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Enhancing a slow and weak optomechanical
nonlinearity with delayed quantum feedback
Zhaoyou Wang1 & Amir H. Safavi-Naeini1

A central goal of quantum optics is to generate large interactions between single photons so

that one photon can strongly modify the state of another one. In cavity optomechanics,

photons interact with the motional degrees of freedom of an optical resonator, for example,

by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in

the position of the mirror. Here, we show that the optical nonlinearity arising from these

effects, typically too small to operate on single photons, can be sufficiently enhanced with

feedback to generate large interactions between single photons. We propose a protocol that

allows photons propagating in a waveguide to interact with each other through multiple

bounces off an optomechanical system. The protocol is analysed by evolving the full many-

body quantum state of the waveguide-coupled system, illustrating that large photon–photon

interactions mediated by mechanical motion may be within experimental reach.
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T
he interaction between light and motion in cavity-
optomechanical systems has enabled sensitive
measurements of force and displacement, as well as

quantum-optical control over the state of mechanical resonators1.
Conversely, an optically coupled mechanical degree of freedom
can lead to interactions between photons mediated by motion.
Nonlinear optical effects such as wavelength conversion2–5,
generation of squeezed light6–8 and electromagnetically induced
transparency9,10 are manifestations of this optical nonlinearity
and have been demonstrated in recent experiments. Nonetheless,
a central goal of quantum optics and information is to generate
nonlinearities that are large at the single-photon level11. It has
been shown theoretically that it is possible to generate single-
photon effective optical nonlinearities with optomechanics,
but only with system parameters well outside of our
current experimental reach12–18. The essential difficulty is
that for a mechanically induced optical nonlinearity to act on
the incident light, the response of the mechanical system must be
fast compared to the amount of time the photon spends inside the
optical cavity. Moreover, the mechanical system should display a
large response to the force induced by a single photon—so that
the cavity properties change significantly due to the presence of
the photon—requiring a highly compliant mechanical system.
These two contradicting needs, fast response and large
compliance, are at odds with each other and make strong
effective photon–photon interactions extremely difficult to
achieve in realistic cavity-optomechanical systems.

In addition to the difficulty of generating the large Kerr
nonlinearities needed, it has been pointed out that in principle,
subtle effects due to the multimode nature of a propagating light
field make implementation of high-fidelity gates operating on flying
photons using large instantaneous Kerr nonlinearities impossible19.

Recently, it has been proposed that optomechanical nonlinea-
rities can be enhanced in a fast-cavity system by parametric
amplification of mechanical motion16 leading to a quantum gates
between photons of different frequency. We propose a different
way to make strong photonic interactions from weak optical
nonlinearities. In this article, we show that by introducing a
coherent delay to a cavity-optomechanical system with a small
optomechanical coupling and slow response, large photon–photon
interactions between two temporally separated photon modes
propagating in an optical fibre can be achieved. Time-delayed
coherent feedback has been discussed for Gaussian states in other
contexts20,21. Recently a new method based on matrix product
states (MPS)22 has been developed that greatly facilitates a full
quantum analysis of such interactions. Here, we demonstrate using
both a semiclassical argument and full quantum simulations taking
into account the propagating quantum field with its many degrees
of freedom, that a quantum phase gate between two temporal
modes of the field can be implemented with a cavity-
optomechanical system that is in the bad-cavity regime. The
coherent delay allows a slow optomechanical system to induce a
large effective interaction between the temporally separated
photons, greatly relaxing the optomechanical system
requirements needed to implement such a gate. The nonlocal
nature of the gate also sidesteps a key assumption in the
aforementioned impossibility arguments19,23,24.

Results
System and phase gate protocol. We consider an optomechanical
system coupled to a long waveguide with an end mirror, so that
photons can propagate back and forth inside the waveguide, and
interact repeatedly with the mechanical resonator by entering the
optical cavity. The cavity-optomechanical system is composed
of an optical resonator at frequency oo with annihilation operator

â, coupled to a mechanical resonator with frequency om and
annhililation operator b̂. The initial state of the waveguide consists
of two temporal modes of the light field with Gaussian profile, each
with extent t. We assume that 1=t � k, where k is the optical loss
rate, so that each photon can fully enter the cavity and exert a
significant impulse onto the mechanical system. During this
process, the photon also obtains an uniform phase shift caused by
the internal state of the mechanical system. Each impulse is
assumed to be nearly instantaneous on time scales relevant to
the mechanical oscillator’s motion, that is, om � 1=t. Taken
together, these conditions imply that we are operating in the
bad-cavity regime om � k.

The slow internal dynamics of the mechanical system as well as
the coherent time delay lead to an effective nonlinear photon–
photon interaction that is nonlocal in time and also lead to a
build up of entanglement between the two temporal modes inside
the waveguide. Remarkably, we find that a quantum controlled
phase gate (CPHASE), where |00i, |01i and |10i are left
unchanged and |11i-� |11i can be implemented in this system.

The protocol for the CPHASE gate between two temporal
modes of the light field is shown in Fig. 1. The centre frequencies
of these two modes are chosen to be at the cavity frequency and
each have a bandwidth much smaller than the cavity linewidth.
They are also separated by a time Tm=4 � t, where Tm¼ 2p/om

is the period of the mechanical oscillation. Our system is similar to
and inspired by pulsed optomechanical experiments25,26 with the
distinction that no measurement occurs in our feedback network—
the photons are fed back to the system coherently. The choice of
delay time is essential for disentangling the mechanical system
from the photons at the end of the protocol. The mechanical
system must return to its initial state, the ground state, regardless
of the state of the input temporal modes, since any residual
entanglement between the temporal modes and the mechanical
system will reduce the fidelity of the CPHASE gate. As shown in
Fig. 1 and is justified below, this condition is satisfied for the
temporal mode spacing we have chosen.

