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Abstract: Detecting correlations in high-dimensional datasets plays an important role in data mining
and knowledge discovery. While recent works achieve promising results, detecting multivariable
correlations especially trivariate associations still remains a challenge. For example, maximal informa-
tion coefficient (MIC) introduces generality and equitability to detect bivariate correlations but fails
to detect multivariable correlation. To solve the problem mentioned above, we proposed quadratic
optimized trivariate information coefficient (QOTIC). Specifically, QOTIC equitably measures de-
pendence among three variables. Our contributions are three-fold: (1) we present a novel quadratic
optimization procedure to approach the correlation with high accuracy; (2) QOTIC exceeds existing
methods in generality and equitability as QOTIC has general test functions and is applicable in detect-
ing multivariable correlation in datasets of various sample sizes and noise levels; (3) QOTIC achieved
both higher accuracy and higher time-efficiency than previous methods. Extensive experiments
demonstrate the excellent performance of QOTIC.

Keywords: quadratic optimized trivariate information coefficient (QOTIC); trivariate associations;
maximal information coefficient (MIC); correlation; large data

1. Introduction

In the era of rapid development of information technology, information is being stored
and interacted in a digital way through the continuous creation, storage and accumulation
of massive data [1], while in the real world, they are often high-dimensional, noisy, and
valuable associations are hidden. In particular, it is difficult to mine trivariate relationships.
Such data are increasingly common in fields such as genomics, physics, and economics,
making this problem an important and growing challenge [2]. To extract the associations
from high-dimensional data, it is basal to identify whether the correlation among variables
is strong or not. Variables with strong correlation to others are preserved for further use,
and those with weak correlation are filtered out. To ensure that the important associations
among variables are not missed, the relationships with different strengths are assigned to
different correlations by statistical measures [3–15]. The statistic to measure dependence
should have the heuristic properties of generality and equitability for searching pairs of
variables that are closely associated. And the equitability is more practical.

There are some methods to measure multivariable dependence, such as distance
correlation (Dcor) [13,14], nonlinear correlation information entropy (NCIE) [15], maximal
information entropy (MIE) [16] and maximal three-dimensional information coefficient
(MTDIC) [17]. However, most of them are not designed for the equitability. Maximal
information coefficient (MIC) [1] is a measure of dependence for bivariate relationships,
and it gives the relationships under the same noise with similar scores. For MIC, a grid
can be drawn on the scatterplot of two variables to encapsulate the relationship. When the
partitioned of grids are determined, the correlation can be calculated by mutual information.
It is a bivariate correlation as pairwise variables in a two-dimensional space, which may
be not applicable to a trivariate correlation as three variables in a three-dimensional space.
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To further design a measure of dependence for three variables with equitability, there are
two major challenges. One is how to partition the grids in a three-dimensional space to
encapsulate the relationship, the other is how to reduce the computing time while the
number of variable increases.

In this paper, quadratic optimized trivariate information coefficient (QOTIC) is pro-
posed to measure trivariate dependence. By uncovering the effects of partitioning generality
and equitability in each dimension, a quadratic optimization procedure is put forward, in
which one-dimensional adaptive equal partition is combined with another two-dimensional
dynamic partition to improve the equitability. QOTIC is consistent with exhaustive search
trivariate information coefficient (ESTIC) with the highest accuracy, and the time loss is
reduced by 28%. Compared with Dcor, MIE, NCIE, and MTDIC on the generality and equi-
tability, QOTIC is also applied in a dataset from Global Health Observatory for exploring
the factors on life expectancy.

Our contributions are three-fold: (1) we present a novel quadratic optimization proce-
dure to approach the correlation with high accuracy; (2) QOTIC exceeds existing methods
in generality and equitability as QOTIC has general test functions and is applicable in
detecting multivariable correlation in datasets of various sample sizes and noise levels; and
(3) QOTIC achieves balance both between accuracy and time-efficiency and outperforms
previous methods. The rest of the paper is organized as follows. After this introduction,
Section 2 summarizes related works in this field. Section 3 presents the definitions, prop-
erties and algorithms offered by QOTIC. Section 4 compares QOTIC with other existing
methods in terms of equitability and generality. In Section 5, QOTIC is applied for the
real-world dataset to show its performance. Finally, in Section 6, the conclusions of our
research are drawn.

2. Related Works

To identify the arbitrary correlations in high-dimensional data sets, various methods
are applied to find out the relationships between pairwise variables, which include MIC [1],
Pearson’s correlation coefficient [3], principal curve-based method [4], maximal correla-
tion [5], distance correlation [13,14] and so on. All of these methods have the problem of
variable extension, that is, how to generalize from binary variables to multivariate variables.
Introducing the generality and equitability, MIC explores the effects of an approximation
algorithm and normalization on the equitability. The deviations from the original MIC
values’ equitability are resulted from the approximation algorithm’s accuracy rather than
the nature of MIC [6]. To improve the equitability in an acceptable run-time, Wang et al.
presented an iMIC for optimizing the partition [7]. However, with the increase of sample
size, the time cost is still relatively high. As a property for the measure of dependence,
the equitability was formally defined and characterized by Reshef et al. [8]. Furthermore,
MIC aroused more questions. Simon and Tibshirani [9] pointed out that MIC would cause
false positives in data analysis due to low power. Kinney and Atwal [10] provided a
mathematical proof to support mutual information as an alternative to use MIC. Focusing
on the power and equitability, Reshef et al. gave MICe [11] and total information coef-
ficient (TICe) [12]. The combination of the two statistics yields an efficient approach for
obtaining both power and equitability. In 2020, equitability was characterized again in
terms of interval estimates [8]. Since MIC may overestimate the correlated value, which
leads to the misidentification of the relationship without noiseless, to detect unbiased
associations, Liu proposed unbiased correlation measure weighted information coefficient
mean (WICM) [18]. To quantify the dependence between two random vectors of possibly
different dimensions, Mordant proposed two coefficients that are based on the Wasserstein
distance between the actual distribution and a reference distribution with independent
components, but they were not designed with the goal of equitability [19]. For the latest
practical applications, Liu et al. proposed a novel method to discover the association of al-
gae with physicochemical variables related to the algae growth in Erhai Lake, by integrating
MIC and association rules [20]. Guo et al. proposed EpiMIC for epistasis detection [21].
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The research on multivariable dependence is relatively few and can be categorized into
three types. The first one is based on the correlation matrix. An element in the matrix is the
correlation value between two variables. This is carried out by calculating the eigenvalues
of the correlation matrix and then getting the overall correlation. Typical methods are
the NCIE [15] on the basis of nonlinear correlation coefficients (NCC), and the MIE [16]
under MIC. The extension of NCIE and MIE to multivariate variables is still based on
the calculation of binary variables without actually calculating multivariate variables as
a whole. The second one is the extension of bivariate measures, such as Dcor based on
Euclidean distances between sample elements [13,14], and conditional multiinformation
(CMI) for detecting the conditional dependence between multiple discrete variables [22].
Because they were not designed with equitability and generality as its goal, they performed
poorly in these two areas. The third one does not directly give a correlation value by a
statistic, but analyzes the dependency among many variables for a specific application,
such as the principal component analysis [23], factor analysis [24], canonical correlation
analysis [25,26], and feature selection [27].

