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Abstract 

Background:  Assessment of functional ability, including activities of daily living (ADLs), is a manual process com-
pleted by skilled health professionals. In the presented research, an automated decision support tool, the Computa-
tional Barthel Index Tool (CBIT), was constructed that can automatically assess and predict probabilities of current and 
future ADLs based on patients’ medical history.

Methods:  The data used to construct the tool include the demographic information, inpatient and outpatient diag-
nosis codes, and reported disabilities of 181,213 residents of the Department of Veterans Affairs’ (VA) Community Liv-
ing Centers. Supervised machine learning methods were applied to construct the CBIT. Temporal information about 
times from the first and the most recent occurrence of diagnoses was encoded. Ten-fold cross-validation was used to 
tune hyperparameters, and independent test sets were used to evaluate models using AUC, accuracy, recall and preci-
sion. Random forest achieved the best model quality. Models were calibrated using isotonic regression.

Results:  The unabridged version of CBIT uses 578 patient characteristics and achieved average AUC of 0.94 (0.93–
0.95), accuracy of 0.90 (0.89–0.91), precision of 0.91 (0.89–0.92), and recall of 0.90 (0.84–0.95) when re-evaluating 
patients. CBIT is also capable of predicting ADLs up to one year ahead, with accuracy decreasing over time, giving 
average AUC of 0.77 (0.73–0.79), accuracy of 0.73 (0.69–0.80), precision of 0.74 (0.66–0.81), and recall of 0.69 (0.34–
0.96). A simplified version of CBIT with 50 top patient characteristics reached performance that does not significantly 
differ from full CBIT.

Conclusion:  Discharge planners, disability application reviewers and clinicians evaluating comparative effectiveness 
of treatments can use CBIT to assess and predict information on functional status of patients.
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Background
Knowledge about functional abilities and their decline is 
important for decision making regarding care provided 
to patients. For example, in a study by Fried [1], it was 
observed that patients who were aware that they were 
unlikely to return to their baseline functional status were 

less likely to proceed with hospital treatment. It is shown 
that the quality of life is more important than living 
longer [2]. Quality of life depends on many factors, one 
of which is patients’ functional independence. Functional 
ability of nursing home patients is assessed by direct 
observation of a skilled nurse practitioner, which is a time 
consuming and costly process. The assessments are often 
reported using the Minimum Data Set (MDS), a stand-
ardized patient evaluation instrument collected by nurses 
through observing patients in consultation with other 
care team members. In the United States, assessment 
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data are collected by all Medicare and Medicaid-certi-
fied nursing homes and entered in MDS Section G [3]. 
MDS data are typically collected every three months, or 
whenever a patient status changes. In contrast, similar 
detailed functional assessments are not routinely col-
lected for most elderly patients outside of nursing homes. 
To remedy this situation, this paper examines whether 
functional ability can be assessed and predicted through 
coded data available in Electronic Health Records (EHRs) 
or medical claims. Specifically, the focus is on the abil-
ity to independently perform activities of daily living 
(ADLs). Nine out of ten functional abilities in the Barthel 
Index (Score) were used [4, 5] as described in the Data 
section. The ten items that represent the ability and level 
of independence in performing activities of daily liv-
ing include: feeding, bathing, grooming, dressing, bowel 
incontinence, bladder incontinence, toilet use, transfers 
(bed to chair and back), mobility (walking), and stairs [6].

The ability to automatically derive and predict patients’ 
functional status has several important uses in clinical 
work and research. Firstly, it may provide a more efficient 
and cost-effective means of assessing functional status in 
groups for whom functional status is currently manually 
assessed. In a recent review that examined functional sta-
tus quality indicators, the authors concluded that using 
chart reviews or patient-reports is costly and adminis-
tratively burdensome [7]. Secondly, it may allow for ret-
rospective assessment of patients’ functional status for 
whom evaluations have not been completed. Thirdly, 
it can be beneficial for patients who are typically not 
evaluated for the purpose of comparing care across set-
tings. Finally, predicting functional status up to one year 
in the future provides a basis for an informed discussion 
between clinicians and patients/caregivers and may help 
in planning care for patients.

Previously, a set of models capable of predicting tra-
jectories of ADL improvement or decline post-hospi-
talization [8], as well as sequences of functional decline 
were constructed [9]. The former focused on predicting 
if patients are likely to follow one of seven pre-defined 
trajectories of improvement/decline. Predictions were 
anchored to the time of hospital discharge and diagnoses 
were extracted only from inpatient records of the corre-
sponding hospitalization. The method and tool discussed 
in this paper, called the Computational Barthel Index 
Tool (CBIT), significantly extends the previous work and 
is designed to allow for assessment of functional status at 
any arbitrary moment. The tool that allows for prediction 
of each ADL up to one year ahead, is based on a larger 
cohort of patients, and uses both inpatient and outpatient 
diagnoses. The name is inspired by the original Barthel 
Index (Score), which is a standardized tool used to evalu-
ate activities of daily living [10]. Computational machine 

learning methods are used to construct the index. The 
presented research also extends previous work [8] by 
incorporating temporal information about when events 
happened in the patient’s medical history, which was not 
applicable to hospitalization-only data. Many diagnoses 
present in medical records correlate with the patient’s 
functional ability, with some of these correlations being 
temporary and others being permanent. For example, 
some surgical patients have urinary incontinence for a 
short period after the surgery, while amputation affects 
the ability to walk permanently. Thus, it is assumed that 
the codes present in data are time-dependent. It was 
shown that adding temporal information can improve the 
accuracy of the constructed CBIT models, as discussed 
later in the paper.

Prediction of functional status and disability is chal-
lenging. Researchers in many studies have attempted to 
automatically assess and predict functional status, includ-
ing ADLs. Overall, there are three main approaches to 
assess and predict ADLs by (1) using specific clinical 
data, (2) using sensor data collected by wearable devices 
or smarthome environments, and (3) using patient 
records extracted from EHR or claims data in making 
assessment and predictions. Despite wide selection of 
published works, the research presented here is unique 
in the latter category as its attempts to assess and predict 
ADLs purely based on diagnoses and demographics pre-
sent in the patient records. It should be noted that there 
are a number of published papers that discuss ADLs as 
predictors of other outcomes such as disease progression 
and mortality [11, 12], while the focus of this study is on 
predicting ADLs.

