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Epidemic modeling in complex networks is a hot research topic in recent years. The spreading of a virus
(such as SARS-CoV-2) in a community, spreading computer viruses in communication networks, or
spreading gossip on a social network is the subject of epidemic modeling. The Susceptible-Infectious-R
ecovered (SIR) is one of the most popular epidemic models. One crucial issue in epidemic modeling is
the determination of the spreading ability of the nodes. Thus, for example, super spreaders can be
detected in the early stages. However, the SIR is a stochastic model, and it needs heavy Monte-Carlo sim-
ulations. Hence, the researchers focused on combining several centrality measures to distinguish the
spreading capabilities of nodes. In this study, we proposed a new method called Lexical Sorting
Centrality (LSC), which combines multiple centrality measures. The LSC uses a sorting mechanism similar
to lexical sorting to combine various centrality measures for ranking nodes. We conducted experiments
on six datasets using SIR to evaluate the performance of LSC and compared LSC with degree centrality
(DC), eigenvector centrality (EC), closeness centrality (CC), betweenness centrality (BC), and
Gravitational Centrality (GC). Experimental results show that LSC distinguishes the spreading ability of
nodes more accurately, more decisively, and faster.
� 2021 The Author. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Complex networks are very convenient tools for modeling the
real world. Many things in the real world connect to form a com-
plex network (Barabási and Pósfai, 2016). Complex networks have
applications in many areas, including biology (Hancock and
Menche, 2020), social networks (Borgatti et al., 2009), ecology
(Gao et al., Feb. 2016); cooperation dynamics in repeated games
(Xu et al., 2019); (Liu, Dec. 2018), artificial intelligence (Xu et al.,
2020) and more. In addition, there are many practical benefits to
determining the spreading capacities of the nodes in complex net-
works under specific propagation models. Some of these include
identification of nodes that can maximize the spread of informa-
tion in a social network (Zareie and Sheikhahmadi, 2018)
(Borgatti, 2006); detection of nodes that can minimize the spread-
ing of a rumor (Yang et al., 2020); (Zhang et al., 2018), and reveal-
ing superspreaders that will play a role in the propagation of
epidemics or computer viruses (Ali et al., 2020). For example, to
maximize the spread of information, a small number of most influ-
encer nodes on the network should be made active. This problem is
an NP-Hard combinatorial optimization problem named Influence
Maximization (IM) (Kempe et al., 2003). Therefore, greedy algo-
rithms and optimization methods are used for IM (Kempe et al.,
2003); (Zhang et al., 2017). However, both approaches need to dis-
tinguish the spreading abilities of the nodes under a given propa-
gation model. For example, a greedy algorithm may select top-k
the most influential nodes as the set of seed nodes (Kempe et al.,
2003). In this context, determining the spreading abilities of nodes
in complex networks has attracted the attention of researchers
(Borgatti, 2006). In this way, the nodes can be ranked according
to their spreading capabilities. For this, the nodes are selected as
seed nodes one by one, and propagation is modeled. Propagation
models such as Susceptible-Infectious-Recovered (SIR), however,
require heavy Monte-Carlo simulations. Therefore, we need to less
costly methods that can indirectly determine the spreading abili-
ties of nodes under specific propagation models. On the other
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hand, graph-theoretical centrality measures are used to determine
the importance of nodes on the network since a few decades.
Researchers, who discovered that the centrality measures have
correlation with the spreading abilities of the nodes under a speci-
fic propagation model, concentrated their research in this area. The
main purpose here is to rank the nodes by means of a centrality
measure, and these ranks are expected to be correlated with the
ranks made according to the real spreading abilities of the nodes.
Thus, nodes can be distinguished from each other without the need
for heavy Monte-Carlo simulations. This is what the greedy algo-
rithms or optimization methods we mentioned above need.

Many centrality measures have been developed and are still
being designed for this purpose. The general problem with these
measures is that they cannot provide a solution to the balance
between speed and quality. Here, what we mean by quality is
the correlation between the ranking created by the centrality mea-
sure and the ranking created according to the actual spreading
abilities of the nodes. In this study, we developed a method we call
Lexical Sorting Centrality (LSC). The LSC gives ranks to the nodes by
using a combination of different basic centrality measures. Doing
so does not use a predetermined closed-form solution, a factor that
makes the LSC improvable. With this feature, LSC offers a new way
to use different centrality measures in combination. According to
the experimental results, the solution quality of LSC is better than
the solution quality of the state-of-the-art centrality measures. At
the same time, LSC is competitive in terms of speed.
2. Basic concept