3. Proposed Method

In this section, the quadratic optimized trivariate information coefficient (QOTIC) will
be presented.

3.1. Trivariate Mutual Information

Assume that there are three random variables X, Y and Z. I(X; Y; Z) is their trivariate
mutual information.

I(X; Y; Z) = H(X) + H(Y) + H(Z) − H(X, Y) − H(X, Z) − H(Y, Z) + H(X, Y, Z) (1)

where H(*) denotes Shannon entropy. The greater the uncertainty, the greater the entropy
is. For binary distribution, the joint distribution’s uncertainty is greater than or equal to
the marginal distribution, i.e., H(Y) ≤ H(X, Y), H(Z) ≤ H(Y, Z), and H(X) ≤ H(X, Z). In
Equation (1), if and only if H(X, Y) − H(Y) = 0, H(Y, Z) − H(Z) = 0, and H(X, Z) − H(X) = 0,
I(X; Y; Z) reaches its maximum, i.e., H(X, Y, Z).

Figure 1 shows the advantages of trivariate associations analysis. Take the analysis of
the factors associated with target T among m factors as an example. Bivariate associations
analysis measures the binary correlation between any factor and target T, and retains the
factors with strong correlation with the target. Trivariate associations analysis measures
the correlation between any two factors and target T. If the correlation value is high, two
factors are retained. For any two factors vx and vy, if vx, vy and T are strongly correlated,
but one of vx and vy is weakly correlated with T, only bivariate associations analysis will
discard factor vx because the measure of correlation between vx and T is small.
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3.2. Trivariate Characteristic Matrix

For a finite set D⊂R3, if the first dimension, the second dimension, and the third
dimension is taken as x-axis, y-axis, and z-axis, respectively, cubic space comes into being.
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When the data in D is partitioned, the resulting cubic grid is (x, y, z), where x, y and z are
all positive integers greater than 1. Figure 2 illustrates the strategy of partition.
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In Figure 2, QOTIC trivariate partition in cubic space is distinguished from MIC
bivariate partition in plane space, and MTDIC trivariate partition in cubic space. For
bivariate variables in plane space, the partition strategy of MIC is that when one axis is
dynamically partitioning, keep the other axis equipartition. First, equipartition y-axis, and
then dynamically partitioning x-axis. Second, equipartition x-axis, dynamically partitioning
y-axis. For trivariate variables in cubic space, the partition strategy of MTDIC is that only
one axis is dynamically partitioned and the other two axes keep equipartition. Equipartition
x-axis and y-axis, and then dynamically partitioning z-axis. For trivariate variables in cubic
space, the partition strategy of QOTIC is that only one axis is equipartition, and for the other
two dynamic partition axes, one of them is based on the other dynamic partition. The first
and the second steps of QOTIC are the same to MTDIC. When dynamically partitioning
z-axis is finished, fix the current partition of z-axis, and dynamically partition y-axis.

Let D|(x, y, z) denote the distribution induced by points in D points on the cubic grid
(x, y, z). The probability mass in a grid is the fraction of points in D falling into the grid.
Then Equation (1) may become Equation (2):

I(D|(x, y, z) ) =
x

∑
i=1

y

∑
j=1

z

∑
k=1

p(xi, yj, zk)log
p(xi, yj)p(xi, zk)p(yj, zk)

p(xi)p(yj)p(zk)p(xi, yj, zk)
. (2)

where p(x, y, z) is the fraction of D’s points that fall into the grid (x, y, z). p(x, y), p(x, z), and
p(y, z) are, respectively, the marginal distribution of xy-plane (x, y, *), xz-plane (x, *, z), and
yz-plane (*, y, z). p(x), p(y), and p(z) are separately the marginal distribution of x-axis, y-axis,
and z-axis.

Definition 1. Maximal trivariate mutual information
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For a finite set D⊂R3 and positive integers x, y, z:

I*(D|(x, y, z)) = max I(D|(x, y, z)). (3)

where I(D|(x, y, z)) denotes the trivariate mutual information under the grid (x, y, z), and its
maximum I*(D|(x, y, z)) is over all possible cubic grids with x-bins, y-bins, and z-bins in the first,
the second, and the third dimension, respectively.

From Definition 1, to get the maximal trivariate mutual information can be taken as
the process of finding a reasonable cubic grid. When dealing with the bivariate data, it is
unfeasible to test infinite partitions, not to mention trivariate data. For MTDIC [17], the
specific process of dynamic partition is implemented in two steps. The first step is to equally
partition the values in x-axis and y-axis into sequence R and sequence Q, respectively. And
the second step is to fix the partition on these two axes and then partition the values in
z-axis into sequence P by using the iterative optimization [17]. Moreover, QOTIC’s solution
to this problem is to equally partition the values in x-axis and y-axis and then optimize
them on z-axis. After getting the optimal partition, fix the partition on z-axis, and conduct
quadratic optimization on y-axis. In a word, MTDIC equipartition x-axis, y-axis and
dynamically partition z-axis, which is a single optimization. Besides equipartitioning x-axis,
y-axis and dynamically partitioning z-axis, QOTIC further dynamically partition y-axis
(QuadraticApproxMI) under the partitioned z-axis, which is the quadratic optimization.

In the light of Definition 1, we may further get the definition of trivariate equipartition
mutual information, trivariate equicharacteristic matrix, and trivariate characteristic matrix.

Definition 2. Trivariate equipartition mutual information
For a finite set D⊂R3 and positive integers x, y, z,

IE(D|(x, y, z)) = I(D|(x, y, z)E). (4)

where IE(D|(x, y, z)) denotes the trivariate mutual information under the cubic grid (x, y, z)E that
equipartitions the first, second and third dimension with x-bins, y-bins and z-bins. The grid (x, y, z)E is
a special case of all possible grids in the search for I*(D|(x, y, z)).

Definition 3. Trivariate equicharacteristic matrix
The trivariate equicharacteristic matrix ME(D) of a finite set D⊂R3 is

ME(D)x,y,z =
IE(D

∣∣(x, y, z))
log min{x, y, z} (5)

Definition 4. Trivariate characteristic matrix
The trivariate characteristic matrix M(D) of a finite set D⊂R3 is

M(D)x,y,z =
I∗(D|(x, y, z))

log min{x, y, z} (6)

The process of equipartition is called adaptive equipartition. Figure 3 shows the
equitability performance of TEIC (adaptive equipartition), MTDIC (single optimization)
and QOTIC (quadratic optimization) on different noises in 12 functional relationships
reproduced from MTDIC [17], and Table 1 interprets the color on a relationship and the
variable on an axis. Figure 4 shows comparison of bias and variance of QOTIC, MTDIC,
TEIC, and Table 2 shows the analysis of bias and variance of QOTIC, MTDIC, and TEIC. For
example, given an arbitrary random variable r, three variables on each axis are X = f x(r),
Y = f y(r), and Z = f z(r), which refer to the relationship types in each axis, respectively. Each
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functional relationship is uniformly distributed and contains additive Gaussian noise. The
noise level increases gradually, and the coefficient of determination R2 ranges from 0 to 1.
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Table 2. The analysis of bias and variance of QOTIC, MTDIC, TEIC.