Many studies attempted to predict ADLs in a specific 
population, i.e., related to a disease or injury [13–15], 
while others are more general. In one study, machine 
learning (ML) methods were linked to biomedical 
ontologies to predict functional status [16], achieving 
predictive accuracy of 0.6. In another work, researchers 
described a logistic regression-based method to predict 
mortality and disability post-injury for the elderly [17] 
with reported R2 of 0.86. Tarekegn et  al. developed a 
set of models to predict disability as a metric for frailty 
conditions resulting in models with F-1 scores rang-
ing between 0.74 to 0.76 [18]. Similarly, Gobbens and 
van Assen examined six standard frailty indicators (gait 
speed, physical activity, hand grip, body mass index, and 
fatigue and balance) for assessing ADLs, of which only 
gait speed was predictive of ADL disabilities [19]; how-
ever, no actual predictive accuracy was reported. More 
recently, Jonkman et al., constructed logistic regression-
based models from four datasets to predict decline in five 
ADLs [20], with the average AUC of 0.72. It is clear that 
the above studies reported model performances below 
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ones reported here. However, it should be mentioned that 
these works were performed in different settings thus no 
direct comparison is meaningful. A systematic review of 
published works related to assessing ADLs identified sev-
eral commonly used predictors, including age, cognitive 
functioning, depression, and hospital length of stay [21]. 
In the data-driven approach presented here, some of the 
predictors are the same as those previously reported in 
the literature.

Not surprisingly, several research groups focused 
on assessing ADLs from sensor data. Assessing ADLs 
selected by wearable sensors is a reasonable approach as 
it allows for continuous monitoring rather than a snap-
shot of activities evaluated by a healthcare provider [21–
26]. In some studies, ambient intelligence and smarthome 
sensors were used to assess the ability to perform ADLs. 
These works rely on the use of specific sensors installed 
in smarthome environment that monitor movement [27, 
28], as well as use of specific home devices [29–31]. Fur-
ther, beyond the direct application to the elderly popula-
tion, activity recognition is a well-established field with 
several review papers available to summarize the works 
[32–34].

The presented CBIT can be linked to an EHR through 
a standardized interface and used by clinicians to assess 
functional abilities at the time of a specific patient visit or 
in a batch/bulk mode to predict current functional abili-
ties as well as ADL changes for a group of patients. The 
models used in the tool rely on readily available data in 
EHR systems or claims data and do not require additional 
data collection. In addition, a simplified version of the 
tool was developed based on 50 patient characteristics 
selected from amongst 578 used in the complete model. 
The simplified version was used to build an online calcu-
lator capable of asking limited number of questions about 
patients’ medical history and presenting the results in a 
graphical form such as exemplified in Fig. 1. In the figure, 
each line corresponds to one ADL plotted over time for 
a hypothetical patient. The horizontal axis indicates time 
and the vertical axis shows the probability of functional 
independence. It should be mentioned that this proba-
bilistic interpretation of the prediction is not intended 
to indicate the level of disability, but rather the confi-
dence the models have in predictions. In this example, 
the hypothetical patient is predicted to have functional 
independence with high probability in terms of bathing, 
bladder, dressing, toileting, transferring and walking. In 
terms of eating and grooming, this patient is predicted 
to temporarily recover approximately 6 months after the 
initial assessment and decline afterwards (see Discussion 
section for more details).

In the presented work, two cases are considered: when 
previous functional status of a patient is unknown and 

only diagnoses and demographics can be used as predic-
tors, and when a patient was previously evaluated and 
results of that evaluation (nine previous ADL attributes) 
can be added to the list of predictors. Thus, two sets of 
models were constructed: Evaluation models, ME

d
τ, in 

which previous functional status assessment is unknown, 
and Re-Evaluation models, MRE

d
τ, in which previous 

functional status is known. Here d is an ADL (bathing, 
grooming, etc.), and τ ∈ {0, 90, 180, 365} is the predic-
tion horizon (given as the number of days), i.e., how 
far ahead in time the value is predicted. As names sug-
gest, ME

d models are used in  situations in which a new 
patient is being evaluated in terms of ADLs, and MRE

d 
models are used when an evaluation of the previously 
assessed patient needs to be refreshed as new informa-
tion becomes available.

The presented research has been initiated as part of a 
larger IRB-approved project in the Department of Vet-
erans Affairs (VA) with the purpose of assessing the 
cost and effectiveness of the Medical Foster Home pro-
gram compared to traditional Community Living Cent-
ers (nursing homes) [8, 9, 35]. Determination of patients’ 
functional status was used as one of the characteristics 
to match residents in both settings for comparison pur-
poses. In this context, the main contributions of the pre-
sented work are in (1) the development of models for 
assessment and prediction of ADLs up to one year ahead; 
(2) construction of attributes that represent time between 
diagnosis and prediction; (3) detailed testing and analysis 
of the developed models, and (4) creation of an online 
decision support tool.

Methods
Data
Data from the Department of Veterans Affairs Corporate 
Data Warehouse were extracted and analyzed within the 
VA Computing Infrastructure. The original data came 

Fig. 1  Predicted probability visualization of functional independence 
for a hypothetical patient up to one year ahead
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from two sources: (1) medical records from the VA’s Elec-
tronic Medical Record System, and (2) MDS evaluations 
for nationwide VA nursing homes. Both datasets are col-
lected as part of routine patient care and were provided 
to the research team in a deidentified form. The data were 
organized around patient evaluations using Minimum 
Data Set 2.0 [36], which were mapped to the nine Barthel 
Index categories using a previously developed procedure 
[8]. The Barthel Index (or Barthel Score), which meas-
ures independence in performing ADLs [4, 5] includes 10 
items with the total value ranging from 0 to 100 (feed-
ing, bathing, grooming, dressing, bowel incontinence, 
bladder incontinence, toilet use, transfers, mobility, 
and stairs). In this research, the last item of the Barthel 
Score (stairs) was eliminated, which was not consistently 
assessed and thus difficult to standardize among nursing 
home residents. Thus, the total considered scale is 0–90 
based on the first nine items predicted independently. 
Each of the items in the Barthel Score has different levels 
of functional abilities, with highest values indicating full 
independence (see Additional file 1 for more details). For 
instance, Barthel Score captures three levels for toilet-
ing: dependent (0), needs some help (5), and independent 
(10). Binary output for each of the ADLs was constructed 
defined as fully functional vs. any level of dependency.