Several centrality measures can be calculated for nodes in com-
plex networks. Every measure indicates the importance (effect) of
a node from its perspective. However, a centrality measure does
not yield the same performance in all complex networks. There-
fore, the idea has emerged recently of combining the centrality
measures (Alshahrani et al., 2020; Li et al., 2018; Ma et al., 2016;
Salavati et al., 2019; S�ims�ek and Kara, 2018; Yang et al., 2020;
S�ims�ek et al., 2020). Almost all of the studies, which we will discuss
in the next section, suggest combining the centrality measures
with a closed formula. A merger in this way makes it difficult (if
not impossible) to explain the logic of creating the formula when
there is no natural phenomenon that inspired its creation. Creating
close formulas also prevents the proposed methods from being
improvable. This study suggests a way to use different graph-
theoretical centrality measures together without using a closed
formula. We termed this method Lexical Sorting Centrality (LSC).
Using multiple centrality measures, LSC uses order-theoretical
methods to sort nodes like reverse lexical (alphabetical) order.
For example, LSC calculates three different centrality measures
(C1, C2, and C3) for a six-node graph. For convenience, we choose
the precision of the centrality measures as one decimal place. Each
centrality measure here is like a letter, and the ‘‘node-centrality
measure array” can be thought of as a word. For example, in
Fig. 1, the letters formed in node 0 are 0.2, 0.8, and 0.3. Fig. 1(a)
shows the initial state. Here, the nodes are sorted according to
their numbers. In situation Fig. 1(b), the nodes are sorted from
large to small according to C1 measure. Here, the C1 values of nodes
4 and 5 and nodes 0 and 2 are the same. Therefore, it is not possible
to say which of these nodes is more important than the other by
looking only at the C1 measure. Afterward, only the nodes with
the same C1 values (i.e., nodes 4 and 5 and nodes 0 and 2) are
sorted from large to small according to C2 values to arrive at the
situation in Fig. 1(c). The C1 and C2 values of nodes 0 and 2 are
the same. Finally, the nodes with the same C1 and C2 values (nodes
0 and 2) are ranked according to the C3 value to reach the final state
in Fig. 1(d). The final arrangement of the nodes is 5–4-1–2-0–3. If
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we consider each centrality measure as a letter here, this order is
precisely that of a reverse lexical. If all centrality measures calcu-
lated for any two nodes are the same, the order of those nodes is
not changed.

3. Motivation

Centrality measures represent the importance of nodes. Each
centrality measure does this with its perspective, and the impor-
tance of a node depends on the given context (Saxena and Iyengar,
2020). Among the most basic centrality measures are the degree,
closeness, betweenness, eigenvector, and Katz centrality measures.
For example, the local influence of the high degree node can be high.
However, it may not be effective globally. Likewise, a node with a
high betweenness node can provide information flow between dif-
ferent communities. However, it may not be effective locally
(Saxena and Iyengar, 2020). On the other hand, the spreading ability
of a node depends on various parameters such as the number of
neighbors, how influential their neighbors are, and their location
on the network (Cherifi et al., 2019; Yan et al., 2020). Ifmultiple cen-
trality measures are used together, different perspectives are com-
bined, and more accurate information about the spreading abilities
of nodes can be obtained. Therefore, researchers are looking for a
way to use various centrality measures together.

Many studies in the literature are based on combining multiple
measures with a closed formula and making the formula adjusta-
ble by assigning a coefficient to each sub-measure. The first prob-
lem here is to determine the values of the coefficients. Most of the
studies empirically give the coefficients a value of ‘‘1”. Another
problem is the arithmetic operations. It is difficult to explain the
purpose of multiplying or summing the two sub-measures with
each other. On the other hand, each centrality measure has differ-
ent correlations with the spreading abilities of nodes (S�ims�ek et al.,
2020). For this reason, when deciding on the rank of a node, a
highly correlated centrality measure should have a higher effect
on this decision. LSC generates a new centrality measure by com-
bining multiple centrality measures. In doing so, it doesn’t use a
closed formula. LSC assigns ranks to the nodes in a way similar
to alphabetical order by using multiple centrality measures.

4. Main contributions

The main contributions of this paper are as follows:

1. It introduces a new method to combine multiple centrality
measures in a fast and straightforward manner. Thus, different
centrality measures can easily be used together, even for large
networks.

2. LSC distinguishes the spreading abilities of nodes under the SIR
propagation model better than recent and well-known central-
ity measures in the literature.

The rest of paper is organized as follows. Section 5 summarizes
the related works in the literature. Section 6 gives the basic defini-
tions and terminology used throughout this paper and then intro-
duces LSC. Section 7 describes the details of the experiments and
gives the experimental results. Finally, Section 8 presents the dis-
cussion and conclusions.

5. Related work

In this section, we reviewed the studies in the literature that
combine different centrality measures. The following studies may
be examined for Influence Maximization and Influential Spreader
Detection: (Maji et al., 2020; Azaouzi et al., 2021).