Method
Bias Variance

Min Mean Max Min Mean Max

QOTIC 0.011 0.096 0.143 0.0 0.001 0.003
MTDIC 0.017 0.11 0.164 0.0 0.002 0.005

TEIC 0.084 0.391 0.61 0.001 0.034 0.139

In Figure 3, the sample size of each functional relationship is 500. The equitability
performance of the correlation values of the 12 functional relationships is calculated by
using adaptive equipartition, single optimization, and quadratic optimization, the results
of which are the left, the middle, and the right pictures. Comparing Figure 3a–c, there are
three findings.

• Firstly, when there is no dependency between the variables, the quadratic optimization
does not improve the adaptive division and the single optimization gives a correlation
value close to 0.

• Secondly, when there is a strong correlation between variables without noise, the quadratic
optimization gives very high correlation values for all relation types, and the correlation
values given to different relations are close to 1, better than the single optimization.

• Thirdly, when there is a dependency relationship between variables but accompanied
by noise, under the same noise level, the approximate of the correlation value given
by the quadratic optimization for different relationships is higher than that of the
single optimization. Therefore, the quadratic optimization further encapsulates the
relationship on the basis of the single optimization, and improves the performance in
terms of equitability.

3.3. Generating the Trivariate Characteristic Matrix

Each entry corresponds to the normalized trivariate mutual information obtained
by using dynamic optimization under its partition in the trivariate characteristic matrix.
To generate the trivariate characteristic matrix under the given upper bound B(n) of the
partition for cubic grids, the values of the x-axis and y-axis are equally partitioned first, and
dynamic optimization is implemented on the z-axis. When getting the optimal partition on
the z-axis, fix the current partition, and conduct QuadraticApproxMI on the y-axis. If the
results of quadratic optimization on the y-axis is better than that of the equipartition on
the y-axis under the current partition, it is retained as an entry in the characteristic matrix.
Algorithm 1 shows the pseudocode to generate the trivariate characteristic matrix by using
quadratic optimization.

Definition 5. Quadratic optimized trivariate information coefficient
For a data set D of three variables with sample size n, quadratic optimized trivariate information

coefficient of D is given by

QOTIC(D) = max
xyz≤B(n) {M(D)x,y,z} (7)

The flow chart of QOTIC method is shown in Figure 5.
To improve the accuracy of the approximation algorithm, an exhaustive search strategy

is adopted in MIC, that is, when the quadratic optimization is completed, other non-optimal
partition sequences are also optimized [6]. Although this strategy improves the accuracy, it
will increase time cost. In the trivariate associations analysis, as a comparison with QOTIC,
we introduce the exhaustive search strategy and called it exhaustive search trivariate
information coefficient (ESTIC).

Definition 6. Trivariate equipartition information coefficient
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For a data set D of three variables with sample size n, the trivariate equipartition information
coefficient (TEIC) of D is given by

TEIC(D) = max
xyz≤B(n) {ME(D)x,y,z} (8)

The trivariate characteristic matrix and the trivariate equicharacteristic matrix have the
same size of partition. TEIC is a variant of QOTIC which lacks the step to maximize over
cubic grid partitions. TEIC simply uses the trivariate mutual information achieved by an
adaptive equipartition at each cubic grid resolution, rather than considering all cubic grids
at a given resolution and computing the maximal possible trivariate mutual information
achieved by any of them. Relatively QOTIC contains a maximization step, which maximize
a normalized variant of trivariate mutual information over a set of potential grids.

Algorithm 1: Generating trivariate characteristic matrix.

Input: D, Parameter c controls the granularity of the partition
Output: M(D)

for x = 2 to
[

B(n)
4

]
do

Getting equipartition R with size x
for y = 2 to

[
B(n)
2∗x

]
do

Getting equipartition Q with size y
z =
[

B(n)
x∗y

]
[I(x, y, 2), I(x, y, 3) . . . , I(x, y, z)] = Dynamic optimizing(D, Q, R, z)

for k = 2 to z do
M(D)x, y, k= I(x, y, k)/log min{x, y, k}
end for
Pl = argmax{M(D)x,y,l|Pl,2 ≤ l ≤ z}
IT ′

(x, y, l) = QuadraticApproxMI(D,R,Pl,cl)
M(D)x, y, l= max{I′(x, y, l), I(x, y, l)}/log min{x, y, l}
end for
end for
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3.4. Time Complexity

The time cost of QOTIC includes two parts. The first part is the time cost of dynamically
partition the z-axis, and the second part is the time cost of quadratic optimization of the
y-axis. In the first part, given the upper bound B and parameter c, the partition numbers of
x-axis and y-axis are x and y, respectively. The maximum number of dynamic partition of
z-axis is B/(xy). Through dynamic partition of z-axis, the obtained cubic grid is partitioned
into (x, y, 2), . . . , (x, y, B/(xy)), and the time complexity is O((cB/xy)2xy(B/xy)) =

O(c2B3/(xy)2). In the second part, fix the optimal partition sequence of z-axis with partition
number of B/(xy) and x-axis partition number of x. The time complexity of quadratic
optimization of y-axis is O((cy)2xyB/(xy)) = O(c2y2B).

For ESTIC, through dynamic partition of z-axis, the obtained cubic grid is partitioned
into (x, y, 2), . . . , (x, y, B/(xy)), and the time complexity is O((cB/xy)2xy(B/xy)) =

O(c2B3/(xy)2). When the number of z-axis partition is 2, . . . , B/(xy), y-axis is optimized,
respectively, and the time complexity is O((cy)2xy(B/xy)2) = O(c2B2y/x).

The time complexity of ESTIC and QOTIC optimizing y-axis is O(c2B2y/x) and,
respectively. Because xy < B, O(c2y2B) < O(c2B2y/x), and the time cost of dynamically
partition z-axis of ESTIC and QOTIC is the same. So the time complexity of QOTIC is much
less than that of ESTIC.

3.5. Mathematical Analysis

Let m∞ denote the space of infinite matrices equipped with the supremum norm.
Given a trivariate matrix A∈m∞, for some i, only the k,l,r-th entries of A for which klr ≤ i
are focused. Thus, for i∈Z+, we define the projection ri : m∞ → m∞ via

ri(A)k,l,r =

{
Ak,l,r klr ≤ i
0 klr > i

(9)

Theorem 1. Let f : m∞ → R be uniformly continuous, and assume f ◦ ri → f to be pointwise.
Then for every three random variables (X, Y, Z), and a sample data set D of size n from the
distribution of (X, Y, Z), provided ω(1) < B(n) ≤ O(n1−ε) for some ε > 0, we have

( f ◦rB(n))(M(D))→ f (M(X, Y, Z)) (10)

in probability.