The data consisted of 1,901,354 MDS evaluations com-
pleted between 2000 and 2011 from which 1,151,222 
complete evaluations were retrieved for 295,491 patients. 
The data were linked to medical records from which 
demographics and history of diagnoses were extracted. 
The EHR data are limited to services provided by the 
VA’s health system. The data consisted of 18,912,553 
inpatient and 180,123,710 outpatient diagnosis codes 
using the International Classification of Diseases, ninth 
edition (ICD-9) standard along with corresponding 
dates. These codes were transformed into clinically rel-
evant categories using Clinical Classification Software 
(CCS) from the Agency of Health Research and Quality 
(AHRQ) resulting in 281 distinct CCS codes representing 
health comorbidities. All diagnosis codes were combined 
from inpatient and outpatient records. Distinguishing 
between inpatient and outpatient codes is important for 
some applications (inpatient codes are typically treated 
as more severe). In the presented work, it is assumed 
that only information about the presence of a diagnosis 
along with appropriate time was important in the con-
text of predicting disabilities, rather than distinguishing 
between the specific sources. Demographic information 
including age, race, and gender was also included. Age 
was recorded as a continuous variable and race was rep-
resented using one-hot vectors (0/1 values are used to 
indicate the presence or absence of the features). Missing 
data for age were imputed as mean value in the dataset 

and no special treatment for missing data for other attrib-
utes was needed. Patients with only one MDS evaluation 
were excluded to allow for modeling of change of patient 
status over time, resulting in a final dataset of 855,731 
evaluations for 181,213 patients. The collected data were 
organized per MDS evaluation, resulting in the average of 
4.72 ± 6.21 MDS evaluations per patient. Table  1 shows 
descriptive statistics of the final dataset as counted in 
analyzed MDS records as well as per patient, and is rep-
resentative of the overall nursing home population in the 
VA. Most patients were male and white with an aver-
age age of over 71 years and mean Barthel Score (sum of 
assigned Barthel items) of about 48 out of 90, indicating 
overall high levels of disability in the studied population. 
In addition, the average score at the first evaluation was 
about 52. The average time between MDS evaluations 
was also about 100  days, which is slightly over three 
months.

In addition, the distribution of values for the nine ADLs 
is presented in Table  2. With the exception of bladder 
incontinence, bowel incontinence and eating, the major-
ity of evaluations indicate some level of dependency in 
performing ADLs. Lack of full independence in terms of 
walking is the most prominent, with 73% of evaluation 
records and 80% of patients. While these values are not 
equal to 50%, the data are reasonably balanced thus no 
additional resampling or balancing was required.

In the used data warehouse, as well as in many admin-
istrative datasets, patient medical records often span 
many years, making it possible to examine temporal rela-
tionships between diagnoses and the predicted events. 
In the presented research, a simple approach to incor-
porate time was used. Values of attributes correspond-
ing to diagnoses represent time between first known 
occurrence of a diagnosis code and the time of MDS 
evaluation.

Here, (ti) is the time of i-th diagnosis code occurring in 
the data, and (tp) is the time of prediction. Note that each 
diagnosis code may be present in the data multiple times. 
Another set of attributes represent the last recorded 
occurrence of the diagnosis code relative to the time of 
MDS evaluation.

In the original data, diagnoses have associated dates 
thus days are used as unit of time. This allows counting 
the difference in time as the number of days. In other 
words ccsmax

i  is the number of days separating the first 
occurrence of the diagnosis and the time of prediction, 

(1)ccsmax
i = max

ti

(

tp − ti
)

(2)ccsmin
i = min

ti

(

tp − ti
)
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and ccsmin
i  is the number of days separating the most 

recent occurrence of the diagnosis and the time of 
prediction.

This method of constructing attributes provides infor-
mation about how long a patient suffers from a given 
condition as well as if the condition is still present at the 
time of assessment (when was the most recent diagnosis 
of a specific health condition). The rationale behind this 
approach is that for many chronic conditions that affect 
patients’ ability to perform ADLs over time, it is impor-
tant to know how long the condition is present for the 
patient. Similarly, for many acute conditions, their effects 

on ADLs are temporary, thus only recent occurrences 
are important to consider. It should be noted that the 
chronic/acute status of a condition is not assigned ahead 
of time and each diagnosis is encoded using both ccsmax

i  
and ccsmin

i  . It was observed that the models tend to rank 
higher ccsmax

i  codes for chronic conditions and ccsmin
i  for 

acute conditions, yet full validation of this fact is out of 
scope of this paper.

An example of data encoded using the above method 
is presented in Table 3. The table shows data for two dif-
ferent fictitious patients. Patient 1 has two MDS evalu-
ations in the data 90  days apart. Patient 2 also has two 
MDS evaluations 100 days apart. Patient 1 was diagnosed 
with septicemia only once, 210  days prior to the first 
evaluation (ccs2

min = ccs2
max = 210). The patient has not 

been diagnosed second time between the evaluations 
because both columns representing the first and most 
recent occurrence increased by the same amount. The 
patient was diagnosed with hypertension 18 days prior to 
the first evaluation (ccs99

min = 18), and for the first time 
500  days prior to the first evaluation. The patient was 
diagnosed with hypertension again 5  days prior to the 
second evaluation. Similarly, Patient 2 has been diag-
nosed with septicemia twice, 15 and 700 days prior to the 
first evaluation (ccs2

min = 15 and ccs2
max = 700). Patient 

2 was also diagnosed with tuberculosis 71  days before 
the second evaluation (ccs1

min = ccs1
max = 71). One can 

also notice that Patient 1′s ADLs declined between the 
evaluations. Diagnoses not present/recorded in patient’s 
records are coded as − 999,999 and 999,999.

Table 1  Characteristics of data

All data Patients with at least 2 MDS evaluations

MDS records Patients MDS records Patients

N 1,151,222 295,491 855,731 181,213

Gender

 Male 96.8% 96.9% 96.7% 96.9%

 Female 3.32% 3.1% 3.3% 3.1%

Race

 Asian 1.5% 1.4% 1.6% 1.41%

 Black 13% 11.9% 13.4% 12.02%

 White 58.8% 55.4% 59.9% 55.03%

 Other 26.7% 31.3% 25.1% 31.53%

Age 71.89 ± 12.38 – 72.26 ± 12.31 –

Age at first MDS – 70.8 ± 12.51 – 71.05 ± 12.43

CCS max 1424.65 ± 1215.7 – 1504.17 ± 1123.78 –

CCS min 619.75 ± 867.49 – 663.84 ± 889.14 –

Barthel Score 49.00 ± 29.98 – 47.81 ± 30.17 –

Score at first MDS – 52.44 ± 29.14 – 53.6 ± 28.8

Time between – – 101.93 ± 234.31 143.66 ± 374.16

Table 2  Distribution of the nine considered ADLs

The numbers are proportion of data with values indicating any level of 
dependency