0 0.2 0.8 0.3

1 0.5 0.3 0.5

2 0.2 0.8 0.4

3 0.1 0.4 0.8

4 0.7 0.5 0.1

5 0.7 0.6 0.7

4 0.7 0.5 0.1

5 0.7 0.6 0.7

1 0.5 0.3 0.5

0 0.2 0.8 0.3

2 0.2 0.8 0.4

3 0.1 0.4 0.8

5 0.7 0.6 0.7

4 0.7 0.5 0.1

1 0.5 0.3 0.5

0 0.2 0.8 0.3

2 0.2 0.8 0.4

3 0.1 0.4 0.8

(a) (b) (c)

5 0.7 0.6 0.7
4 0.7 0.5 0.1
1 0.5 0.3 0.5
2 0.2 0.8 0.4
0 0.2 0.8 0.3
3 0.1 0.4 0.8

(d)

Fig. 1. Sorting nodes like alphabetical order using multiple centrality measures.
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Centrality measures such as degree (Newman, 2018), closeness
(Sabidussi, 1966), betweenness (Freeman, 1977), eigenvector
(Bonacich, Mar. 1987), Katz (Katz, 1953), and PageRank (Page
et al., 1999) are well-known centrality measures used to determine
the importance of nodes in complex networks. This section will
discuss the more recent centrality measures and studies that use
more than one measure together.

There are two general trends in the literature for using multiple
centrality measures together: considering the network structure
and using it for influential node detection, and combining different
centrality measures into a unique centrality measure. Most of the
studies considering the network structure have analyzed the com-
munity structures in the network. They have used basic centrality
measures such as degree, closeness, betweenness, etc., together to
determine the inter-community and intra-community influence
capabilities of nodes (Ghalmane et al., 2019a, 2019b; Zhao et al.,
2016, 2015). For more detailed classification of node ranking
approaches for influential node detection, (Cherifi et al., 2019)
could be examined. In this study, our primary focus is the combin-
ing of different centrality measures. Therefore, we have reviewed
this type of studies in more detail.

Andrade and Rêgo developed a centrality measure called p-
means (Andrade and Rêgo, 2019). The p-means combines degree,
closeness, harmonic, and eccentricity centrality measures paramet-
rically into one formula. By changing the p-means’ formula’s coeffi-
cient, p-means behave like one of themeasures (or a combination of
them). Zhao et al. developed the two sub-measure of self-
importance and global importance and, by multiplying them,
proposed a composite centralitymeasure demonstrating the impor-
tance of the nodes (Zhao et al., 2020). Using a coefficient for self-
importance and global importance in their formula, they ensured
that the balance could be changed towards one of these two sub-
measures. They compared their proposed method with well-
known centralitymeasures such as degree, closeness, betweenness,
and PageRank on six real networks under the SIR propagationmodel
and achieved competitive results. Alshahrani et al. developed two
algorithms called MinCDegKatz d-hops and MaxCDegKatz d-hops
(Alshahrani et al., 2020). These algorithms combine degree and Katz
centrality measures, taking into account the local and general
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strength of the nodes. They compared their proposed algorithms
to various competing algorithms under Independent Cascade (IC)
andLinear Threshold (LT)propagationmodels on four real networks.
Yang et al. developed a new centrality measure called DCC (Yang
et al., 2020), which combines degree and clustering coefficientmea-
sure in a closed formula. Just like in the measure proposed by Zhao
et al. (Zhao et al., 2020), by using a coefficient for the sub-
components in their formula, they ensured that the balance could
be changed towardsoneof these two sub-measures. They compared
their proposed algorithms to different competing algorithms under
the Susceptible – Infected (SI) propagation model on four real net-
works. S�ims�ek and Meyerhenke developed many new centrality
measures using well-known centrality measures such as degree,
closeness, and eigenvector (S�ims�ek et al., 2020). Their proposed
combining method is to multiply the centrality measures with dif-
ferent coefficients and subject the results to some arithmetic opera-
tions. They compared their proposed newmeasureswith competing
algorithms under the IC propagation model on 50 real networks.
Zhao et al. demonstrated that various centrality measures could be
combined using Evidence Theory (Zhao et al., 2020). Their method
is called Evidence Theory Centrality (ETC). They used DC, BC, and
CC centrality measures. They have made experiments to demon-
strate ETC’s performance on 6 real network datasets under the SI
propagation model. Xiao-Li et al. developed a new centrality mea-
sure by combining the topological characteristics of the nodes, their
positions, propagation characteristics and the characteristics of
their neighbors (Yan et al., 2020). They have done experiments on
six real network datasets under the SIR propagationmodel. The pro-
posed centrality measure has outperformed the basic centrality
measures. Keng et al. proposed a new way of combining centrality
measures (Keng et al., 2020). Themethod creates a convex combina-
tion of different centrality measures. First, they analyzed the corre-
lation of centrality measures with each other. According to their
analysis, they proposed coefficients for each centrality measure.
They showed that the sum of the centrality measures multiplied
by the coefficients could also be a new centrality measure.