The theorem will be proved by the following sequence of lemmas that build on each
other to bound the bias of I∗(D, k, l, r). The general strategy is to capture the dependencies
between different k-by-l-by-r cubic grids G by considering a master cubic grid Γ that
contains much more than klr cubic cells. For the master cubic grid Γ, firstly the trivariate
mutual information difference is bounded between I((X, Y, Z) |G ) and I(D |G ) only for
sub-grids G of Γ. Secondly, the boundary is extended to all k-by-l-by-r cubic grids without
too much loss.

Lemma 1. Let ψ = (ψX , ψY, ψZ) and ϕ = (ϕX , ϕY, ϕZ) be random variables distributed over the
cells of a cubic grid Γ, and let (πi,j,k ), (κi,j,k) be their respective distributions. Define

εi,j,k =
κi,j,k − πi,j,k

πi,j,k
(11)
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Let G be a sub-grid of Γ with B cubic cells. Then for every fixed a, 0 < a < 1, and index i, j and
k, when

∣∣∣εi,j,k

∣∣∣ ≤ 1− a , we have

|I(ϕ|G)− I(ψ|G)| ≤ O

(
log(B)∑

i,j,k

∣∣∣εi,jk

∣∣∣) (12)

Proof. Let P = ψ|G, Q = ϕ|G be random variables induced by ψ and ϕ, respectively, on
the cells of cubic grid G. According to the theory of trivariate mutual information in
Equation (1), we can get the following inequality.

|I(Q)− I(P)| ≤ |H(QX)− H(PX)|+ |H(QY)− H(PY)|+ |H(QZ)− H(PZ)|
+|H(QXY)− H(PXY)|+ |H(QXZ)− H(PXZ)|+ |H(QYZ)− H(PYZ)|
+|H(Q)− H(P)|

(13)

where QX and PX denote the marginal distributions along the x-axis of G. QY and PY
denote the marginal distributions along the y-axis of G. QZ and PZ denote the marginal
distributions along the z-axis of G. Similarly, QXY, PXY, QXZ, PXZ, QYZ, PYZ denote the
marginal distributions along the x-axis, y-axis of G, x-axis, z-axis of G and y-axis, z-axis of
G, respectively. We bound each of the terms on the right side of the equation above using a
Taylor Expansion Argument [11]. Accordingly, we get

|I(Q)− I(P)| ≤ (log B)

 ∑
i

εi,∗,∗ + ∑
j

ε∗,j,∗∑
k

ε∗,∗,k + ∑
i,j,k

εi,j,k

+∑
i,j

εi,j,∗ + ∑
i,k

εi,∗,k + ∑
j,k

ε∗,j,k

 (14)

where

εi,∗,∗ =

∑
j,k
(κi,j,k − πi,j,k)

∑
j,k

πi,j,k
, ε∗,j,∗ =

∑
i,k
(κi,j,k − πi,j,k)

∑
i,k

πi,j,k
, ε∗,∗,k =

∑
j,k
(κi,j,k − πi,j,k)

∑
j,k

πi,j,k

εi,j,∗ =
∑
k
(κi,j,k − πi,j,k)

∑
k

πi,j,k
, εi,∗,k =

∑
j
(κi,j,k − πi,j,k)

∑
j

πi,j,k
, ε∗,j,k =

∑
i
(κi,j,k − πi,j,k)

∑
i

πi,j,k

From the above, we can obtain the following derivation,

|εi,∗,∗| =

∣∣∣∣∣∣∣
∑
j,k

πi,j,kεi,j,k

∑
j,k

πi,j,k

∣∣∣∣∣∣∣ ≤
∑
j,k

πi,j,k

∣∣∣εi,j,k

∣∣∣
∑
j,k

πi,j,k
≤∑

j,k

∣∣∣εi,j,k

∣∣∣

∣∣εi,j,∗
∣∣ = ∑

k
πi,j,kεi,j,k

∑
k

πi,j,k
≤

∑
k

πi,j,k

∣∣∣εi,j,k

∣∣∣
∑
k

πi,j,k
≤∑

k

∣∣∣εi,j,k

∣∣∣
since πi,j,k/∑

j,k
πi,j,k ≤ 1, πi,j,k/∑

k
πi,j,k ≤ 1. Analogous bound holds for

∣∣ε∗,j,∗∣∣, ∣∣ε∗,∗,k∣∣, ∣∣∣ε∗,j,k∣∣∣
and

∣∣εi,∗,k
∣∣. Therefore, |I(Q)− I(P)| ≤ O(log(B) ∑

i,j,k

∣∣∣εi,j,k

∣∣∣) is proved. �

Lemma 2. Define random variables ψ = (ψX, ψY, ψZ), ϕ = (ϕX, ϕY, ϕZ) as in Lemma 1, and
ψ|Γ, ϕ|Γ be random variables induced by ψ and ϕ, respectively, on the cells of master cubic grid Γ.
Let G be any cubic grid with B cells, and let δ represent the total probability mass of ψ|Γ falling in
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cells of Γ which are not contained in individual cells of G, and let d represent the total probability
mass of ϕ|Γ falling in cells of Γ which are not contained in individual cells of G. If δ, d ≤ 1/2, and∣∣∣εi,j,k

∣∣∣are bounded away from 1, the following inequality holds

|I(ϕ |G )− I(ψ |G ) | ≤ O

(
(∑

i,j,k

∣∣∣εi,j,k

∣∣∣+ δ + d) log B + δ log(1/δ) + d log(1/d)

)
(15)

Proof. For any two cubic grids G and G′, grid G′ is obtained by replacing every dividing
plane in G which is not in Γ with a closest line in Γ. Obviously, G′ is a sub-grid of Γ. Let
ζ = (ζX, ζY, ζZ) be random variables, and ζ|G, ζ|G′ are random variables induced by ζ
on the cells of cubic grid G and G′, respectively. The absolute value of trivariate mutual
information difference of ζ|G, ζ|G′ is expressed as ∆ζ(G, G′) = |I(ζ|G)− I(ζ|G′)|. For ψ,
ψ |G′ can be obtained from ψ |G by moving at most δ probability mass. For ϕ, ϕ |G′ can be
obtained from ϕ |G by moving at most d probability mass. From the information-theoretic
fact [11].