MDS records Patients

N 855,731 181,213

Any level of dependency

 Bathing 74.2% 77.5%

 Bladder 39.7% 43.0%

 Bowels 41.4% 45.3%

 Dressing 66.2% 71.4%

 Eating 47.8% 54.6%

 Grooming 63.0% 67.1%

 Toileting 60.9% 66.8%

 Transferring 52.1% 60.9%

 Walking 73.2% 80.1%
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Negative numbers (− 999,999) are used for coding of 
not present diagnoses in ccsmax

i  columns because that 
time is intended to capture positive correlation between 
long-term chronic conditions and disabilities. Intui-
tively, the longer a patient suffers from a chronic condi-
tion (large values for time), the worse the prognosis is. 
When a condition is not present in the patient’s medi-
cal history, it needs to be coded as “much better” than if 
the patient was just diagnosed; thus, using a large nega-
tive number is reasonable. Similarly, positive numbers 
(999,999) are used for coding of not present diagnoses 
in columns, ccsmin

i  , because of the negative correlation of 
time between the most recent occurrence of conditions 
and disabilities. Full evaluation of this coding method in 
CBIT is discussed in the Results section.

Construction of models
The presented study followed a standard experimental 
design used in machine learning. Patients were randomly 
assigned to training (90%) and testing (10%) sets. The 
testing set with a sufficiently large sample size (approxi-
mately 18,000 patients) was used only for final valida-
tion of the models. Training dataset was used for tenfold 
cross-validated hyperparameter tuning, model selection 
and final model construction. A selection of machine 
learning methods was investigated to construct models 
capable of assessing and predicting ADLs.

Machine learning methods are rapidly gaining popular-
ity in medical and health applications [37] and are also 
applicable to the prediction of ADLs. Machine learning 
(ML) is an experimental field that provides a large tool-
set of methods that can be used for prediction. More spe-
cifically, the presented work utilizes a set of ML methods 
called supervised learning. These methods are intended 
to build models that allow for predicting outcomes for 
individuals based on their characteristics. The super-
vision comes in the form of training data in which out-
comes are known for historical cases. These historical 
cases/patients are generalized to allow predictions for 
new previously unseen cases.

In the presented work, selected ML methods (regu-
larized logistic regression, Bayesian networks, decision 
trees, and random forests) were evaluated in terms of 
their performance and it was shown that random for-
est stands out in terms of model quality. Random forests 
[38] are ensembles of decision trees (typically many), 
that are inferred from randomly selected subsets of data 
thus guaranteed to be different on sufficiently large data. 
Random forests are created by applying bagging (a.k.a., 
bootstrap aggregation) [39] to both sample and attributes 
(patient characteristics). Standard top-down decision tree 
learning algorithms are used to create individual trees. 
The process is repeated to create multiple trees (typically 
in the order of tens or hundreds). After a forest is assem-
bled, the final classification decision is made by applying 
all of the trees to new examples (patients). When there is 
a disagreement in prediction, the trees vote on the pre-
dicted outcome. Random forests output classification 
scores (in the presented work, they were converted to 
probabilities) which in the case of the described models 
represent patients being disabled or functionally inde-
pendent. These scores are calculated as a proportion of 
trees voting for a given outcome [40]. In the presented 
work, tenfold cross-validated hyperparameter tuning was 
performed. The tuning led to the selection of random for-
ests consisting of about 100 decision trees (each model 
was optimized separately, and the numbers of trees were 
slightly different). Other algorithm parameters, including 
the number of randomly selected patient characteristics 
(number of attributes in each tree) and Gini Index [38] as 
an internal quality criterion were tested and set to default 
as they did not make any improvements.

The models were created to assess functional status at 
the time of prediction (current status), as well as to pre-
dict functional status 3, 6, and 12  months beyond the 
time of prediction as depicted in Fig.  2. Data available 
prior to the time of prediction were used to construct 
input attributes for the model. In the constructed mod-
els, there are 9 ADLs and 4 time points, thus there are 36 
output attributes that are being predicted. Since Evalua-
tion and Re-Evaluation models are considered separately, 
CBIT consists of a total of 72 models.

Table 3  Four example records of the data for two patients

Complete data has 578 columns and 888,731 rows

Demographics ADLs Diagnoses

Pat … Age Feed Transferring … ccs1
min ccs1

max ccs2
min ccs2

max … ccs99
min ccs99

max

1 … 73 10 5 999,999 − 999,999 210 210 18 500

1 … 73 5 0 999,999 − 999,999 300 300 5 590

2 … 60 10 15 999,999 − 999,999 15 700 999,999 − 999,999

2 … 61 10 15 71 71 115 800 999,999 − 999,999
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The quality of the constructed models was evaluated 
in terms of standard statistical measures used in ML, 
namely, accuracy (percentage of correctly predicted 
cases), area under the curve (AUC; often referred to as 
C-statistic), recall (rate of correctly identified patients 
with functional dependencies), precision (rate of patients 
with disabilities among those indicated as disabled by 
the model), and F1-score. Because of probabilistic inter-
pretation of prediction results (see discussion), we con-
sider AUC as the most important metric. Evaluation was 
applied on the test set of patients not being used in model 
construction, selection or tuning. In order to provide 
better insight into the created models, calibration plots 
(described in later section) and learning curves were also 
created for all developed models. The learning curves are 
used here to check if the amount of data used to train the 
models is sufficient. Curves that get flat on the right side 
indicate that it is unlikely that more data would improve 
models, while those steeply growing suggest that models 
could have been improved if more data were available. 
Learning curves for the CBIT models are available in 
supplemental material (See Additional files 4–7).

It should be mentioned that the presented work does 
not include clinical validation of the models. Also, note 
that the created models predict the probability of func-
tional dependence of any level, while the graphical repre-
sentation or prediction (in the web calculator discussed 
later and presented figures) shows the probability of 
functional independence. The conversion between the 
two is a simple operation, which is one minus probabil-
ity. The reason for this conversion is that prediction of 
disability as a target event is conceptually cleaner from a 

machine learning perspective (assuming that being inde-
pendent is normal, the abnormal state of disability is pre-
dicted). On the other hand, clinicians are used to having 
higher values represent better status (this can also be the 
case in in the original Barthel Index). This conversion has 
no effect on presented results or modeling and is only 
reflected in the graphical representation of results.