In summary, many of the studies in the literature form closed
formulas to combine several centrality measures and make the for-
mula adjustable by assigning a coefficient to each sub-measure
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(e.g.,factor1 � CentralityMeasure1 þ factor2�CentralityMeasure2). The
first problem here is to determine the values of the coefficients.
Most of the studies empirically give the coefficients a value of
‘‘1”. Another problem is the arithmetic operations in the closed for-
mulas. It is difficult to explain the purpose of multiplying or sum-
ming two centrality measures.
6. Distinguishing spreading abilities of nodes using LSC

6.1. Preliminary information

As mentioned in the introduction, LSC sorts nodes similar to
reverse lexical order using multiple centrality measures. In this
study, we selected the degree, eigenvector, and closeness mea-
sures. We also used Susceptible-Infectious-Recovered (SIR) as the
propagation model. First, let us discuss these measures and the
SIR model from a graph-theoretical perspective.

Let G ¼ ðV ; EÞ be an undirected unweighted graph (network).
Here, V is the set of nodes (vertices), and E is the set of edges
(links).

Definition 1 ((Degree Centrality):). Degree centrality (DC) is calcu-
lated by dividing the degree of a node by the total number of nodes in
the graph minus 1.

DC ið Þ ¼ degreeðiÞ
Vj j � 1

ð1Þ

Here, i 2 V .

Definition 2 ((Eigenvector Centrality):). The eigenvector centrality
(EC) of a node is calculated by dividing the sum of the EC values of
neighbors by a constant.

Let A ¼ ðaijÞ be the adjacency matrix of G; if i and j are neigh-
bors, aij ¼ 1; otherwise, aij ¼ 0.

EC ið Þ ¼ 1
k

X
j2VaijECðjÞ ð2Þ

Here, k is a constant.

Definition 3 ((Closeness Centrality):). The closeness centrality (CC)
of a node is calculated using the average distance (over the shortest
paths) of the node to all other nodes.

CC ið Þ ¼ Vj jP
j2V� if gsp j; ið Þ ð3Þ

Here, sp �ð Þ is the shortest path between nodes i and j.

Definition 4 ((Susceptible-Infectious-Recovered Model):). Suscepti-
ble-Infectious-Recovered (SIR) is a well-known epidemic model.
Although it is a population-based model, it is beginning to be applied
to network structures (Ullman et al., 1974) because of its popularity
in recent years. The SIR model is defined by two parameters: b; the
rate at which the sensitive nodes are infected by their already infected
neighbors; and c; the recovery rate of infected nodes. Initially, all
nodes are susceptible. One or more nodes on the network are first
infected (the nodes that bring the disease to the network). These are
often referred to as seed nodes. Starting from these nodes, in step t
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(time frame), the infection spreads over the network and becomes an
epidemic, or otherwise, it is finished before it becomes an epidemic.
When the disease becomes an epidemic, the number of nodes infected
first and their location (significance) on the network depends on the
network topology (i.e., density), b and c.
6.2. LSC

The LSC uses order-theoretical methods to sort nodes similar to
reverse lexical order, using multiple centrality measures, as
explained in the Introduction section. In this study, we used DC,
EC, and CC measures. First, DC, EC, and CC are calculated for all
nodes. Thus, a node and its calculated measures can be written
as 4� tuple:

T ¼ node DC EC CCð Þ ð4Þ
After that, LSC creates a matrix as shown in Equation (5). We

named this the Ranking Matrix (RM).

RM ¼

node0 DC0 EC0 CC0

node1 DC1 EC1 CC1

: : : :

: : : :

: : : :

noden�1 DCn�1 ECn�1 CCn�1

2
666666664

3
777777775

n�4

ð5Þ

Here, n ¼ Vj j.
Then, LSC performs reverse lexical sorting as follows:
First, it sorts the RM by DC column. Thus, the rows with the

same DC (if any) will come one after another. Then, LSC sorts only
these rows according to EC. Rows with the same EC (if any) will
come one after another. Lastly, LSC sorts these rows among them-
selves according to CC. Thus, LSC completes the ranking. If we con-
sider each centrality measure as a letter, each node can be thought
of as a three-letter word. Therefore, the method is called Lexical
Sorting. The LSC can be extended for more than one desired cen-
trality measure.