∆ψ(G, G′) ≤ O(δ log(1/δ) + δ log(B)),
∆ϕ(G, G′) ≤ O(d log(1/d) + d log(B))

(16)

Since ∆ψ(G, G′) = |I(ψ |G )− I(ψ |G′ )
∣∣, ∆ϕ(G, G′) = |I(ϕ |G )− I(ϕ |G′ )|, then with

∆ψ(G, G′) and ∆ϕ(G, G′) bounded in terms of δ and d, |I(ϕ |G )− I(ψ |G )| can also be
bounded by using the triangle inequality,

∆ψ(G, G′) + ∆ϕ(G, G′) ≥ |(I(ψ |G )− I(ψ |G′ ))− (I(ϕ |G )− I(ϕ |G′ ))|
= |(I(ψ |G )− I(ϕ |G )) + (I(ϕ |G′ )− I(ψ |G′ ))|
≥ |(I(ψ |G )− I(ϕ |G ))|−|(I(ϕ |G′ )− I(ψ |G′ ))|

⇒ |(I(ψ |G )− I(ϕ |G ))| ≤ ∆ψ(G, G′) + ∆ϕ(G, G′) + |(I(ϕ |G′ )− I(ψ |G′ ))
∣∣

⇒ |I(ϕ |G )− I(ψ |G )|≤ O

(
( ∑

i,j,k

∣∣∣εi,j,k

∣∣∣+ δ + d) log B + δ log(1/δ) + d log(1/d)

) �

Lemma 3. Let D be a sample of size n from the distribution of a pair (X, Y, Z) of jointly distributed
random variables. For α ≥ 0, ε > 0, and any k-by-l-by-r cubic grid G, we have

|I(D |G )− I((X, Y, Z) |G )| ≤ O
(

log(klr)
C(n)α +

log(klrn)
nε/9

)
(17)

with probability at least 1− C(n)e−O(n/C(n)1+3α), where C(n) = klrnε/3.

Proof. Fix a sample size n, and let Γ be a cubic grid which makes an equipartition of (X,
Y, Z) into knε/8 bins along the x-axis, lnε/8 bins along the y-axis and rnε/8 bins along
the z-axis. Then C(n) represents the total number of cubic cells. From Lemma 2, with
ψ = (X, Y, Z) and ϕ = D, shows that |I(D |G )− I((X, Y, Z) |G ) | is at most

|I(ϕ |G )− I(ψ|G)| ≤ O

(
(∑

i,j,k

∣∣∣εi,j,k

∣∣∣+ δ + d) log B + δ log(1/δ) + d log(1/d)

)
(18)

We bound the εi,j,k using a multiplicative Chernoff bound first, let πi,j,k and κi,j,k
represent the probability mass functions of (X, Y, Z) |Γ and D |Γ , respectively. From solving
absolute value inequality, we can obtain that P(

∣∣∣εi,j,k

∣∣∣ ≥ δ) = P(κi,j,k ≥ πi,j,k(1 + δ))

or P(
∣∣∣εi,j,k

∣∣∣ ≥ δ) = P(κi,j,k ≤ πi,j,k(1 − δ)). Since κi,j,k is a sum of n independent and
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identically distributed (i.i.d) Bernoulli random variables, and E(κi,j,k) = nπi,j,k, then there

is P(
∣∣∣εi,j,k

∣∣∣ ≥ δ) ≤ e−Ω(nπi,j,kδ3). Setting δ = πi,j,k
1/3/C(n)1/3+α, yields

P(
∣∣∣εi,j,k

∣∣∣ ≥ πi,j,k
1/3

C(n)1/3+α
) ≤ e−O(n/C(n)1+3α) (19)

According to the probability results above, when πi,j,k < 1, C(n) > 1, a union bound
over all index pairs (i, j, k) is

∑
i,j,k

∣∣∣εi,j,k

∣∣∣ ≤ 1
C(n)1/3+α ∑

i,j,k
πi,j,k

1/3

≤ 1
C(n)1/3+α C(n)

1
3

≤ 1
C(n)α

(20)

From this, we can get the relationship between κi,j,k and πi,j,k,

κi,j,k ≤ πi,j,k(1 + δ) = πi,j,k(1 +
πi,j,k

1/3

C(n)1/3+α )

= πi,j,k +
πi,j,k

4/3

C(n)1/3+α

≤ πi,j,k +
πi,j,k

C(n)1/3+α

≤ 2πi,j,k

(21)

The connection to d comes from the fact that for any bin k along z-axis of Γ, which
means that κ∗,∗,k = ∑

i,j
κi,j,k ≤ 2∑

i,j
πi,j,k = 2π∗,∗,k. Similarly, this also applies to the sums

across bins along x-axis and bins along y-axis, thus, κi,∗,∗ ≤ 2πi,∗,∗, κ∗,j,∗ ≤ 2π∗,j,∗.
Since d is a sum of terms of the form κi,∗,∗, κ∗,j,∗ and κ∗,∗,k for i in some index set I, j

in an index set J and k in some index set K. Similarly, δ is a sum of terms of the form πi,∗,∗,
π∗,j,∗ and π∗,∗,k with the same index sets. Therefore, d is bounded in terms of δ, d ≤ 2δ.
Because G has at most k bins along x-axis, l bins along y-axis and r bins along z-axis, then
the inequality can be obtained as follows.

δ ≤ l
lnε/9 +

k
knε/9 +

r
rnε/9 ≤

3
nε/9

δ + d ≤ O(
1

nε/9 ), δlog(
1
δ
) + dlog(

1
d
) ≤ O(

log n
nε/9 )

Combining all of the bounds gives the desired result. �

Lemma 4. Let D be a sample of size n from the distribution of a pair (X, Y, Z) of jointly distributed
random variables, for every B(n) = O(n1−ε), such that for large enough n,

∣∣M(D)k,l,r −M(X, Y, Z)k,l,r
∣∣ ≤ O

(
1
na

)
(22)

holds for all klr ≤ B(n) with probability P(n) = 1− o(1).
Where M(Dn)k,l,r is the k, l, r-th entry of the sample trivariate characteristic matrix, M(X, Y, Z)k,l,r

is the k, l, r-th entry of the population trivariate characteristic matrix.

Proof. For fixed k, l and r, according to Lemma 3, it implies that with high probability the
difference M(D)k,l,r −M(X, Y, Z)k,l,r is at most

O
(

log(klr)
C(n)α +

log(klrn)
nε/9

)
≤ O

(
log n
C(n)α +

log n
nε/9

)
≤ O

(
log n
nαε/3 +

log n
nε/9

)
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Since C(n) = klrnε/3 ≥ nε/3, klr ≤ B(n), for every a ≤ min{αε/3, ε/9}, this boundary
is at most O(1/na). It is only to show that the boundary holds with high probability across
all klr < B(n). For some u > 0, and a large sample size n, C(n) ≤ B(n)nε/3 ≤ O(n1−ε/3),
because the choice of α ensures that C(n)1+3α = O(n1−u) for some u, the probability of
our bound holds is at least 1 − C(n)e−O(n/C(n)1+3α) ≥ 1 − O(n)e−O(nu). Then perform
the boundary over all klr ≤ B(n), the desired condition is satisfied with probability
approaching 1. �

Proof of Theorem 1: Let MB(n) = rB(n)(M), and let MB(n)(D) = rB(n)(M(D)), then we
have the following inequality∣∣∣ f (MB(n)(D))− f (M)

∣∣∣ ≤ ∣∣∣ f (MB(n)(D))− f (MB(n))
∣∣∣+ ∣∣∣ f (MB(n))− f (M)

∣∣∣
=
∣∣∣ f (MB(n)(D))− f (MB(n))

∣∣∣+ ∣∣∣ f ◦rB(n)(M)− f (M)
∣∣∣

The second term on right-hand side of the inequality vanishes by the pointwise
convergence of f ◦ri as n→ ∞ . From the fact that B(n) > ω(1), therefore it is enough to
show that the first term converges to 0 in probability.