Semiclassical model. Here we use a simplified semiclassical
model to understand some of the behaviours of this system. The
optomechanical system’s Hamiltonian is given by

ĤS=‘¼ooâyâþomb̂yb̂þ g0âyâ b̂y þ b̂
� �

: ð1Þ

The radiation pressure force on the optomechanical system
ðF̂RP¼�‘ g0âwâ=xzpÞ integrated over the interaction time
of the photon with the cavity t � o� 1

m

� �
causes a rapid

change in the momentum of the mechanical system by
Dp̂RP¼�‘ g0

R
t dtâyðtÞâðtÞ=xzp. An input field ĉðtÞ from the

waveguide is incident on the cavity at time t. If we assume that the
cavity can be eliminated adiabatically (k is large), the field in the
cavity and waveguide may be related as âðtÞ � 2ĉðtÞ=

ffiffiffi
k
p

, so after
the interaction with the propagating photon, an impulse of
Dp̂RP¼� 4‘ g0

R
t dtĉwðtÞ̂cðtÞ=xzpk is imparted onto the mechan-

ical system. We define a photon number operator
n̂k¼

R
k dtĉwðtÞ̂cðtÞ, which counts the number of excitations in the

kth temporal mode. The interaction between the kth temporal
mode and the mechanical system is given by the unitary operator

Ûk¼exp � iDp̂RPx̂=‘ð Þ
¼exp � 4ig0n̂kx̂=xzpk

� �
;

ð2Þ

with position x̂¼xzpðb̂wþ b̂Þ. The mechanical free evolution
operator is Ût¼e� iombwbt . Our protocol can then be compactly
stated as Ûprotocol Cj iwg 0j im, with

Ûprotocol¼Û2ÛTm=4Û1ÛTm=4Û2ÛTm=4Û1: ð3Þ
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This sequence of interactions is shown schematically in Fig. 1. We
can now calculate the result of these operations on the joint state of
the optomechanical system and photonic waveguide. We take state
of the photonic waveguide to be initialized as |Ciwg¼ |ji1|ki2, the
state with j photons in the first temporal mode and k photons in
the second temporal mode. The mechanical mode and optical
cavity are assumed to be in their ground states. Then

Ûprotocol jj i1 kj i2 0j im¼eifjk jj i1 kj i2 0j im ð4Þ
where fjk¼ 0 for jk¼ 00, 01, 10 and fjk¼f1 for jk¼ 11 with

f1 � 32 g0=kð Þ2: ð5Þ
According to this simplified model, obtaining a total phase shift of p
can be accomplished either by going to a large enough coupling g0/k,
or by running the protocol multiple times, NrepEp/f1, for a smaller
g0/k so that a total phase shift builds up over several bounces. This
requires controlling the number of bounces, which can be accom-
plished, for example, by using high extinction Mach–Zehnders that

are being developed for photonic quantum information processing.
To distinguish between these two approaches, it is important to
balance the losses incurred over multiple bounces with the deleter-
ious effect of using a larger coupling and fewer bounces. For losses,
we consider that in any real system, in addition to the coupling
between the cavity and the waveguide, there are other intrinsic
optical cavity losses characterized by a loss rate kin leading to a
probability kin/k that a photon is lost on each bounce. According to
the simplified semiclassical model, since the chance of photon loss in
multiple runs is proportional to Nrepkin/k, and Nreppk2, it is always
advantageous to make k as small as possible. This conclusion
however neglects effects that arise due to strong coupling.

One of these effects is the large optical frequency shift caused by
the mechanical displacement induced by the first photon, which
prevents the second photon from fully interacting with the system.
This prevents a perfect erasure of the information about the
photons from the mechanical oscillator and causes the residual
photon–phonon entanglement. A model described in the Methods
section shows that interaction of the waveguide state |1i1|1i2 with
the optomechanical system leads to a final state eif|1i1|1i2|brim
after one repetition of the protocol, where the mechanical system is
in a coherent state |bri and brp(g0/k)5. Other input states do not
cause a change in the mechanical state. This residual phonon
occupancy for the |11i input state leads to a reduction in gate
fidelity on the order of 0jbrh ij j2¼e� brj j2 which can be made very
small by going to smaller coupling and a larger number of bounces.
Other effects caused by the finite extent of t should also be
considered carefully. For example, a photon wavepacket can obtain
a non-uniform position-dependent phase shift due to frequency-
dependent phase response of the cavity, causing the state of the
field to no longer be in the same temporal mode. Such an effect is
analysed in more details in the Method section and can be
made smaller by making kt larger. Also a mechanical system can
have a finite position shift during a bounce of DxEDpRPt/m,
which causes another non-uniform phase shift on the order of
4g0Dx/kxzp¼f1omt for a single-photon input state in a given
temporal mode. This effect can be reduced by making omt smaller.
Both of these types of imperfection cause the state of the
electromagnetic field to move out of the subspace spanned by
|ji1|ki2|0im and are difficult to capture quantitatively in an
analytical form. Estimates of fidelity given these effects are
provided in the Methods section. However, quantitative
calculations are important for understanding the realizability of
the protocol given state-of-the-art experimental capabilities and
therefore we turn to full quantum simulations to incorporate all
these effects.

MPS simulation for quantum dynamics. The feedback network
we are considering requires a long delay due to the slow dynamics
of the mechanical oscillator. Recently methods for understanding
dynamics of systems in such quantum feedback networks have
been proposed22,27–29. In addition, we are interested in
understanding the evolution of the state of the photons in the
waveguide and interactions induced between them by the
optomechanical system. One approach to solving the full
dynamics of the waveguide and system together is to discretize
the waveguide into time steps Dt that are much smaller than any
of the relevant dynamics of the system and numerically evolve
what is now effectively the interaction between a one-dimensional
(1D) chain of harmonic oscillators and the system22. In principle,
keeping track of the state of such a 1D chain is daunting due to
the exponentially large Hilbert space that scales as O dTm=2Dt

� �
,

where d is the truncated dimension of each time-bin’s Fock space.
Luckily, the states of the waveguide we are considering have far
less entanglement than general states in the full Hilbert space, so
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Figure 1 | Protocol for the CPHASE gate. Two temporal photonic modes in

the waveguide are separated by a time interval of Tm/4. The modes can be

in states |0i and |1i. First, temporal mode 1 interacts and is entangled with

the mechanical oscillator as |0i and |1i will lead to different changes in the

mechanical momentum and cause a state-dependent change in the

mechanical state. After the mechanical system evolves for Tm/4, the

second photon mode interacts with the mechanical oscillator and the

mechanical system’s state become entangled with both photons. After the

mechanical system evolves again for another Tm/4, the first photon

temporal mode interacts again with the mechanical system causing its state

to be disentangled from the mechanical oscillator. After another Tm/4 of

evolution, the second photon mode comes back again and the mechanical

system is decoupled from both temporal modes since it goes back to its

ground state regardless of the initial states of the photon modes. The blue

lines signify the entanglement in the system and on the right the state-

dependent evolution of mechanical state is shown in phase space.
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efficient methods for storing and evolving the states can be
utilized22,30–35. Our full quantum simulation is based on the MPS
representation of the quantum field. MPS as well as the related
time-dependent density matrix renormalization group techniques
have already been well-established in condensed matter physics
for simulating 1D quantum many-body systems.