For the data analysis part of the project, the Microsoft 
SQL Server was used to preprocess data. The data pre-
processing started with MDS evaluations that were later 
linked to other data components. Final data were ana-
lyzed using Python programming language with Scikit-
learn machine learning library [41] and visualizations 
were done using Matplotlib Python library [42].

Results
Computational Barthel Index Tool (CBIT) consists 
of a set of 72 random forest models, 36 ME

d
τ and 36 

MRE
d

τ models. The CBIT can assess the level of func-
tional dependency in performing ADLs and predicting 
functional dependency up to one year ahead by using 
demographics, diagnoses, and (if available) last known 
functional status. Table  4 presents a summary of the 
performance of the models for each ADL at the time of 
prediction, as well as 3, 6 and 12 months ahead for both 
ME

d
τ and MRE

d
τ models. The results are presented in 

terms of average AUC, accuracy, precision and recall of 
the nine outcome categories. The CBIT showed very high 
accuracy in assessing ADLs at a given time. The AUC of 
assessing if patients have any level of ADL dependency in 
MRE

d
0 models was on average 0.94 (0.93–0.95), accuracy 

0.90 (0.89–0.91), precision 0.91 (0.89–0.92), and recall 
0.90 (0.84–0.95). When predicting functional status up 
to one year ahead, τ ∈ {90, 180, 365} , the MRE

d
τ mod-

els’ accuracy drops to AUC 0.77 (0.73–0.79), accuracy 
0.73 (0.69–0.80), precision 0.74 (0.66–0.81), and recall 
0.69 (0.34–0.96). When the previous functional status 
is unknown (i.e., initial evaluation), the performance of 
the current assessment models ME

d
0 decreased by about 

16% (p < 0.01) in terms of AUC. On average, the obtained 
results for these models are AUC 0.79, accuracy 0.74, 
precision 0.74, and recall 0.80. A complete set of results 
for individual models is available in Additional file 2.

Fig. 2  Prediction timeline. Past EHR data is used to make an 
assessment of current functional status as well as prediction 3, 
6 months, and 1 year afterwards

Table 4  Average ± standard deviation of accuracy, AUC, precision and recall of models in predicting functional status

Re-evaluation models (MRE
d
τ) Evaluation models (ME

d
τ)

Prediction time τ Accuracy AUC​ Precision Recall Accuracy AUC​ Precision Recall

Current .900 ± .007 .947 ± .006 .910 ± .011 .907 ± .041 .743 ± .029 .795 ± .010 .743 ± .046 .800 ± .128

3 Months .815 ± .020 .876 ± .011 .849 ± .019 .816 ± .094 .727 ± .037 .761 ± .006 .734 ± .049 .783 ± .161

6 Months .759 ± .029 .808 ± .014 .784 ± .029 .737 ± .165 .720 ± .038 .746 ± .009 .721 ± .045 .729 ± .238

12 Months .737 ± .035 .772 ± .022 .742 ± .049 .699 ± .226 .716 ± .039 .725 ± .016 .696 ± .073 .701 ± 264
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Top predictors
Further analysis also identified the top predictors used 
in the assessment and prediction of ADLs. Average Gini 
Index [38] produced by random forest was used to meas-
ure the quality of predictors. Gini index is a data impurity 
measure used in the presented work by random forest as 
an internal measure of attribute quality when construct-
ing individual decision trees. It should not be interpreted 
as a strength or effect of the variable on the predicted 
output, but rather to understand the relative importance 
of attributes. In general, random forests can use many 
other attribute quality measures, but model tuning indi-
cated that Gini index performs the best in CBIT. Top 
predictors along with their reported importance (aver-
age Gini index over all trees in forest and over all mod-
els) are presented in Table  5. Note that all ccsi

min and 
ccsi

max codes were included in full models. A longer list 
of diagnosis codes and previous evaluations are available 
in Additional file 3. Not surprisingly, the most predictive 
attributes in MRE

d
τ models were past functional status, 

being responsible for AUC of 0.93. Other most predictive 
attributes were the time since the most recent diagnosis 
of delirium, dementia, and amnestic and other cognitive 
disorders (CCS 653) and patient age. These were followed 
by encoded time of diagnoses/administrative codes for: 
the urinary tract infections (CCS 159); chronic ulcer of 
skin (CCS 199); other connective tissue disease (CCS 
211); paralysis (CCS 82); administrative/social admis-
sion (CCS 255); alcohol-related disorders (CCS 660); 

aspiration pneumonitis; food/vomitus (CCS 129); and 
schizophrenia and other psychotic disorders (CCS 659). 
For most of the diagnoses listed above, it is important 
when (number of days) a patient was diagnosed with that 
condition most recently. For ulcers and aspiration pneu-
monitis; food/vomitus, the first diagnosis is important. In 
addition, the table has marked potentially reversible con-
ditions (R), as judged by clinicians, which can be influ-
enced in the care provided to the patients and affect the 
outcome.

Simplified models
Further, simplified models (called MSRE

d
τ and MSE

d
τ) that 

include only selected top-ranking patient characteristics 
were developed. Average GINI score was used to rank 
attributes. As depicted in Fig. 3, adding more characteris-
tics beyond the most predictive 41 attributes did not sig-
nificantly improve the accuracy (p < 0.05) of the models 
in assessing the current functional status (τ = 0) as com-
pared to full model. The curves were also similar for pre-
dicting up to 12 months ahead, τ ∈ {90, 180, 365} . When 
using 25 top patient characteristics, models that included 
previous evaluations (MSRE

d
τ) reached an average AUC 

of 0.94, accuracy 0.90, precision 0.91, and recall 0.90. Fur-
thermore, the performance of the simplified models with 
41 patient characteristics and without previous evalu-
ations (MSE

d
τ) raised to average AUC of 0.79, accuracy 

0.74, precision 0.74, and recall 0.78. Note that top predic-
tors for each ADL are different. In the MSRE

d
τ and MSE

d
τ 

Table 5  Top ranked predictors of functional status

“GINI RE-EVAL” indicates score of a variable in Re-Evaluation models (MRE
d

τ). “GINI EVAL” indicates score of a variable in Evaluation models (ME
d

τ). R are potentially 
reversible or red flag that this person is at risk and needs restorative therapy; Race and Gender variables are included at the bottom of the table for comparison but 
have very low impact on prediction