Let ‖ · ‖ denote the supremum norm on m∞, and fix any z > 0, then for any δ > 0, define

Cδ =
{

A ∈ m∞ : ∃A′ ∈ m∞ s.t‖A− A′‖ < δ,
∣∣ f (A)− f (A′)

∣∣ > z
}

This is a set of matrices A ∈ m∞ which is possible to be found, within a δ− neigh-
borhood of A, a second matrix A′ that f maps to more than z away from f (A). Because f is
uniformly continuous, there exists a small enough δ∗, to make Cδ∗ = ∅.

Supposing
∣∣∣ f (MB(n)(D))− f (MB(n))

∣∣∣ > z, which means that either ‖MB(n)(D)−MB(n)‖
> δ∗ or MB(n) ∈ Cδ∗ . The latter item is impossible since Cδ∗ = ∅, and from Lemma 4, with
the increase of sample size n, P(‖MB(n)(D)−MB(n)‖ > δ∗)→ 0 . Thus, we have that∣∣∣ f (MB(n)(D))− f (MB(n))

∣∣∣→ 0 in probability, as expected. �

4. Comparisons with Other Methods

We experimentally compare different noise levels in various functions to contrast
the performance of QOTIC with the baseline methods. In the experiment, first noiseless
relationships are used to test the generality and time cost, and then noisy relationships are
employed to test the equitability.

4.1. Performance on Noiseless Relationships

In order to verify the performance of QOTIC in generality, 12 functional relationships
as shown in Figure 6 are used, in which the sample sizes are 500 and 1000, respectively.
All relationships are uniformly distributed and noiseless. Take MTDIC and ESTIC, which
are based on the approximation algorithm, as comparison. The parameter settings of the
three methods MTDIC, QOTIC and ESTIC are the same (α = 0.75, c = 10). The experimental
hardware conditions are CPU Intel i5 and memory 8.00 GB. Table 3 shows the results of the
correlation values given for the 12 functional relationships.

In Figure 6, given an arbitrary random variable r, three variables on each axis are X = r,
Y = f (r), and Z = f (r). f corresponds to one of the 12 functional relationships.

As shown in Table 3, firstly, QOTIC and ESTIC have the same accuracy, and the
correlation values given for all relationships are the same. Secondly, for the three monotonic
relationships linear, exponential, logarithmic and step function, when the sample size is
500 and 1000, respectively, MTDIC, QOTIC, and ESTIC all give the highest correlation
value 1. For the remaining eight relationships, overall, with the increase of sample size, the
correlation values given by MTDIC, QOTIC and ESTIC are increasing. When the sample
size of quadratic is 500, the correlation values given by QOTIC and ESTIC are higher than
those given by MTDIC. When the sample size increases to 1000, MTDIC, QOTIC and ESTIC
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all give the highest correlation value of 1. The correlation values given by MTDIC, QOTIC
and ESTIC for two lines are equal. For the other six relationships, the correlation values
given by QOTIC and ESTIC are higher than those given by MTDIC.
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Table 3. Generality performance of MTDIC, QOTIC, and ESTIC.

Functions
n = 500 n = 1000

MTDIC QOTIC ESTIC MTDIC QOTIC ESTIC

1 Linear 1.00 1.00 1.00 1.00 1.00 1.00
2 Exponential 1.00 1.00 1.00 1.00 1.00 1.00
3 Logarithmic 1.00 1.00 1.00 1.00 1.00 1.00
4 Quadratic 0.94 0.96 0.96 1.00 1.00 1.00
5 Cubic 0.96 0.97 0.97 0.97 0.98 0.98
6 Sinusoidal low freq. 0.87 0.92 0.92 0.94 0.95 0.95
7 Sinusoidal high freq. 0.58 0.59 0.59 0.74 0.75 0.75
8 Circle 0.49 0.50 0.50 0.55 0.56 0.56
9 Step function 1.00 1.00 1.00 1.00 1.00 1.00
10 Two lines 0.95 0.95 0.95 0.96 0.96 0.96
11 X line 0.47 0.51 0.51 0.53 0.55 0.55
12 X curve 0.48 0.54 0.54 0.53 0.56 0.56

Time cost analysis of three methods MTDIC, ESTIC and QOTIC is based on the
12 functional relationships shown in Figure 6. Firstly, analyze the time cost on each
relationship with sample size 500, in seconds (s). The results are shown in Table 4. Secondly,
analyze the time cost on all relationships with sample size 100 to 1000. The results are
shown in Figure 7.
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Table 4. Time cost of MTDIC, QOTIC, and ESTIC.

Functions MTDIC QOTIC ESTIC

1 Linear 0.06 5.13 7.13
2 Exponential 0.07 5.13 7.13
3 Logarithmic 0.09 5.13 7.13
4 Quadratic 0.36 5.13 7.13
5 Cubic 0.19 5.13 7.13
6 Sinusoidal low freq. 0.41 5.13 7.13
7 Sinusoidal high freq. 0.40 5.13 7.13
8 Circle 0.34 5.13 7.13
9 Step function 0.08 5.13 7.13

10 Two lines 0.10 5.13 7.13
11 X line 0.39 5.13 7.13
12 X curve 0.37 5.13 7.13
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According to Table 4, in general, for each functional relationship, the lowest time cost
of the three methods is MTDIC and the highest time cost is ESTIC. MTDIC has large time
cost differences in 12 relationships. For three monotonic relationships, linear, exponential
and logarithmic, the time cost difference is small, and all of them are within 0.1 s. The
time cost on quadratic, sinusodial low frequency, sinusodial high frequency, circle, X line
and X curve is higher, all of which are more than 3 s. There is no difference in the time
cost between ESTIC and QOTIC in 12 functional relationships, which are 5.13 s and 7.13 s,
respectively. QOTIC is consistent with ESTIC with the highest accuracy, and the time loss
is reduced by 28%.

As shown in Figure 7, when the sample size is less than 300, the time cost difference
of the three methods is small, and time cost are all within 15 s. When the sample size is
larger than 300, the time cost gap of the three methods begins to expand with the increase
of the sample size. First, the MTDIC with the lowest time cost increases slowly with the
increase of sample size. When the sample size reaches 1000, the time cost is still less than
13 s. ESTIC with the highest time cost, when the sample size is larger than 300, the time
cost increases exponentially with the increase of the sample size. When the sample size of
QOTIC is higher than 300, although the time cost increases rapidly, it is much lower than
ESTIC, and the time cost gap between QOTIC and ESTIC increases with the increase of
sample size.

