictions and results presented above

constitute the first explicit, quantitative study specifically examin-

ing the interpretation of spur production in any prehistoric

context. Furthermore, our study contributes to the growing

awareness among archaeologists that claims for prehistoric

intentionality with regard to lithic technology–positive or nega-

tive–must be empirically and quantitatively supported, rather than

assumed ([23]; [100]). Ethnographic studies such as those

conducted by Weedman ([74]) are important resources for

developing the empirical and quantitative hypotheses and

predictions necessary for explaining patterns in the archaeological

record. In this paper, we investigated Weedman’s conclusions

based on ethnographic analysis and identified testable implications

for the hypothesis that Paleoindian scraper spurs are an incidental

result of tool resharpening. We showed that incidental resharpen-

ing cannot entirely explain the presence of spurs on early

Paleoindian unifacial tools in the Great Lakes region. Spurs were

more likely produced intentionally as part of the multi-use

functions of these Clovis unifacial tools. We are not suggesting

that all Paleoindian spurs are intentional or even that all Clovis

spurs are intentional. In every case, hypotheses of intentionality

must be tested. Indeed, given the significant regional variation in

Clovis adaptations and technologies across the continent ([7]; [8];

[12]; [72]; [73]; [101]; [102]) it is highly possible that spurs on

unifacial Clovis tools were produced for different functions and in

different frequencies in the various environments inhabited by

Clovis hunter-gatherers. There is likely to be temporal variation in

the frequency of spurs as well, and thus the issue of intentional or

incidental spur creation should also be examined in Early Archaic

or Late Prehistoric contexts of North America.

However, in the specific temporal and geographic context of the

North American Lower Great Lakes region, empirically and

quantitatively supporting the hypothesis that at least some

unifacial stone tool spurs were intentionally created–and thus the

class of artifacts we explicitly define as ‘‘unifacial stone tools’’ were

indeed at times multifunctional implements–has important

behavioral implications for Clovis foragers. Based on chronometric

data and toolstone procurement and discard patterns, the Clovis

occupation of this region is widely interpreted to represent a

colonization pulse into a recently deglaciated area ([3]; [40]; [41];

[61]; [85]; [86]; [87];[103]; [104]; [105]; [106]; [107]; [108];

[109]). The property of multi-functionality would have increased

the portability of the overall toolkit by reducing the number of

artifacts needed to be carried, and thus allowing Clovis colonizing

foragers to more quickly explore and learn the landscape to reduce

uncertainty and risk in space and time ([72]; [110]; [111]).

Furthermore, the property of multi-functionality would have

allowed Clovis foragers to better respond to ‘‘situational contin-

gencies’’ ([61]; [62]) as they arose during the possibly risky

endeavor of colonizing a new and unfamiliar landscape ([112]).
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Site % of broken unifacial stone tools Spurs/Uniface % of Unifaces With Spur

Arc 45.6% 0.392 0.344

Butler 10.0% 0.257 0.257

Gainey 51.5% 0.281 0.265

Leavitt 53.5% 0.450 0.380

Paleo Crossing 59.6% 0.381 0.331

Potts 66.6% 0.276 0.235

Udora 53.8% 0.390 0.314

doi:10.1371/journal.pone.0078419.t014
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