To implement the MPS method for the continuous quantum field
of the waveguide, we discretize time in small steps Dt and define
operator ĉn¼ 1ffiffiffiffi

Dt
p
R tn

tn �Dt ĉðtÞdt for the nth time-bin, where tn¼ nDt,
n is an integer and ĉðtÞ is the field operator in time domain. Using
the commutation relation ½̂cðtÞ; ĉw t0ð Þ�¼d t� t0ð Þ, it is straightfor-
ward to verify that ½̂cn; ĉwm�¼dnm, which means the time-bins can be
interpreted as independent harmonic oscillators. The state of this
quantum many-body system can be represented in the canonical
MPS form ref. 30. A spatially distributed single-photon state of the
waveguide is then 1j if¼

P
n

fnĉwn 0 . . . 0j iWG¼Âw
f 0 . . . 0j iWG, whereP

n|fn|2¼ 1. We consider an initial state where the optomechanical
system’s optical and mechanical modes are both in their ground
states, and consider two temporal modes of the photon with
annihilation operators Â1 and Â2 separated by a time interval Tm/4.
We identify the states jkj i � Âwj

1 Âwk
2 0 . . . 0j iWG 0j io 0j im for j,

k¼ 0 or 1, and assume an initial state of the whole system

Cj ii¼ 1þ Â
y
1

� �
1þ Â

y
2

� �
0 . . . 0j iWG 0j io 0j im=2;

¼ 1
2

00j i þ 01j i þ 10j i þ 11j ið Þ:
ð6Þ

Note that the states |jki are to an extremely good approximation
orthogonal given a temporal separation that is much larger than
their width. As shown in the Methods section, initially the
optomechanical system is at the first site of the MPS. To evolve
the many-body state, we sequentially update the MPS by applying
the unitary Ûn¼ exp � iĤSDtþ

ffiffiffiffiffiffiffiffi
kDt
p

âĉwn� âwĉn
� �� �

as a local
gate on the nth time-bin and the optomechanical system. Then a
swap gate is used to permute the order of them so that Unþ 1 can be
applied in the same way as Un. The swap gate is used because it is
more convenient to update the MPS in a local way by applying the
gates only to the nearest neighbour sites—it does not represent a
physical evolution of the many-body state. This process effectively
simulates a discrete representation of the quantum stochastic
schrödinger equation22 and is continued until the optomechanical
system reaches the last site of the MPS.

In contrast to ref. 22 where the number of sites in the MPS is
proportional to the total simulation time, here our waveguide is
modelled as a finite number of time bins corresponding to the
feedback waveguide length. After every Tm/2 time interval,
corresponding to the total optical path length for a round trip, the
optomechanical system has interacted with each time bin and
reaches the last site of the MPS. In the next time step, due to the
reflection off the far mirror, the system interacts with the first time
bin again. This is accomplished by moving the system back to the
first site of MPS via a series of swap gates. At this point, the evolution
can be continued as before to simulate interaction after one bounce.
This process is repeated 2Nrep times for Nrep runs of the protocol.

Entanglement entropy and phase calculation. MPS provides a
convenient way to extract information about entanglement
entropy of a quantum system. In the MPS representation we
decompose the state vector of the N-site system, ci1 ... iN , into a
product of tensors G½k�iN

ak� 1ak
and vectors l½k�ak

for k¼ 1yN, such that
a bipartition of the state at bond l can be written as a Schmidt
decomposition Cj i¼

P
al
l½l�al
jF½1 ... l�

al
ijF½ðlþ 1Þ ... N�

al
i(ref. 31). This

allows us to calculate the entanglement entropy between the two
halves of the system by simply reading off the values of the l

vector at bond l, and calculating Sl¼�
P

al
l½l�2al

log2l
½l�2
al

. The
black line in Fig. 2a is a plot of Sl as a function of lDt/Tm for the
initial state |Cii, which is essentially the bipartition entanglement
entropy throughout the whole waveguide. The two peaks at the
positions of the two photons correspond to the finite width
photon excitations in the waveguide, since one excitation is
spread across multiple local sites and detecting the photon at a
particular bin tells us that there are no photons in the nearby
bins. Stated more concisely, |1if cannot be written as a product
state of time-bin localized photon excitations. In addition to the
localized peaks, two other interesting regions are that between the
photons, and the region between the photons and the opto-
mechanical system. We call the entanglement entropy between
the photons and mechanical resonator Som and the entanglement
entropy between the two photons Soo. When calculating Soo we
are in fact finding the entanglement between one temporal mode
of the waveguide and the rest of the system, including the other
temporal mode as well as the optomechanical system. However,
when Som is close to 0, that is, mechanical system disentangles
from photons, Soo simply becomes the entanglement between two
photon temporal modes. As expected, both Som and Soo are zero
since the initial state can be written as a product state of separated
temporal modes of the optical field in the waveguide and the
optomechanical system, c.f. equation (6).