4.2. Performance on Noisy Relationships

The noisy relationships refer to 12 different functions shown in Table 1. Each relation-
ship uses the sample size of 100, 500, and 1000, respectively. Each functional relationship is
also uniformly distributed and contains additive Gaussian noise. The noise level increases
gradually, and the coefficient of determination R2 ranges from 0 to 1.
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Figure 8 shows the equitability results of QOTIC and the other five baseline methods,
Dcor, MIE, NCIE, TEIC, and MTDIC. Each subplot contains the score of the given statistic
versus the coefficient of determination R2.
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In Figure 8, QOTIC assigns similar scores to these functions under the same noise
levels, and when the sample size increases, QOTIC roughly equals the coefficient of deter-
mination R2. Methods, such as MTDIC and MIE, tend to be equitable across these functions,
but MIE is not sensitive to the sample size. The performance of equitability is not improved
with the increase of sample size. Moreover, under different sample sizes, the equitability
performance of MTDIC and MIE are not as well as QOTIC. For the other methods TEIC,
Dcor and NCIE all detect broader classes of relationships, but they are not equitable even
in the large sample size of functions.

5. Exploring GHO Dataset for Associations

The Global Health Observatory (GHO) dataset is explored by our proposed QOTIC
and the existing MIC, which is collected from the World Health Organization (WHO) data
repository website and the United Nations website. The dataset consists of 2938 samples
in 18 columns documenting the life expectancy and the corresponding potential influence
factors such as immunization factors, mortality factors, social factors, economic factors
and other health-related factors, ranging from year 2000 to 2015 around 193 countries. In
trivariate correlation detection, each variable is arbitrarily combined with the other two
variables, and then use QOTIC to measure correlation. As for the original correlation to
explore, each variable is arbitrary combined with another variable, and then use MIC to
measure correlation, each set of trivariate correlation includes three groups of relations
between the two bivariate correlation, the relationship between trivariate association and
bivariate association is shown in Table 5.
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Table 5. Trivariate associations by QOTIC and Bivariate associations by MIC.

Group Trivariate Associations QOTIC Bivariate Associations MIC

1 infant deaths
under-five

deaths
life

expectancy 0.942

infant deaths life expectancy 0.31

under-five
deaths life expectancy 0.342

infant deaths under-five deaths 0.958

2 thinness
1–19 years

thinness five
to nine years

life
expectancy

0.857

thinness
1–19 years life expectancy 0.386

thinness five
to nine years life expectancy 0.384

thinness
1–19 years

thinness five to
nine years 0.912

3 polio diphtheria
life

expectancy 0.777

polio life expectancy 0.298

diphtheria life expectancy 0.295

polio diphtheria 0.801

4
percentage
expenditure GDP

life
expectancy 0.685

percentage
expenditure life expectancy 0.31

GDP life expectancy 0.377

percentage
expenditure GDP 0.714

5
income

composition
of resources

schooling life
expectancy

0.67

income
composition
of resources

life expectancy 0.614

schooling life expectancy 0.497

income
composition
of resources

schooling 0.72

6 adult
mortality

percentage
expenditure

life
expectancy

0.642

adult
mortality life expectancy 0.709

percentage
expenditure life expectancy 0.31

adult
mortality

percentage
expenditure 0.22

7
adult

mortality GDP life
expectancy 0.64

adult
mortality life expectancy 0.709

GDP life expectancy 0.377

adult
mortality GDP 0.284

5.1. Trivariate Associations with QOTIC

The 18 factors are first combined in pairs, and then the relationships between C2
18 = 153

pairwise factors and life expectancy are explored by QOTIC (see Figure 9).



Sensors 2022, 22, 2806 18 of 23

Sensors 2022, 22, x FOR PEER REVIEW 19 of 25 
 

 

adult mortality percentage ex-
penditure 

0.22 

7 adult mortality GDP life expec-
tancy 0.64 

adult mortality life expectancy 0.709 
GDP life expectancy 0.377 

adult mortality GDP 0.284 

5.1. Trivariate Associations with QOTIC 
The 18 factors are first combined in pairs, and then the relationships between 

2
18C =153  pairwise factors and life expectancy are explored by QOTIC (see Figure 9). 

 

 
Figure 9. Exploring GHO dataset for trivariate associations with QOTIC. Figure 9. Exploring GHO dataset for trivariate associations with QOTIC.

Figure 9a shows the histogram of QOTIC scores. Among them, there are only 20 pairwise
factors that are strongly related to life expectancy. The medium-strong relationships with
the scores between 0.4 and 0.6 account for 0.59%. The weak relationships with the scores
between 0.2 and 0.4 account for the largest proportion, 48.4%, and there are 50 extreme-weak
relationships with the scores between 0.2 and 0.4. Therefore, it is not rare for pairwise factors
to have an association with life expectancy, but there are relatively few strong associations.
Furthermore, we select several representative relationships with strong associations. Many of
these have not been in the existing literatures because there are few measures to detect the
trivariate variable pairs in GHO data set.

Figure 9b,c show that two pairwise mortality factors (infant deaths and under-five
deaths), thinness 1–19 years, and thinness five to nine years have a strong correlation
with life expectancy. The correlation values of the two relationships are 0.942 and 0.857,
respectively. Where Figure 9b shows an obvious negative correlation between young child
mortality and life expectation, and from Figure 9c, the relationship between thinness of
younger group and life expectancy is also a negative correlation.

In Figure 9d, the health-related factors of polio and diphtheria represent the immu-
nization coverage among 1-year-olds. It is easy to see that there is a significant positive
correlation between the immunization factor of two diseases and life expectancy, and the
correlation value is 0.777.
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Figure 9e,f indicate two relationships on economic and social factors, and their corre-
sponding correlation values are 0.685 and 0.67, respectively. For Figure 9e, life expectancy
increases as expenditure on health and GDP increase, and Figure 9f, shows that life ex-
pectancy increases linearly with the increase of factor indexes of income and education.

The last two relationships in Figure 9g,h are very similar, involving the mortality
and economic factors, and their correlation values are 0.642 and 0.64, respectively. For
Figure 9g, the relationship identified is not a simple functional association between life
expectancy and factor indexes of adult mortality and expenditure on health, and it illustrates
a superposition of multiple functions. Similarly, the superposition of multiple functional
associations between the life expectation and the factor indexes of GDP and adult mortality
is shown in Figure 9h.

5.2. Bivariate Associations with MIC

19 variables include 18 factors and life expectancy generating C2
19 = 171 pairwise

variables in GHO dataset. These 171 pairwise variables are explored by MIC (see Figure 10).
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Figure 10a shows the histogram of MIC scores. Among them, there are only 7 strong
relationships with the scores between 0.6 and 0.1. The medium-strong relationships with
the scores between 0.4 and 0.6 account for 7.6%. The weak relationships with the scores
between 0.2 and 0.4 account for the largest proportion, 57.9%, and there are 52 extreme-
weak relationships with the scores between 0.2 and 0.4. From the histogram of MIC scores,
among these 19 variables, it is not rare for one variable to have an association with any
other variable, but strong associations are relatively few. For the seven strong relationships,
they are ranked by MIC score and shown in Figure 10b–h.