Rank Attributes Min/Max Description R GINI RE-EVAL GINI EVAL

1 ccs653 Min Delirium, dementia, and amnestic and other 
cognitive disorders

0.0216 0.0310

2 Age Age at the time of prediction 0.0133 0.0335

3 ccs159 Min Urinary tract infections X 0.0128 0.0217

4 ccs199 Max Chronic ulcer of skin 0.0071 0.0121

5 ccs211 Min Other connective tissue disease 0.0065 0.0091

6 ccs82 Min Paralysis X 0.0062 0.0110

7 ccs255 Min Administrative/social admission X 0.0061 0.0107

8 ccs660 Min Alcohol-related disorders X 0.0058 0.0110

9 ccs129 Max Aspiration pneumonitis; food/vomitus 0.0055 0.0072

10 cs659 Min Schizophrenia and other psychotic disorders 0.0055 0.0089

…

337 W Race White 0.0006 0.0012

341 UR Unknown Race 0.0006 0.0011

365 B Race Black 0.0004 0.0009

434 Gender Gender 0.0002 0.0004

445 A Race Asian 0.0002 0.0003
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models, top ranking attributes were included across all 
models to minimize information needed by CBIT for all 
ADLs, even though this set of attributes may not be opti-
mal for individual models.

Temporal coding
One important advancement of the presented CBIT is the 
way it captures time in encoding diagnoses as previously 
shown in Eqs. (1) and (2) and illustrated in Table 3. The 
proposed method of constructing attributes for diagno-
ses was investigated to determine how it would be differ-
ent from binary attributes (1 when a diagnosis is present 
in a given patient’s record and 0 otherwise) when used in 
CBIT. All constructed MRE

d
τ, ME

d
τ, MSRE

d
τ, and MSE

d
τ 

models were compared in terms of AUC at different time 
points up to one year ahead. In one experiment, random 
forest was compared with other algorithms including 
logistic regression, decision tree, and naïve Bayes.

As mentioned earlier, when temporal attributes are 
used, one needs to assign special values to diagnoses that 
are not present in data. Therefore, ± 999,999 (6_9) was 
compared with ± 9999 (4_9), and ± 99,999 (5_9) coding 
across all models (here X_9 indicates 10X-1). Temporal 
coding (6_9) was also compared with binary coding to 
determine any significant difference. Two-tailed t-test 
was used to assess all comparisons (p < 0.05).

As summarized in Table  6, both random forest and 
logistic regression show a significant difference in AUC 
when temporal information is applied (p < 0.05). The 
results indicated that random forest with the temporal 
coding performs significantly better than binary cod-
ing, while for the logistic regression the relationship is 
opposite (the binary coding is better). However, logistic 
regression with binary coding is still doing worse than 
random forest. Decision trees and naïve Bayes results 

were also included in the table, but the performance was 
typically inferior. It was observed that random forest, 
decision tree and naïve Bayes are not affected by how the 
special values were assigned, while the performance of 
logistic regression is affected by the coding. The rationale 
for this result is that for symbolic methods it is irrelevant 
how not-present values are coded as long as the value 
is distinct, while parametric models need to find a coef-
ficient for each diagnosis code, which is affected by the 
coding.

Calibration
Calibration allows for the probability interpretation of 
the output scores from the models, further allowing for 
frequency interpretation of the results. Thus, all models 
were calibrated using fivefold cross-validated isotonic 
regression. This approach fits a secondary model on top 
of the created random forest models and attempts to 
adjust returned scores make them closer to probabilities. 
The results showed that the models were well-calibrated 
with mean squared error of about 3%. Figure  4 shows 
an example of the calibration curve for the model that 
assesses bathing at the current time point, MSRE

bathing
0. 

Similar curves were also developed for all 144 models 
and are available in supplemental materials (See Addi-
tional files 8–11).

Discussion
Methods
It was shown that it is possible to assess and predict func-
tional status using machine learning methods. Moreover, 
it was shown that the inclusion of time between diagno-
sis and time of prediction is important in constructing 
attributes in the data. While further work is needed to 
validate the new way of constructing attributes repre-
senting diagnoses and study its limitations, counting days 
from the first and last known occurrence of a diagnosis 
code works for the problem at hand.

Machine learning methods are gaining popularity in 
medical and health applications, yet there is no consensus 
on what validation is needed for their use in clinical set-
tings. There is also no agreement about what information 
is needed to allow for full reproducibility of ML results, 
or even what reproducibility in this context means [43]. 
Models created for CBIT were evaluated using standard 
measures in ML model testing (cross-validation, inde-
pendent test set, etc.), and investigated in terms of their 
calibration and learning curves. There is a need for fur-
ther validation of the models and their impact on patient 
care. Such validation focuses on detailed model analy-
sis in terms of accuracy, transparency and the ability to 
provide explanations, and eventually trust and accept-
ability by the medical community. A randomized trial to 

Fig. 3  Average AUC for the current assessment based on the 
number of attributes used. The blue line refers to MSRE

d
τ models and 

the orange line refers to MSE
d
τ models
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assess outcomes of the model use may be required for full 
acceptance in clinical settings.

In addition, there is an ongoing discussion about the 
overall validity of applying machine learning methods 
to the prediction of patient outcomes, and potential bias 
of the models based on gender, race and socioeconomic 
status. One needs to clearly understand data limitations 
and definitions of the prediction problem to understand 
the drawbacks of the method. Supervised machine learn-
ing methods, by definition, learn what they are asked to 
learn, and may (typically do) propagate biases from train-
ing data. Biases in machine learning-based models are 
typically not caused by machine learning, but by under-
lying process used to create training data. The key is in 
the definition and construction of the output attributes 

of the model and their proper interpretation. One needs 
to answer a question if models predict events in the real 
world, or data artifacts that somehow approximate that 
reality. Similarly, CBIT is intended to mimic the tasks 
of nurses performing evaluations of ADLs as part of the 
MDS. Therefore, any biases, inaccuracies, or subjec-
tivity in this process may also be repeated by the CBIT 
models. However, in CBIT, as shown in Table 5, race and 
gender had only a negligible impact on predictions and 
were completely dropped from simplified models, which 
suggests diminishing the potential racial and gender bias 
in the models. A different set of methods, typically used 
in health services research, is needed to understand the 
existence of potential bias in constructed models.