The entanglement entropy throughout the waveguide is plotted
after a few subsequent runs of the protocol and shown in dashed
lines in Fig. 2a. For the system parameters in Fig. 2a, Soo increases on
each run of the protocol while Som remains close to zero. The
evolution of Soo for more runs of the protocol is plotted in Fig. 2b
and shows clear oscillatory behaviour. This can be attributed to the
evolving phase shift of the |11i state with respect to the other states,
since for a state cj i¼ 1

2 00j i þ 10j i þ 01j i þ eif 11j i
� �

the entangle-
ment entropy is S¼1� ð1þ cÞlog2ð1þ cÞþ ð1� cÞlog2ð1� cÞ

� �
=2,

where c¼ cos(f/2). To verify that this is in fact the correct
interpretation, we calculate the phase shift directly from the
wavefunctions by taking the overlap between a vector
11j i¼Âw

1Âw
2 0 . . . 0j iWG 0j io 0j im evolved on a system with g0¼ 0,
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Figure 2 | Simulated entanglement entropy and phase. (a) Entanglement

entropy Sl of the fully coupled waveguide-optomechanical system for

Nrep¼0, 1, 2, 3. (b) Evolution of the entanglement entropy Soo between the

two localized photons over many repetitions of the protocol. The first four

points are the same as those in a. (c) Simulated phase shift Arg(h11|Ci)
after Nrep¼ 1. The dashed line is comparison with the semiclassical f1. The

MPS simulations in a,b were done for g0/k¼0.1, om/k¼ 2.5� 10�4, while

in c g0/k was varied. (d) The simulated phase shift over multiple repetitions

of the protocol for g0/k¼0.1 is plotted. The circles use Soo to infer f, while

the black trace is calculated directly by taking the argument of h11|Ci. There

is good agreement between the two and the phase increases linearly as

Nrepf1.
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and the result of our simulation with non-zero g0 after each run of
the protocol. The reason for doing this instead of comparing with
the initial unevolved state is that the temporal mode of the photon
indeed changes but the distortion caused by a cavity can in principle
be reversed using other linear optical components36. The total phase
shift f increases linearly as Nrepf1 in Fig. 2d, which explains the
oscillatory behaviour of entanglement entropy (in fact these phase
shift gives exactly the same entanglement entropy as Fig. 2b). We
compare the phase shift after one run of the protocol to the
semiclassically predicted results f1¼ 32(g0/k)2, and find good
agreement at smaller g0/k as shown in Fig. 2c. The agreement
becomes progressively worse at higher coupling. Finally, we calculate
in the same way the phase shift for |00i, |10i and |01i components
and find them all 0 for the values of g0/k in Fig. 2.

Fidelity of the CPHASE gate. In addition to calculating the
phase, we verify that the state of the electromagnetic field after
interaction with the optomechanical system remains within the
subspace of states |jki, modulo the linear optical response of
cavity. We calculate the fidelity F¼ |h11|Ci|2 after one and two
bounces of the photons from the cavity. Nominally, after two
bounces, that is, Nrep¼ 1, we expect F¼ 1/4 for the input state in
equation (6). In Fig. 3a a plot of the infidelity 1/4� F against the
interaction rate is shown for one and two bounces of the wave-
guide photons from the cavity. After one bounce, the significant
entanglement between the mechanical system and waveguide
photons leads to higher infidelity. After two bounces, that is, a full
run of the protocol, the entanglement between the mechanics and
waveguide photons is largely erased, causing an increase in the
overlap F. Larger interactions cause a breakdown of this picture
and lead to residual entanglement with the mechanical system
and lower fidelity. For g0/k¼ 0.1, we simulate a fidelity of
4FE0.9996 after two bounces, and 4FE99% after the Nrep¼ 10.
These simulations show that the photon wavefunction is not
significantly distorted in the interaction, as would be expected for
large instantaneous Kerr nonlinearities19.

To obtain a p phase gate, multiple bounces are required. In
Fig. 3b, we show the simulated fidelity, Fp¼ |h11|Ci|2, and the
required g0/k for phase gates implemented with different numbers
of Nrep. For phase gates with larger Nrep, smaller g0/k are required;
the gate fidelity is found to increase monotonically as the system
becomes better described by the semiclassical model. Photon loss
causes a reduction in the fidelity by a factor ZNrep , where Z is the
probability of a photon being lost on a single repetition of the
protocol. This finite photon loss causes the gate fidelity to be
maximized at a finite Nrep, with smaller Nrep being favoured for
higher losses Z.

Another signature of failure of the CPHASE gate is the presence
of residual entanglement between the photons and the mechanical
system after running the protocol, that is, a non-zero value for Som.
In Fig. 3c,d, the evolution of Som and gate fidelity are plotted
against g0/k and Nrep. It is clear that increasing g0/k causes an
increase in the residual entanglement and reduction in gate fidelity.
The white points in Fig. 3d outline the relationship between Nrep

and g0/k needed to obtain a phase shift of p according to the
quantum simulations. From these two figures, it is clear that the
reduction in fidelity is largely due to residual photon–phonon
entanglement, which can be approximated semiclassically. In the
Methods section, we outline how the semiclassical model predicts a
residual phonon occupancy giving qualitatively similar results to
the quantum case, though the full quantum calculations are more
forgiving in terms of obtainable phase shifts.

By studying the simulated fidelity for different parameters, we
can make the phase gate conditions more precise. For Nrep¼ 4,
we find that the bounds omto0.3 and kt4200 are sufficient to

prevent excess loss in fidelity. In our simulations the temporal
width of the phonons t was chosen to be t¼ 0.15/om¼ 1000/k.

Discussion
We have shown that strong photon–photon interactions can be
obtained with an optomechanical system that is outside the strong
coupling regime g0k=o2

m41
� �

. We estimate the effect of five
sources of decoherence; (1) the mechanical coupling to the thermal
bath, (2) the effect of other weakly-coupled mechanical modes and
sources of phase fluctuations, (3) the intrinsic optical loss kin, (4)
insertion loss and (5) the propagation losses in the long waveguide.
The important parameter in understanding the mechanical
decoherence (1) is the thermalization rate Gm¼ nbom/Qm, where
om/Qm is the mechanical linewidth and nb is the thermal
occupation at the mechanical frequency. In the high temperature
limit, nb¼ kT/:om and Gm¼ kT/:Qm. As long as the
Gm�NrepTm � 1, the chance of a phonon entering the system
from the bath during the time that protocol is being run for
remains small. This is equivalent to having fmQm � NrepkT=‘ .
Such fmQm products have been obtained at cryogenic
temperatures37, and more recently at room temperature with
silicon nitride membranes38–40. The effect of competing
mechanical modes (2) has long been an issue in pulsed
optomechanics experiments25. Recent experiments26 have been
successful at reducing the coupling to these modes to a few per
cent of the primary mode by careful engineering of structures and
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infidelity is much larger, since the mechanical system is no longer in its