Figure 10b,c indicate the positive correlation, and the two relationships are obviously
linear with a slight noise. The correlation value of the two relationships given by MIC are
0.958 and 0.912, respectively. Figure 10b demonstrates the relationship between infant
deaths and under-five deaths, and the points of relationship presents an exponential
distribution. Figure 10c demonstrates the relationship between thinness five to nine years
and thinness 1–19 years.

Figure 10d presents the association of the health-related factors between polio and
diphtheria. It is obvious that the relationship of the two factors is complex, but it generally
illustrates a positive correlation and correlation value given by MIC is 0.801.

Figure 10e,f show two relationships which involve economic and social factors, and the
corresponding correlation value are 0.72 and 0.714, respectively. Figure 10e demonstrates
a rough positive correlation between income composition of resources and schooling.
Figure 10f demonstrates the positive correlation between the percentage of expenditure
and GDP, the points of relationship present an exponential distribution with a lot of noise.

The last two relationships in Figure 10g,h demonstrates two factors that have a strong
association with life expectancy, and their correlation values are 0709 and 0.614, respectively.
Figure 10g illustrates an obvious negative correlation between adult mortality and life ex-
pectancy, while Figure 10h illustrates the positive correlation between income composition
of resources and life expectancy. Besides, the relationships shown in Figure 10e,g are very
similar, both rough positive correlations.

5.3. Comparing QOTIC with MIC on GHO Dataset

For GHO dataset, the trivariate associations on trivariate variables are detected by
QOTIC in Section 5.1, and the bivariate associations on pairwise variables are detected
by MIC in Section 5.2. In this section, these two results will be made further comparative
analysis on the performance of QOTIC and MIC. Table 5 shows the correlation value of the
trivariate variable and the correlation value of the binary variable.

In Table 5, there are 7 groups compared case, and each trivariate association corre-
sponds to three bivariate associations.

• The first group of trivariate association is infant deaths, under-five deaths and life
expectancy, and its correlation value is 0.942. In the three sets of bivariate associations,
the correlation values of infant deaths, under-five deaths and life expectancy are 0.31,
0.342, and the correlation value of infant deaths and under-five deaths is 0.958.

• The second group of trivariate association is thinness 1–19 years, thinness five to nine
years and life expectancy, and its correlation value is 0.857. In the three sets of bivariate
associations, the correlation values of thinness 1–19 years, thinness five to nine years
and life expectancy are 0.386 and 0.384, respectively, while the correlation values of
thinness 1–19 years and thinness five to nine years are 0.912.

• The third group of trivariate association is polio, diphtheria and life expectancy, and
its correlation value is 0.777. In the three sets of bivariate associations, the correlation
values of polio, diphtheria and life expectancy are 0.298, 0.295, while the correlation
value of polio and diphtheria is 0.801.

• The fourth group of trivariate association is the percentage of expenditure, GDP
and life expectancy, and its correlation value is 0.685. In the three sets of bivariate
associations, the correlation values of the percentage of expenditure, GDP and life ex-
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pectancy are 0.31 and 0.377, respectively, while the correlation value of the percentage
of expenditure and GDP is 0.714.

• The fifth group of trivariate association is income composition of resources, schooling
and life expectancy, and its correlation value is 0.67. In the three sets of bivariate
associations, the correlation values of income composition of resources, schooling
and life expectancy are 0.614 and 0.497, respectively, while the correlation value of
percentage expenditure and GDP is 0.72.

• The sixth group of trivariate associations is Adult Mortality, percentage expenditure
and life expectancy, and its correlation value is 0.642. In the three sets of bivariate
associations, the correlation values of adult mortality, the percentage of expenditure
and life expectancy are 0.709 and 0.31, respectively, while the correlation values of
adult mortality and the percentage of expenditure are 0.22.

• The seventh group of trivariate associations is adult mortality, GDP and life expectancy,
and its correlation value is 0.64. In the three sets of bivariate associations, the correla-
tion values of adult mortality, GDP and life expectancy are 0.709 and 0.377, respectively,
while the correlation value of adult mortality and GDP is 0.284.

The seven groups of trivariate associations are all of the strong correlations in Section 5.1.
By comparing the correlations with binary variables, these seven groups of trivariate associa-
tions can be divided into three categories. The first category is the first to the fourth group.
In this category, the relationship between each factor and life expectancy binary variables is
weak, and the relationship between factor and factor is strong. The second category is the fifth
group. One factor has a strong correlation with the binary variable of life expectancy, while the
other factor has a weak correlation with the binary variable of life expectancy, and the binary
variable between factor and factor has a strong correlation. The third category is the sixth and
seventh groups. In this category, one factor has a strong correlation with the life expectancy
binary variable, and the other factor has a weak correlation with the life expectancy binary
variable. For the factor and the factor, the correlation between the binary variables is weak.

Moreover, for the two factors, although the bivariate associations formed by their
respective combination with life expectancy is weakly correlated, the trivariate associations
between the two factors and life expectancy is indeed strongly correlated. This also means
that in the analysis of the impact of multiple factors on the target variable, if you only
rely on the strength of the correlation between the binary variables to screen the factors, it
may be discarded because of the weak correlation between the single factor and the target
variable, ignoring the influence of other factors on the target variable combined with it.

6. Conclusions and Future Works

It is important to detect the strong associations from complex relationships in high-
dimensional datasets. Although MIC measures the correlation of pairwise variables, few
methods can satisfy the generality and equitability for measuring the correlation among
three variables. In this paper, quadratic optimized trivariate information coefficient (QOTIC)
was proposed to measure the correlation among three variables. Based on the principles of
trivariate information, we presented a quadratic optimization on two axes to encapsulate
the relationships existing in the three dimensions. For comparison, as a variant of QOTIC,
trivariate equipartition information coefficient (TEIC) uses an adaptive equipartition on
three axes and lacks the maximum step. The comparison of equitability show that the
dynamic partition is noticeably better than that of the adaptive equipartition, and the
accurate correlation can be reflected only when the relationship is suitably encapsulated.
Furthermore, QOTIC performed the best in the equitability and generality when compared
with other methods by using different functional relationships, different noises, and differ-
ent sample sizes, especially the sample size is large enough. Finally, we applied QOTIC to
a real-world data set to explore the trivariate associations. The results show that QOTIC
can effectively detect various relationships.

QOTIC also has limitations. QOTIC is only applicable to trivariate variables, but the
association from higher dimensions cannot be mined. In addition, QOTIC selects the maxi-
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mum value in the trivariate characteristic matrix as the correlation measure, so the trivariate
variable relationship containing noise may be assigned the maximum correlation value,
resulting in overestimation. Future studies will focus on the potential overestimation of
QOTIC correlation and expect to propose a method to detect and correct the overestimation
relationship. In addition, it is hoped that the use of QOTIC can be extended from trivariate
to multivariate so as to explore the potential association of multivariate variables.
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