Formally, X be a sequence X1;X2; � � � ;Xn, where Xi is a k� tuple.
LSC creates a sequence Y1;Y2; � � � ;Yn, which is a permutation of X,
where Yi � Yiþ1 for 1 � i � n. For this, k� tuples should be sorted
into reverse lexicographical order. Let > be a linear order on set
S. If we extend > to tuples from S; it will be lexicographical order
if s1; s2; � � � ; snð Þ > t1; t2; � � � ; tnð Þ when there exists an j 2 Zþ � 1f g,
and such that sj > tj and for all i < j, si ¼ ti (Ullman et al., 1974).
In (4), the first element of the tuple is node number. In order not
to use the node number in the sorting process, j should not be 1.

The generalized algorithm of LSC is shown in Algorithm 1. First,
LSC computes the centralities for all nodes. Then it calls the Sort
function. In practice, starting the process of sorting the RM from
the last column makes it easy. Therefore, we set up a descending
loop in the Sort function’s main block. Another sorting algorithm
sorts the RM according to each column. Here we have chosen the
Bubble Sort algorithm. The point to note is that the sorting algo-
rithm used must be a stable sort algorithm. Otherwise, the RM will
not be sorted correctly. This algorithm can be considered a Radix
sort implementation (in descending order) to tuples that values
are real numbers.
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Algorithm 1. LSC’s algorithm

LSC(G: Graph, n: Vj j)
Begin
RMnxr = ComputeCentralities(G: Graph, n: Vj j)
Sort(RMnxr: Ranking Matrix, n: Vj j, c: r-1) //r-1 is the num-

ber of //centrality measures

Sort(RM: Ranking Matrix, n: Vj j, c)
Begin
for x = c to 1 do

BubbleSort(RM, n, x)

End

BubbleSort(RM: Ranking Matrix, n: Vj j, x: concerned col-
umn number in RM)

Begin
for i = 0 to n-1 do

for j = 0 to n-i-2 do

if RM[j + 1][x] > RM[j][x] then

Swap(RM[j + 1],RM[j],c) // a function that swaps the
rows.

End

Swap(A,B: two rows from RM, c: number of centrality
measures)

Begin
for i = 0 to c-1 do

temp = RM[j + 1][i]

RM[j + 1][i] = RM[j][i]

RM[j][i] = temp

End

ComputeCentralities(G: Graph, n: Vj j)
Begin
Create an empty RMnxr matrix

for each node 2 V do

dc = calculate DC by using (1)

ec = calculate EC by using (2)

cc = calculate CC by using (3)

add node; dc; ec; ccð Þ tuple to RMnxr as a new row

return RMnxr

End

LSC calls the Sort function one time, and the Sort function calls
the Bubble Sort function one time for each column in the RM; Bub-
ble Sort function calls Swap function if necessary. Thus, the time

complexity of LSC is O c2 Vj j2
� �

; briefly O Vj j2
� �

. Here, c is the num-

ber of centrality measures used by LSC.
The time complexity of the centrality measures used by the LSC

is another issue. Let’s make calculations for DC, EC, and CC that we

employ in this study. The time complexity of DC is O Vj j2
� �

. Time

complexities of EC and CC are O Vj j þ Ej jð Þ and O Vj j Ej jð Þ, respectively
(Wandelt et al., 2020). Thus, the time complexity for LSC with DC,

EC, and CC is O Vj j2 þ Vj j2 þ Vj j Ej j þ Vj j þ Ej j
� �

. If we consider only

leading terms, the time complexity will be O Vj j2 þ Vj j Ej j
� �

.

Theorderofuseofcentralitymeasuresisanothercritical issue.The
centrality measure at the forefront in the RM has priority, just like
starting from the first letters of the words in alphabetical order. The
DC is an essential local centralitymeasure. If all nodes have the same
probability of infection (b), a high-degree node has the chance to
infectmorenodesatonce.Thedegreemaybeausefulfirstapproxima-
tionofnodecentralityonunweightednetworks(Oldhametal.,2019).
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Weused theECas a secondarymeasure as it incorporates thepowers
of theneighbors intotheaccount. If theprobabilityofanode infecting
a neighbor is b, the probability of infecting its neighbor’s neighbor is
b2ðusually, b is chosen asmuch smaller than 1). Since the probability
will be b � b2, we gave DC priority over EC. Finally, we used CC
because it provides information about the location of the node on
the network. In summary, DC represents the local power of a node,
ECrepresents thepowerof its immediateneighbors, andCC indicates
the strength of its location on the network. Also, Using highly corre-
lated centrality measures together is practically redundant in most
real-world scenarios. DC, EC, and CC are not highly correlated with
each other (Oldham et al., 2019). Because of all this, we used DC, EC,
and CC together and in this order.