ground state. (b) The fidelity 4Fp is plotted along with the required g0/k to

obtain a p phase gate for each Nrep. The fidelity improves monotonically

with increasing Nrep and with small g0/k. Taking into account losses per

repitition Z (Z¼0.99 dashed, Z¼0.96 dot-dashed, and Z¼0.93 dotted), a

maximum in 4Fp is observed at different values of Nrep. (c,d) The residual

photon–phonon entanglement Som (c) as well as the fidelity of the CPHASE

gate (d) for different values of g0/k and Nrep. The white points in d

represents values of Nrep and g0/k that implement a p phase gate, which

are the data points for b. Here om/k¼ 1.5� 10�4 and the temporal width

of the photon t¼ 1,000/k.
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positioning of the optical beam. In our case weak coupling to
parasitic mechanical modes leads to dephasing and is considered
more carefully in the Methods section. Sources (3)–(5) affect the
protocol in a similar way, in the sense that they introduce a finite
probability Z that a photon can be lost to the environment during
the execution of the gate. We assume throughout this discussion that
total loss rate k is composed of the intrinsic and extrinsic
parts kexþkin, with kex � kin. For the intrinsic losses in the
cavity (3), this means requiring Z2Nrep

i � 1�kin=kð Þ2Nrep �
1� 4Nrepkin=k be close to 1. This linear reduction in fidelity is
seen in Fig. 3b and makes smaller Nrep more optimal. Insertion
losses (4) can be considered in an identical way. Finally (5), the
chance of a photon being absorbed in the long delay is related to the
attenuation length of the fibre (on the order of 0.15 dB km� 1 in the
telecom C-band) and the required propagation path needed in the
fibre, NrepTmvfibre. To achieve a more than 90% chance for the
photon to survive propagation in the delay for the Nrep¼ 4 case, we
require a mechanical frequency 4260 kHz. Together these
parameters mean that Nrep¼ 4 and (g0, om, k)/2p¼ (31.3 MHz,
260 kHz, 173 MHz) are needed to implement the CPHASE gate with
FE80%. Currently, these parameters, though significantly easier to
obtain than the large g0/k and good cavity limit koom, remain
outside of our experimental reach. Nonetheless, progress in
experimental quantum optomechanics, and techniques for
enhancing coupling by stacking low frequency membranes17, are
expected to bring us to the required parameters in the coming years.

In conclusion, we have demonstrated that a CPHASE gate
between propagating photons can be implemented with the slow
and weak nonlinearity of an optomechanical resonator under the
correct quantum feedback conditions. In addition to opening up a
part of the optomechanical parameter space to quantum
experiments, the approach shows that quantum feedback has
the potential to enhance quantum nonlinear phenomena. In the
future, it is interesting to consider the evolution of entanglement
in quantum feedback networks using the MPS method, to better
understand how interesting quantum many-body states with
nontrivial correlations can be generated.

Methods
Here we will go through some details of the matrix product state method, giving an
explicit algorithm to decompose a single-photon state with wide temporal extent
into MPS form and also showing the equivalence between our simulation scheme
and the dynamics of a closed waveguide system. We will also present results of
fidelity simulations not included in the main text as well as a more detailed
semiclassical analysis and the effect of parasitic mechanical modes.

Time-bin representation. The system-bath Hamiltonian Ĥ¼ĤS þ ĤB þ Ĥint, where

ĤS¼omb̂yb̂þ g0âyâ b̂y þ b̂
� �

ĤB¼
Z1
�1

dooĉyðoÞ̂cðoÞ

Ĥint¼i
Z1
�1

do

ffiffiffiffiffi
k

2p

r
âĉyðoÞ� ây ĉðoÞ
� �

:

ð7Þ

The operators â, b̂ and ĉðoÞ are annihilation operators for photons in the cavity,
phonons of mechanical system and photons in the waveguide with mode index o.
Note that in writing this Hamiltonian, we are already in the rotating frame of the
optical cavity frequency oo. We can further go into the rotating frame with respect to
the bath Hamiltonian ĤB and the interaction term becomes

ĤintðtÞ¼i
Z1
�1

do

ffiffiffiffiffi
k

2p

r
âĉyðoÞeiot � ây ĉðoÞe� iot
� �

¼i
ffiffiffi
k
p

âĉyðtÞ� ây ĉðtÞ
� �

;

ð8Þ

where we have defined

ĉðtÞ¼ 1ffiffiffiffiffi
2p
p

Z1
�1

doĉðoÞe� iot : ð9Þ

To calculate the evolution of the whole system, it is convenient to discretize time in
small steps of Dt. Define the quantum noise increments in the time domain for the
input field as:

ĉn¼
1ffiffiffiffiffi
Dt
p

Ztn

tn �Dt

ĉðtÞdt; ð10Þ

where tn¼ nDt and n is an integer. It is straightforward to verify that ĉn; ĉwm
� �

¼dnm

from the commutation relation ĉðoÞ; ĉw o0ð Þ½ �¼d o�o0ð Þ of the field mode, which
means all the time-bins can be interpreted as independent harmonic oscillators. Thus
the Hilbert space for the whole system is a tensor product space, including con-
tributions from optomechanical system and quantum field in the waveguide, which
can be modelled as a series of harmonic oscillators.