Table 6  Comparison of temporal and binary diagnosis coding as part of CBIT construction and evaluation

The results are presented in terms of AUC for the current assessment and prediction up to 12 months ahead. Full models that include 578 attributes and simplified 
models with 50 attributes are shown. 4_9, 5_9, and 6_9 indicate the encoding of diagnoses not present in patient’s history for ± 9999, ± 99,999, and ± 999,999, 
respectively. *Indicates significance (p < 0.05) of coding systems compared to “6_9” and + indicates significance (p < 0.05) of different algorithms compared to random 
forest

AUC​ Current assessment 3 month prediction 6 month prediction 12 month prediction

RF LR DT NB RF LR DT NB RF LR DT NB RF LR DT NB

MRE
d
τ

 Temporal 
4_9

0.95* 0.85*+ 0.92+ 0.87*+ 0.88 0.79*+ 0.83+ 0.83+ 0.81 0.77*+ 0.74+ 0.78+ 0.77 0.74*+ 0.70+ 0.74+

 Temporal 
5_9

0.95 0.78*+ 0.92+ 0.89+ 0.88 0.76*+ 0.83+ 0.83+ 0.81 0.74+ 0.74*+ 0.78+ 0.77 0.71*+ 0.70+ 0.74+

 Temporal 
6_9

0.95 0.78+ 0.92+ 0.90+ 0.88 0.75+ 0.83+ 0.83+ 0.81 0.74+ 0.74+ 0.78+ 0.77 0.72+ 0.70+ 0.74+

 Binary 0.94* 0.94* 0.91*+ 0.87*+ 0.87* 0.87*+ 0.82*+ 0.80+ 0.81 0.81*+ 0.74+ 0.77*+ 0.77 0.77*+ 0.70+ 0.74*+

MSRE
d
τ

 Temporal 
4_9

0.95 0.94*+ 0.92+ 0.89+ 0.88 0.88*+ 0.83+ 0.82+ 0.81* 0.81*+ 0.74+ 0.76+ 0.77 0.77* 0.70+ 0.72+

 Temporal 
5_9

0.95 0.93*+ 0.92+ 0.89+ 0.88 0.84*+ 0.82+ 0.82+ 0.81* 0.79*+ 0.74+ 0.76+ 0.77 0.75*+ 0.70+ 0.72+

 Temporal 
6_9

0.95 0.76+ 0.92+ 0.90+ 0.88 0.72+ 0.83+ 0.82+ 0.81 0.71+ 0.74+ 0.76+ 0.77 0.69+ 0.70+ 0.72+

 Binary 0.94* 0.94*+ 0.90*+ 0.90+ 0.88* 0.87*+ 0.81*+ 0.83+ 0.81* 0.81*+ 0.74*+ 0.78*+ 0.77 0.77* 0.69+ 0.74*+

ME
d
τ

 Temporal 
4_9

0.79 0.79*+ 0.72*+ 0.73+ 0.76 0.76* 0.68+ 0.68+ 0.75* 0.75* 0.66+ 0.71+ 0.73 0.72* 0.64+ 0.69+

 Temporal 
5_9

0.79 0.78*+ 0.71+ 0.73+ 0.76 0.75+ 0.68+ 0.68+ 0.75 0.74*+ 0.66+ 0.71+ 0.73 0.71*+ 0.64+ 0.69+

 Temporal 
6_9

0.79 0.78* 0.72+ 0.73+ 0.76 0.75+ 0.68+ 0.68+ 0.75 0.74 0.66+ 0.71+ 0.73 0.72+ 0.64+ 0.69+

 Binary 0.78* 0.78* 0.70*+ 0.73+ 0.76 0.76* 0.67*+ 0.70*+ 0.75 0.75* 0.66+ 0.71*+ 0.72* 0.73*+ 0.64+ 0.69*+

MSE
d
τ

 Temporal 
4_9

0.79 0.77*+ 0.71+ 0.64+ 0.76 0.75*
+ 0.68+ 0.63+ 0.74 0.73*+ 0.66+ 0.60+ 0.72 0.72* 0.63+ 0.58+

 Temporal 
5_9

0.79 0.76*+ 0.71+ 0.64+ 0.76 0.73*+ 0.68+ 0.63+ 0.74 0.72*+ 0.66+ 0.60+ 0.72 0.71*+ 0.63+ 0.58+

 Temporal 
6_9

0.79 0.75+ 0.71+ 0.64+ 0.76 0.72+ 0.68+ 0.63+ 0.74 0.71+ 0.66+ 0.60+ 0.72 0.69+ 0.63+ 0.58+

 Binary 0.76* 0.77*+ 0.68*+ 0.74*+ 0.74* 0.74* 0.65*+ 0.71*+ 0.73* 0.73* 0.64*+ 0.71*+ 0.71* 0.72*+ 0.63+ 0.69*+
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The probabilistic interpretation of the prediction 
results used in the presented work seems to be reason-
able. Conceptually, the future can never be predicted 
with the probability of one (even though for some cases 
the models may be certain of the future and output 
1.0). Instead, the values represent how likely an event 
(here functional independence) will occur according 
to the models. Such interpretation has several advan-
tages. It allows end users to interpret the chances of an 
event happening, and in turn, describes when models 
are uncertain about the predicted outcomes. In applica-
tions such as the presented CBIT, providing probability 
as a form of explanation makes the predictions more 
transparent. Knowing how likely an outcome is going to 
happen can helps clinicians, patients and their families 
make informed decisions related to planning care. This 

is in contrast with systems in which ML-based models 
trigger certain event such as alerts within EHR systems. 
Such triggered events are binary in nature (alert or no 
alert), thus, the final assigned class is most important. 
The probability results also explain why model accuracy 
is not 100% when executed on the test data (examples 
with predicted probability not equal to one, are ambig-
uous by the definition of probability). The latter is the 
most evident when analyzing calibration curves, such 
as one presented in Fig.  4. The disadvantage of using 
the probabilities is that they may be misinterpreted 
as severity of disability. When presenting results, one 
needs to specify that the number represent how likely a 
patient is independent, and not the level of dependency.

The created models in this manuscript are based on 
ICD-9 diagnosis codes, which were mapped to CCS 

Fig. 4  Example of the calibration curve for model that predicts bathing at current time point. The shape of the curve indicates that the model is 
well-calibrated. Similar curves were created for all models used in CBIT
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codes. One advantage of this approach is that since all 
new data are coded with ICD-10 codes, they could easily 
be mapped to CCS codes making the models applicable 
to data with the newer coding system. Another impor-
tant issue is that the diagnosis codes in both EHR and 
claims data are subject to under- and over-coding, thus 
affecting the potential reliability of the models. However, 
it is important to note that our modeling efforts were 
not intended to understand the effects of diagnoses on 
ADLs, but rather their use in making prediction. In addi-
tion, as long as diagnoses are systematically over/under-
coded, they should not affect performance of the models. 
Despite these limitations, results indicated that our data 
were appropriate for this purpose.