Another critical point is the decimal precision of the measure.
The selected decimal precision may change the order. Let us con-
sider the nodes in Equation (6). Since the DC of node0 is greater
than the DC of node1, the LSC positions node0 first and node1 sec-
ond. However, if we take the precision of the digits to only two
places after the decimal point, the DC of node0 and node1 will be
the same, as seen in Equation (7). In this case, the LSC positions
node1 first and node0 second because LSC sorts the nodes by EC
(and since here, the EC of the two nodes are different). The order
will be as in Equation (7). In this study, we choose the decimal pre-
cision to five places. Thus, we preserved the ranking of the priori-
tized measures as much as possible.

RM ¼ node0 0:76525 0:05963 0:15423
node1 0:76234 0:06421 0:24563

� �
ð6Þ

RM ¼ node1 0:76 0:06 0:24
node0 0:76 0:05 0:15

� �
ð7Þ
7. Experiments

To evaluate the performance of the LSC, we selected five com-
peting centrality measures and conducted experiments on 1 syn-
thetic and 5 real-world network datasets. First, let us discuss the
competitive measures and datasets.

7.1. Centrality measures

DC (Degree Centrality) (Newman, 2018): The DC is calculated by
dividing the degree of the node by the total number of nodes in the
graph minus one. The DC, one of the main centrality measures, is a
local measure.

EC (Eigenvector Centrality) (Bonacich, Mar. 1987): The EC is
obtained by dividing the sum of EC values of the nodes to which
the EC node is directly connected (i.e., neighbors) by one constant.
Each node is initially assigned a default EC.

CC (Closeness Centrality) (Sabidussi, 1966): The CC is calculated
using the average distance (over the shortest paths) of the CC node
to all other nodes. The CC of the node that is closest to all other
nodes is the highest.

BC (Betweenness Centrality) (Freeman, 1977): The BC provides
information on the number of times a node can intersect the short-
est paths among all other node pairs.

GC (Gravitational Centrality) (Ma et al., 2016): The GC is a recent
centrality measure whose development was inspired by Newton’s
gravitational formula. In the GC, the k-shell values of the nodes
replace the mass in Newton’s formula. It uses the length of the
shortest path between nodes rather than the distance between
masses. Its formula is as follows:

GCi ¼ ksi � ksjP
j2Nsp j; ið Þ ð8Þ
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Here, sp �ð Þ is the shortest path between nodes i and j; N is the set of
3-hop neighbors of node i. The GC was chosen as a competitor
because it can use various centrality measures (e.g., k-shell).

7.2. Datasets

We used one synthetic and five real-world public networks for
the experimental studies. Experiments involving much more and
larger data sets will provide more precise results. However, a very
high processing capacity is required for modeling the propagation
over large data sets. For this reason, most of the similar studies in
the literature have used fewer and smaller data sets. In addition,
the data sets we use are frequently used data sets in the literature.
Therefore, the experiments give acceptable results of the perfor-
mance of LSC and the other competitor centrality measures. The
properties of the networks are shown in Table 1.

Barabasi-Albert: This synthetically-created scale-free network
includes 1000 nodes and 9900 edges (Barabási and Albert, 1999).

Karate: This network consists of 34 nodes and 78 edges. The
nodes denote members of the club, and the edges represent the
friendship between members (Zachary, 1977). This dataset is taken

from http://konect.uni-koblenz.de/publications.
Email-Enron: This Email network consists of 143 nodes and 623

edges (Rossi and Ahmed, 2015). This dataset is taken from http://

networkrepository.com.
Email-Univ: This network consists of 1133 nodes and 5452

edges (Guimerà et al., 2003). This dataset is taken from http://

konect.uni-koblenz.de/publications.
CS-PhD: This network consists of 1882 nodes and 1740 edges

(De Nooy et al., 2011). This dataset is taken from http://

networkrepository.com.
Ia-reality: This network consists of 6809 nodes and 7680 edges

(Eagle and (Sandy) Pentland, 2006). This dataset is taken from

http://networkrepository.com.

7.3. Evaluation of the ranking performance of centrality measures

First, we evaluated the ranking performance of the centrality
measures under the SIR model. For this, we used the Kendall tau
correlation coefficient commonly used in the literature (Kendall,
1938). Let ai; bið Þ and aj; bj

� �
be tuples of joint A and B ranking lists.

If ai > aj and bi > bj or ai < aj and bi < bj, then the tuples are con-
cordant. If ai > aj and bi < bj or ai < aj and bi > bj, then the tuples
are discordant. If ai ¼ aj or bi ¼ bj, then the tuples are neither con-
cordant nor discordant. Finally, tau is defined as in Equation (9).

tau ¼ Nc � Nd

0:5N N � 1ð Þ ð9Þ

Here, Nc is the number of concordant pairs, Nd is the number of dis-
cordant pairs, andN is the number of all combinations. Positive tau
values indicate a positive correlation, and negative tau values indi-
cate a negative correlation. The ranking performances of LSC and
other centrality measures under the SIR model are shown in
Table 1
Network dataset features.