In the time-bin representation, the evolution of the system state in the nth time
step is

C tnþ 1ð Þj i¼Ûn C tnð Þj i

¼exp � iĤSDtþ
ffiffiffiffiffiffiffiffi
kDt
p

âĉyn � ây ĉn

� �� �
C tnð Þj i:

ð11Þ

Initial state preparation. As usual, at t¼ 0 the state of the optomechanical system
and the quantum field in the waveguide are assumed to be completely uncorrelated
and separable. The state of the waveguide is composed of two temporal modes that
are spaced apart from each other. A large separation in time means that the state of
the quantum field is very nearly the product state of two single-photon states in
two independent temporal modes. A single photon in a temporal mode has a
wavefunction given by 1j if¼

R
f ðtÞdtĉðtÞ vacj iWG¼Âw

f vacj iWG. This can be
rewritten in the time-bin representation as

X
n

fnĉyn 0 . . . 0j iWG¼Â
y
f 0 . . . 0j iWG: ð12Þ

More generally, the joint state of the waveguide with two temporal modes each in
their 0 or 1 state can be described by the linear combination of state vectors
jkj i � Âw j

1 Âwk
2 0 . . . 0j iWG 0j io 0j im for j, k¼ 0 or 1. Specifically, in our simulation

the initial state is choosen to be Cj ii¼ 1
2 00j i þ 01j i þ 10j i þ 11j ið Þ, as shown in the

main text.

Matrix product state. For a general many-body state

Cj i¼
X
fig

ci1 ;			;in i1j i 
 	 	 	 
 inj i ð13Þ

the following canonical decomposition always exists30:

ci1 ;			;in¼G½1�i1
a1

l½1�a1
G½2�i2
a1a2

l½2�a2
G½3�i3
a2a3
	 	 	G½n�in

an
ð14Þ

where the state is represented using a series of tensors G and vectors l. An
important property of this canonical form is that for any k, l[k] is the Schmidt
vector for a certain bipartition of the whole system into subsystem 1-k and
subsystem kþ 1-n. For a quantum state with restricted amount of entanglement,
the Schmidt vectors can be truncated by some threshold (10� 4–10� 5 in our
case—verifying that our results are not dependent on this threshold), which enables
efficient classical simulation.

Single-photon state decomposition. Generally speaking, two things are required
for the MPS simulation: preparing the many-body state |C(t)i in MPS form and
updating this state step by step to evolve |C(t)i. In this and the next section, we
consider these two aspects.

To decompose the initial state in an MPS form, a sequence of singular value
decompositions are required. Note that for separated temporal modes each being in
the 0 or 1 photon states, the dimension of Hilbert space for any of the time-bins
can be chosen to be 2. In addition, we are operating in the polynomial O(N2)
subspace of the O(dN) dimensional Hilbert space of the waveguide—only states
|11? 0i, |101? 0i, ?|011? 0i, ?, |0? 11i are used since we ignore the
possibility of two photons localizing at the same time-bin. Considering M to be the
dimension of the truncated Hilbert space for the optomechanical system, the state
of the full system would require O(N2M) parameters. The MPS representation
takes advantage of this reduction in problem size in an implicit way. In addition,
we note that though we are limited to this subspace due to the photon number
conserving symmetry of the Hamiltonian and our selection of the initial state, our
implementation of the MPS method is capable of simulating the dynamics for a
more complex input state in an efficient and automatic way, since the Hilbert space
is never explicitly reduced.

The initial state decomposition can be further simplified using the fact that it is
a product state of two single photons localizing at different parts of the waveguide.
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Therefore the problem is reduced to decompose a single-photon state for that part
of the waveguide. Imagine a single photon is localized at n adjacent time bins with

the state
Pn

i¼1 fi ĉ
y
i 0 . . . 0j in . The decomposition algorithm is as follows: (1) For the

first step, calculate the density matrix for the first time-bin and diagonalize it to get

its eigenvalues l½1�2a1
and eigenvectors C½1�a1

		 E
where a1 is the label of different

eigenvalues. The Schmidt vector l[1] is the square root of the eigenvalues, which
can be truncated by keeping all those values of a1 such that l½1�a1

is larger than a
certain threshold. The elements of tensor G[1] can be obtained by expanding the

eigenvectors in the local basis {|0i, |1i}, that is, i1jC½1�a1

D E
¼G½1�i1

a1
. Here i1 can take

the value of 0 and 1 and a1 only takes the values after truncation. (2) For the kth
(1okrn) step, take the composite system of 1 - k time-bins as a whole and
calculate its density matrix. Similarly, calculate the square root of the eigenvalues
and then truncate to get the Schmidt vector l[k]. Take the inner product

C½k� 1�
ak� 1

D 			 ikjC½k�ak

D E
to give the element G½k�ik

ak� 1ak
of G[k], where |iki is the local basis

{|0i, |1i} of the kth time-bin and ak� 1, ak are the index of the truncated Schmidt
vectors l[k� 1] and l[k], respectively.

MPS update. To evolve the many-body state, a sequence of unitary operators Ûn

are applied to update the MPS. Here

Ûn¼ exp � iĤSDtþ
ffiffiffiffiffiffiffiffi
kDt
p

âĉyn � ây ĉn

� �� �
: ð15Þ

As already mentioned in the main text, the MPS used for simulation of our
protocol keeps track of a waveguide of finite length equivalent to a delay time of
Tm/2 and also the optomechanical system.

The update of the MPS chain of N time-bins is illustrated in Fig. 4. First for every
n from 1 to N, we apply Ûn to the optomechanical system and the nth time-bin.
Then a swap gate is used to permute the order of the two bins, so that Ûnþ 1 can be
applied in the same local way as Un. By repetitively applying these steps, the
optomechanical system is moved to the last site of the MPS having interacted with all
of the waveguide. Then we move the optomechanical system back by performing
swap gates on the optomechanical system and the nth time-bin for each n from N to
1. Note that in this step the many-body state is not evolved in time since it stays the
same under swap gates. Repeating this process again implements one repetition of
the protocol. The full evolution may be over multiple repetitions, Nrep.

Extraction of the entanglement entropy. The canonical MPS form provides a
convenient way to extract many properties of the system, like average values during
evolution, correlation functions of the quantum field and so on. In addition to the
phase and fidelity that can be directly calculated from the wavefunction, we are
particularly interested in the entanglement entropy of various bipartitions of the
whole system. These can be directly calculated from the l[k], the Schmidt vector at
time tk, in the MPS representation. We calculate

Sk¼�
X
a

l½k�2a log2l
½k�2
a ; ð16Þ

which gives us the entanglement between part of the system, containing time-bins
0ototk, and another part, with time-bins tkotoTm/2.