The evaluations presented in this paper are only sum-
maries and examples of detailed results. A detailed exam-
ination of all 72 Md

τ models that are part of CBIT and 
72 MSd

τ models that are part of the limited CBIT was 
performed, and the results are available in the supple-
mental materials and through the online calculator [44]. 
All developed models and source codes are available for 
everyone who wishes to conduct their testing on inde-
pendent data from other institutions, i.e. to test cross-
institution generalizability.

Clinical and administrative use
Very little evidence exists to address whether measur-
ing functional status can change the quality of life, but 
our research shows that prior knowledge about func-
tional disability is a key indicator of future functional 
status. Notably, past research has provided evidence 
that improvements in functional status are possible over 
time through therapy [45] by improving, slowing decline, 
and/or maintaining functional status. The presented 
CBIT tool which predicts improvement or decline could 
be used by health professionals as means of identifying 
patient characteristics that are modifiable and plan care 
accordingly. It can serve as a basis for an informed dis-
cussion between clinicians, patients and caregivers. In 
addition, these measures could potentially serve as a 
patient-centered measure for examining the value of the 
services provided.

Graphical presentation of results and web calculator
A graphical representation of the assessment and pre-
diction of functional status can be used by healthcare 
professionals and caregivers for decision making regard-
ing the patients’ care. Our full models can be integrated 
as decision support tools within EHR systems or linked 
to claims data, while the simplified models can operate 
standalone as an interactive online tool. For example, 
Fig. 5 illustrates CBIT-predicted outcomes for three ficti-
tious patients similar to what was shown in Fig. 1. Values 
indicate the probability of functional independence for 
each ADL up to one year after the prediction time. The 
higher the value is, the higher the chance that the patient 
is functionally independent. One can observe significant 
differences between the functional dependency trajec-
tories for these patients. Patient (a) is currently likely to 
be independent but expected to decline within 6 months 
as the probability of independence decreases. Patient (b) 
is currently likely to be dependent in most ADLs (prob-
ability of independence ranging from 0.2 to 0.6) but pre-
dicted to recover in the next 3  months and stay at this 
level afterward. Patient (c) is independent and predicted 
to remain independent in terms of walking and is almost 
certainly disabled in terms of bladder, bowels and eating. 
The patient is likely to have a temporary decline in terms 
of other ADLs. Construction of each of the plots requires 
execution of 36 random forest models (9 ADLs, 4 time 
points).

An experimental version of the online calculator that 
takes patient characteristics and outputs plots is available 
at https​://hi.gmu.edu/cbit [44]. It is accessible through a 
web form or an application programming interface (API). 
The web calculator is implemented in Python 3 and uses 
Flask as a web application framework, with Pandas and 
Scikit-learn libraries performing data analysis. To ensure 
the performance of the web calculator, all of the models 
are loaded on the startup and reside in RAM. Additional 
changes have been made to the calculator to improve 
clinical use. For example, for the ease of use, the num-
bers of days associated with diagnoses were discretized 
to allow users to select them from drop-down menus. 
Numbers closer to zero are discretized with higher 

a b c

Fig. 5  Predicted probability visualization of functional independence for three patients up to one year ahead

https://hi.gmu.edu/cbit
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precision than larger numbers, which further improves 
understandability. Users can enter patient information 
and are provided with results similar to those shown in 
Fig.  5 along with a data table containing the values of 
predicted probabilities. An explanation module that pro-
vides human-oriented interpretation of the results as well 
as the reasons for predictions is in development.

Conclusion
This study found that functional status can be assessed 
and predicted with high accuracy when prior functional 
status in medical history is available, but also without 
requiring previous in-person functional assessment. It 
exemplifies an opportunity of applying machine learn-
ing to large data to produce meaningful results. It was 
hypothesized that a parsimonious model could be devel-
oped with variables available in EHRs or claims data and 
assumed that this model would retain predictive accuracy 
for up to a year ahead. Our experimental results con-
firmed this hypothesis. The constructed tool is intended 
to be used in both clinical and administrative settings 
and has implications for caregivers, clinicians, and policy 
makers. Assessment and prediction of functional status 
may also lead to better care planning for nursing home 
residents as well as the elderly residing in their own 
homes. Automated large-scale assessment and prediction 
of functional status can be used to compare care settings 
and as a benchmark for provider outcomes.

The constructed full model requires a large number of 
predictors, which makes it impossible to manually enter 
values. Hence, the full version of CBIT would need to be 
integrated with an EHR or claims management system to 
be part of the clinical decision support. Such integration 
can be achieved using HL7s FHIR interface. The simpli-
fied version of the CBIT that uses 50 predictors is avail-
able within a web calculator. Beyond the use of EHR data, 
the constructed CBIT could be enhanced by sensor data 
allowing for continuous patient monitoring and be inte-
grated with the presented approach. Such data can aid 
assessment, particularly for ADLs that measure patient 
movement [46–48].

The presented work has a number of limitations. The 
tool is not applicable in settings in which longitudinal 
patient records are not available. Only large health sys-
tems with long-established electronic medical records 
have sufficient longitudinal data to apply models that 
use temporal diagnosis information. Additionally, the 
models were developed using data from the US Depart-
ment of Veterans Affairs (VA), which does not reflect 
the general population of nursing home residents out-
side of the VA system. The performance of these mod-
els on other datasets, including Medicare claims data 

are being investigated. It is unclear how the models will 
perform on a very different population and if the exist-
ing CBIT models can be adapted. Finally, random forests 
are known to be “black box” models that work well but 
are not well understood by end users. Even though their 
explanation is easier than other types of models such as 
neural networks, they are significantly more difficult than 
linear models, decision trees or decision rules. Instead of 
trying to explain the entire model (as part of the online 
calculator), there is an ongoing effort in designing an 
explanation module that provides users with “reasons” 
for making specific predictions in one individual case 
(prediction explanation). The reasons consist of a list of 
patient characteristics that are the strongest predictors 
(both confirming and disconfirming) for that individual 
case. Despite these limitations, CBIT can be used to sup-
port clinicians and administrators in decision making. 
Our novel data coding method, applying machine learn-
ing to unique health data, comprehensive model testing, 
and transparency of the work contribute to the state-of-
the-art in ML-based decision support.
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