Dataset Vj j Ej j
Barabasi-Albert 1000 9900
Karate 34 78
Email-Enron 143 623
Email-Univ 1133 5452
CS-PhD 1882 1740
Ia-reality 6809 7680
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Fig. 2. In the simulations, the infection rate for small or less dense
networks was b ¼ 0:1; and for more extensive or more dense net-
works, b ¼ 0:01. The recovery rate for all simulations was taken as
c ¼ 1. Since it is difficult to differentiate the spreading abilities of
nodes for large b values, the b value was chosen according to the
scale of the network (Sheng, 2020). The simulations continued until
there were no infected nodes on the network. The SIR score of a
node is the total number of recovered nodes at the end of the sim-
ulation when that node is selected as the sole seed. All SIR simula-
tions in this study were repeated 1000 times, and their averages
were used. NetworkX was used for the network operations
(Hagberg et al., 2008).

The LSC performed the best in three datasets. Its performance in
other datasets is very close to the competitors’ performance. Thus,
the LSC was shown to yield excellent and stable results.

In addition, the graphics of the ranking lists created by the cen-
trality measures vs. the SIR scores are shown in Fig. 3. A node with
a lower index value is expected to have a higher SIR score. There-
fore, a decrease in the SIR score as the index increases indicates the
success of the centrality measure. In Fig. 3, the graphics created by
the LSC are, for the most part smoother compared to those pro-
duced by the other measures.

Additionally, when evaluating the performances of the central-
ity measures, the spreading abilities of the nodes determined as
top� x by the centrality measures were assessed. To this purpose,
firstly, in Table 2, we have shown the ranking lists of the centrality
measures and the number of matching nodes in the top 5% of the
ranking list of the SIR simulation. For example, the table shows that
5% of the number of nodes of the Barabasi-Albert network is 50.
According to the SIR scores, 42 of the nodes that fall in the top-
50 when ranked from large to small were also in the top-50 of
the LSC’s ranking list. LSC yielded the best results on all networks
for both.

Finally, we examined how the SIR scores (created according to
the core of the top� 10 nodes determined by the centrality mea-
sures) changed over time. Trials were conducted for different b val-
ues; however, only the result of b ¼ 0:05 is given because other
results were similar, and we wanted to save space. The trials
yielded t ¼ 25. The trends are shown in Fig. 4. The rapid increase
of the curves in the graphs indicates that the nodes selected by
the relevant centrality measure maximized the spread in a short
time. According to the graphics, the nodes chosen by the LSC
increased the spread to the highest level in a short time. In addi-
tion, it can be seen in the enlarged inserts in the graphics that in
four datasets, the nodes selected by the LSC have a higher spread-
ing capacity.
7.4. Evaluation of the influence of the decimal precision in LSC
calculation

We mentioned under 3.2 LSC that the decimal precision of cen-
trality measure could change the rank that LSC will produce.
Another critical is the decimal precision of the centrality measures
used by LSC. For this purpose, we have rounded the values of cen-
trality measures used in the LSC by selecting different decimal
hKi Kmax Density

19.8 198 0.0198198
4.588 17 0.1390374
8 42 0.0613612
9.62 71 0.0085002
1.849 46 0.0009830
2.256 261 0.0009830

http://konect.uni-koblenz.de/publications
http://networkrepository.com
http://networkrepository.com
http://konect.uni-koblenz.de/publications
http://konect.uni-koblenz.de/publications
http://networkrepository.com
http://networkrepository.com
http://networkrepository.com


Fig. 2. Kendall tau correlation coefficient values of different centrality measures. Infection rate: b ¼ 0:1 for (b), (d), and (f); b ¼ 0:01 for (a), (c), and (e): Recovery rate: c ¼ 1
for all experiments.
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precision from 1 to 6. We calculated the Kendall tau correlation
coefficient for the LSC ranks created with each decimal precision.
The ranking performances of LSC for different decimal precisions
are shown in Fig. 5.

In general, better results have been obtained for values of dec-
imal precision greater than two. Again, very close tau values were
obtained for decimal precision values greater than two. Choosing
a higher decimal precision preserves the ranks made by the
preceding centrality measure does. Thus, if the order of centrality
measures is determined well, LSC gives better results with high
decimal precision. In addition, it is worth noting that the datasets
we use in this study have at most several thousand nodes and
edges. In small networks, the centrality measures of the nodes
differ from each other with less decimal precision. To observe
this, we produced 2 Erdös-Renyi graphs with 1000 and 10,000
nodes. The density of both graphs is the same. While the DC of
a node in 1000 node graph starts to repeat after the 3rd digit;
The DC of a node in the 10,000 node graph starts repeating after
the 4th digit (such as 0.100100100100 and 0.099409940994,
respectively). From here, we can conclude the following: As the
number of nodes in the network increases, if we want to preserve
the ranks made by the preceding centrality measures, we should
increase the decimal precision of the centrality measures. Con-
ducting experiments for larger real network datasets and making
deeper analyses on decimal precision can be considered future
work.