Relation to a closed system. To simulate the effect of many reflections by the
mirror, we use a series of swap gates to move the optomechanical system back
every time it reaches the last site of the MPS. This scheme seems reasonable, and
we justify it here in a more rigorous way. The system as modelled is simply a closed

system without losses. Here we wish to show formally the equivalence between our
simulation scheme and the dynamics of the closed system.

Consider a long waveguide of length L with linear dispersion, then
ĤB¼o0

P1
�1 nĉwnĉn where o0¼pc/L is the frequency of the fundamental mode

and c is the speed of light. The summation starts from �N since we are in a
rotating frame of cavity frequency. In this model the delay time of the coherent
feedback is T¼ 2L/c.

After going into the rotating frame of ĤB, the interaction term is

Ĥint¼
ffiffiffiffiffi
k

2p

r X
n

âĉyn eino0 t � ây ĉne� ino0 t
� �

¼
ffiffiffi
k
p

âĉyðtÞ� ây ĉðtÞ
� �

;

ð17Þ

where we have defined ĉðtÞ¼ 1ffiffiffiffi
2p
p
P

n ĉne� ino0 t . It is important to note that
ĉðtÞ¼ĉ tþ 2p=o0ð Þ¼ĉðtþTÞ which is a direct result of the coherent feedback.

Next let us discretize time in small steps of Dt¼T/N, where N is a large integer
and also the number of time-bins. We define in the time domain
ĉi¼ 1ffiffiffiffi

Dt
p
R ti

ti �Dt ĉðsÞds, where i is an integer and ti¼ iDt. Since ĉiþN¼ĉi for any i, all

the independent operators are ĉi; i¼1; 	 	 	 ;Nf g. As before, it is straightforward to
show that ½̂ci; ĉwj �¼dij;81 � i; j � N . Therefore we have N independent harmonic
oscillators as time-bins.

To describe the evolution of this state, we start again with the single-step
evolution

Ûn¼ exp � iĤSDtþ
ffiffiffiffiffiffiffiffi
kDt
p

âĉwn � âw ĉn
� �� �

: ð18Þ

Here ĉn is the operator defined in the time domain and Ûn¼ÛnþN . This cyclic
property of these unitary matrices evolving the state means that the total evolution
operator

Q
j Ûj over many steps can be written as

CðtÞj i¼Ûm 	 	 	 Û1 ÛN 	 	 	 Û1
� �n

Cð0Þj i ð19Þ

for t¼ nTþmDt where m, n are two integers and 1 � m � N . When m goes from
1 to N, the optomechanical system moves through the MPS and interacts with the
photons. When m becomes 1 again, a series of swap gates are required to move the
optomechanical system back to the first site of the MPS, so that Û1 can be applied
on the MPS in a local way. This is exactly the simulation scheme we have
implemented as described above.

Simulation parameters. The cutoff of the singular values in the singular value
decomposition calculation is set to be 10� 4. Since the coupling between the cavity
and the waveguide is the fastest process in the rotating frame, we choose Dt¼ 1/(2k).
The temporal width of the photon is chosen to be t¼ 1,000/k, that is, most of the
photon is spread across 1,000� 2¼ 2,000 time-bins to ensure that it can fully enter
the cavity. We choose the cutoff of the Fock space to be 2 for the optical cavity, 15 for
the mechanical oscillator and 2 for each time bin. The total waveguide is composed
of Tm/(2Dt) time-bins, which is 41,888 for om/k¼ 1.5� 10� 4. We have verified that
these paramters are sufficient for capturing the physics of the problem.

Evolution of fidelity over many bounces. The quantum optomechanical non-
linearity can cause the state of the quantum field in the waveguide to move outside
of the subspace defined by the four state vectors |jki, where there are j, k¼ 0, 1
photons in the temporal modes j and k of the waveguide. There are three effects
that cause this. One is the change in the temporal mode after each bounce from the
cavity. The other is leakage due to the nonlinearity. Finally there is the effect of
residual entanglement with the mechanical system after a repetition of the protocol.

N -2 N -121 NS ......

U1, Swap

N -2 N -12S N1 ......

N -1 S32 N1 ......

N -1 N32 S1 ......

Swap

N -1 S32 N1 ......

Swap

N -2 N -12S N1 ......

Swap

Step 1 Step 2

UN, Swap

U2, Swap

Figure 4 | Two steps for matrix product state update. Step 1: for each time-bin n from 1 to N (the length of the chain), apply gate Ûn to the optomechanical

system and the nth time-bin, followed by a swap gate to permute their order. Step 2: use a series of swap gates to bring the optomechanical system back to

the beginning of the matrix product state chain, so that steps 1 and 2 can be repeated again to complete one repetition of the protocol.
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We are interested in the latter two since the first can be in principle reversed with
linear optical components. We calculate the change in the overlaps |hjk|Ci|2
starting from the initial state |Cii as defined in the main text, and with |jki evolved
separately with g0¼ 0. The results are plotted in Fig. 5. Nominally, F¼ 0.25 in the
perfect case for every j and k, and so the infidelity is 1� 4F.

Semiclassical calculation of fidelity. The fidelity of the CPHASE gate depends on
the input state. In a semiclassical model in the bad cavity regime and with photons
with sufficient temporal extent t, the fidelity of the gate for |00i, |10i and |01i input
states is close to one. However, for |11i input state, the cavity frequency shift due to
the interaction of the first photon reduces the probability of the second photon
entering the cavity and causes a residual phonon number at the end of the protocol.