7.5. Combining different numbers of centrality measures

In the experimental studies, we conducted experiments where
LSC combines three centrality measures (DC, EC, and CC). Addition-
ally, in this section, we will present the experimental results where
4816
LSC combines two and four centrality measures. The two centrality
measures are DC and EC, respectively. The [DC, EC] combination
will be referred to as LSC2. The four centrality measures are DC,
EC, CC, and BC, respectively. The combination [DC, EC, CC, BC] will
be referred to as LSC4. We calculated the Kendall tau correlation
coefficient for the ranking list created by LSC2 and LSC4. The rank-
ing performances are shown in Fig. 6.

The original LSC (namely, [DC, EC, CC] combination) and LSC4
give very close results. LSC2 gives the best result in only one data-
set. Increasing the number of combined centrality measures from 2
to 3 increased the performance. There is no significant difference
between using 3 and 4 centrality measures. This result can be
interpreted as follows. If the used centrality measures assign dif-
ferent ranks to all nodes, adding one more centrality measure will
not change the rank. Therefore, we can say that the original LSC
gives different ranks to the vast majority of nodes, and the addition
of a fourth measure (i.e., the addition of BC) does not make a mean-
ingful change. Nevertheless, as a future study, it would be helpful
to investigate how more and different centrality measures work
in more extensive networks.

7.6. Operating speed of LSC and GC

In addition to the performance of a centrality measure, its speed
is also essential. We compared the calculation times of the LSC and
GC on 6 datasets (Table 3). We ran the calculations 1000 times on a
computer with an Intel i7 2.8 GHz processor and 16 GB of RAM and
averaged the runtimes.

In four of the six datasets, LSC is faster than the GC. The crucial
time-consuming factor for the GC is the calculation of each node
for its 3-hop neighbors. In dense networks, 3-hop neighbors make
up a large part of the network. On the other hand, the chief time-



Table 2
The number of matching nodes in the top 5% of the ranking list of the centrality measures and the ranking list of the SIR simulation.

DC EC CC BC GC LSC

Barabasi-Albert 40 42 42 41 42 42
CS-PhD 77 15 27 46 53 80
Email-Enron 4 2 4 4 3 4
Email-Univ 41 29 35 36 36 41
Ia-reality 201 166 245 199 245 247
Karate 1 1 1 1 1 1

Fig. 3. SIR score trends of nodes sorted from large to small according to different centrality measures.
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consuming element of the LSC is the calculation of the centrality
measures it uses. Once the centrality measures are calculated,
LSC performs only the sorting process. Also, several studies have
4817
been carried out to achieve a faster calculation of centrality mea-
sures (van der Grinten et al., May 2020). By using these methods,
the operating time of the LSC can also be reduced.



Fig. 4. The SIR scores of nodes in the top-10 are determined by different centrality measures. (t ¼ 25; b ¼ 0:05).

Fig. 5. Kendall tau correlation coefficient values of LSC for different decimal precisions. The x-axis of subfigures is the decimal precisions. Infection rate: b ¼ 0:1 for (b), (d),
and (f); b ¼ 0:01 for (a), (c), and (e): Recovery rate: c ¼ 1 for all experiments.
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Fig. 6. Kendall tau correlation coefficient values of LSC with the different number of centrality measures. the x-axis of subfigures is the combined centrality measures by LSC.
Infection rate: b ¼ 0:1 for (b), (d), and (f); b ¼ 0:01 for (a), (c), and (e): Recovery rate: c ¼ 1 for all experiments.

Table 3
Calculated times (s) of LSC and GC for six datasets.

Barabasi-Albert CS-PhD Email-Enron Email-Univ Ia-reality Karate

LSC 7.476 3.045 0.113 6.068 121.858 0.065
GC 51.467 6.011 0.367 11.351 101.591 0.005

A. S�ims�ek Journal of King Saud University – Computer and Information Sciences 34 (2022) 4810–4820
8. Discussion and conclusions

This study proposed a new centrality measure for complex
networks that ranks the nodes according to their spreading abil-
ities under the SIR model. Like lexical sorting, LSC sorts nodes
according to multiple centrality measures. So, LSC is a new cen-
trality measure and a framework for creating new centrality
measures. Our detailed simulations have demonstrated that LSC
performs better than well-known centrality measures such as
degree, closeness, eigenvector, and betweenness and the state-
of-the-art GC measures. Future studies might consider using dif-
ferent centrality measures in different orders and different deci-
mal precisions in LSC.
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