We can estimate this effect in a semiclassical model. A photon bouncing off a
mechanical system that is in a coherent state |bi (instead of in its ground state) can
be described by a displacement operator in mechanical phase space:

UbðbÞ¼ exp
� 4ig0=k

1þ 4 g0=kð Þ2 bþ b�ð Þ2
bþ by
� �
 �

ð20Þ

The reason is that the cavity shift induced by the mechanical displacement (bþ b*)
reduces the momentum kick induced by the interaction with the photon. After the
interaction with first photon, the mechanical changes from being in its ground state
|0i to Ubð0Þ 0j i¼ � irj i which is also a coherent state, where r¼ 4g0/k. After Tm/4
free evolution, the mechanical state becomes � rj i—the momentum kick induced
by the photon becomes a displacement. Then the interaction with the second
photon changes the mechanical state to Ubð� rÞ � rj i¼eif1 j � rð1þ i

1þ r4Þi, where
f1¼ r2

1þ r4. Continuing this calculation until the end of one repetition of the
protocol leads to a mechanical final state brj i with

br¼
r5

1þ r4ð Þ2 þ r4
þ ir

1
1þ r4

� 1

1þ r2 r5

1þ r4ð Þ2 þ r4

� �2

0
B@

1
CA:

When ro1, brEr5(1þ i). To compare the contribution of this effect to the fidelity
of our gate, we numerically keep track of the evolution of the mechanical state for
11j i input state and calculate the fidelity as well as the phase shift for each

repetition of the protocol. As shown in Fig. 6, the semiclassical effect is a major part
of the contribution to the full quantum results. Here the fidelity is defined as

0jbrh ij j2¼e� brj j2 .

Fidelity change caused by another mechanical mode. The Hamiltonian of
system with other mechanical modes will have other terms x(t)awa where x(t)¼
gpxp(t) is the frequency jitter due to a parasitic mechanical mode. We assume there
is only one other mechanical modes, that during a photon interaction, x(t) is
approximately constant, and model this parasitic mode classically. Then the extra

phase shift can be estimated as exp � ix
R
t ayðtÞaðtÞdt

� �
¼ exp � i4x=kð Þ. With an

entangled photonic state input þj i¼ 1ffiffi
2
p 10j i þ 01j ið Þ, after a perfect phase gate,

since 10j i and 01j i should have the same phase, the state will remain þj i.
However, since the parasitic mechanical mode incurs a random phase shift, the
final state becomes 10j i þ eiy 01j i with y¼ 4

k x1 þ x3 � x2 � x4ð Þ. Here x1(x2) and
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shift. The black and white dots are the p-points in parameter space showing the values of g0/k and Nrep required for a p phase gate. The primary source for

loss of fidelity and phase shift are captured by our semiclassical model, while other contributions are revealed in the full quantum simulation. It is worth

noting that the agreement between the simple classical calculation and the quantum model becomes worse at larger coupling g0/k and that quantum

model seems to lead to larger phase shifts.
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Figure 5 | Plot of infidelity of the state of the photons in the waveguide.

These are results of simulations done for g0/k¼0.1, om/k¼ 1.5� 10�4,

t¼ 1000/k and Nrep¼ 1,y,10. Note that for |00i subspace the results are

always 0 and therefore not shown here.
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x3(x4) are related to the random phase shift obtained by the 10j i 01j ið Þ during its
two bounces on the mechanical oscillator. We model xi as independent random
variables obeying normal distribution N 0; s2ð Þ. Therefore the distribution for y is

y
N 0; 4 4s
k

� �2
� �

. For a given y the fidelity is FðyÞ¼ 1þ cos y
2 , and on average the

fidelity is

F¼
Z

dyf ðyÞFðyÞ¼
Z

dyf ðyÞ 1þ cos y
2

ð21Þ

¼ 1
2

1þ e� 32s2=k2
� �

� 1� 16s2=k2 ð22Þ

where f(y) is the probability distribution of y. Since the phase fluctuation can

be estimated by s¼ gp

op

ffiffiffiffiffiffi
kB T
mp

q
, we arrive at an expression bounding gp and the

temperature T for a given required fidelity.

Data availability. The data and code relating to this work are available on request
from the corresponding author.

References
1. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev.

Mod. Phys. 86, 1391–1452 (2014).
2. Dong, C., Fiore, V., Kuzyk, M. C. & Wang, H. Optomechanical Dark Mode.

Science 338, 1609–1613 (2012).
3. Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical

wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196
(2012).

4. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave
and optical light. Nat. Phys. 10, 321–326 (2014).

5. Lecocq, F., Clark, J. B., Simmonds, R. W., Aumentado, J. & Teufel, J. D.
Mechanically mediated microwave frequency conversion in the quantum
regime. Phys. Rev. Lett. 116, 043601 (2016).

6. Brooks, D. W. C. et al. Non-classical light generated by quantum-noise-driven
cavity optomechanics. Nature 488, 476–480 (2012).

7. Safavi-Naeini, A. H. et al. Squeezed light from a silicon micromechanical
resonator. Nature 500, 185–189 (2013).

8. Purdy, T. P., Yu, P.-L., Peterson, R. W., Kampel, N. S. & Regal, C. A. Strong
optomechanical squeezing of light. Phys. Rev. X 3, 031012 (2013).

9. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523
(2010).

10. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow
light with optomechanics. Nature 472, 69–73 (2010).

11. Chuang, I. L. & Yamamoto, Y. Simple quantum computer. Phys. Rev. A 52,
3489–3496 (1995).

12. Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107,
063601 (2011).

13. Nunnenkamp, A., Borkje, K. & Girvin, S. M. Single-photon optomechanics.
Phys. Rev. Lett. 107, 063602 (2011).

14. Ludwig, M., Safavi-Naeini, A. H., Painter, O. & Marquardt, F. Enhanced
quantum nonlinearities in a two-mode optomechanical system. Phys. Rev. Lett.
109, 063601 (2012).

15. Stannigel, K. et al. Optomechanical quantum information processing with
photons and phonons. Phys. Rev. Lett. 109, 1–5 (2012).

16. Lemonde, M.-A., Didier, N. & Clerk, A. A. Enhanced nonlinear interactions in
quantum optomechanics via mechanical amplification. Nat. Commun. 7, 11338
(2016).

17. Xuereb, A., Genes, C. & Dantan, A. Strong coupling and long-range collective
interactions in optomechanical arrays. Phys. Rev. Lett. 109, 1–5 (2012).

18. Asjad, M., Tombesi, P. & Vitali, D. Quantum phase gate for optical qubits with
cavity quantum optomechanics. Opt. Express 23, 7786 (2015).

19. Shapiro, J. H. Single-photon Kerr nonlinearities do not help quantum
computation. Phys. Rev. A 73, 062305 (2006).

20. Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. S. & Brukner, Č. Probing
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