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Abstract: Pancreatic endocrine cells expressing the ghrelin gene and producing the ghrelin hormone
were first identified in 2002. These cells, named ε cells, were recognized as the fifth type of endocrine
cells. Differentiation of ε cells is induced by various transcription factors, including Nk2 homeobox
2, paired box proteins Pax-4 and Pax6, and the aristaless-related homeobox. Ghrelin is generally
considered to be a “hunger hormone” that stimulates the appetite and is produced mainly by the
stomach. Although the population of ε cells is small in adults, they play important roles in regulating
other endocrine cells, especially β cells, by releasing ghrelin. However, the roles of ghrelin in β cells
are complex. Ghrelin contributes to increased blood glucose levels by suppressing insulin release
from β cells and is also involved in the growth and proliferation of β cells and the prevention of β
cell apoptosis. Despite increasing evidence and clarification of the mechanisms of ε cells over the last
20 years, many questions remain to be answered. In this review, we present the current evidence for
the participation of ε cells in differentiation and clarify their characteristics by focusing on the roles
of ghrelin.
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1. Introduction

The pancreas is a unique organ with both exocrine and endocrine functions. Its exocrine function
is digestion, which it performs by secreting digestive enzymes from acinar cells into the duodenum via
the pancreatic duct. Exocrine tissue (acinar and ductal cells) is the main component of the pancreas,
occupying >95% of the organ [1]. The endocrine function of the pancreas involves metabolism
management, especially in relation to blood glucose. Pancreatic islets, located in the parenchyma,
play a leading role in the production and release of hormones into the bloodstream. Up to the end
of the previous century, pancreatic islets were thought to comprise four different cell types—α, β,
δ, and pancreatic polypeptide (PP) cells—each producing different hormones. β cells occupy >60%
of islet cells [2,3] and are involved in the production and release of insulin, which decreases blood
glucose levels. α cells account for approximately 30% of islet cells [2] and produce the hormone
glucagon, which acts to increase blood glucose levels. The δ and PP cells are included in the residual
10% of islet cells. δ cells produce somatostatin, a negative regulator of insulin and glucagon secretions
under nutritional conditions [4–6], while PP cells secrete PP, an inhibitor of glucagon release under
low-glucose conditions [7].

A novel type of endocrine cell was identified by Wierup et al. [8] in the early 2000s. These cells,
stained with the endocrine marker chromogranin A, did not produce insulin, glucagon, somatostatin,
or PP according to immunohistochemistry. However, ghrelin mRNA and protein were detected by
in situ hybridization and immunohistochemistry, respectively, in fetal, newborn, and adult human

Int. J. Mol. Sci. 2019, 20, 1867; doi:10.3390/ijms20081867 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-3495-4270
http://www.mdpi.com/1422-0067/20/8/1867?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20081867
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 1867 2 of 13

pancreatic islet specimens. Ghrelin-immunoreactive cells were seen at the periphery of the islets,
and their locations were independent of other hormone-producing cells. These cells were initially
named “ghrelin cells”, but Prado et al. subsequently referred to them as “ε cells” in 2004 [3]. ε cells are
now recognized as the fifth type of islet endocrine cell.

2. Ghrelin, Regulator of Nutritional Condition

Ghrelin is well known as a “hunger hormone” [1,9]. It was first identified in rat stomachs as
an endogenous ligand for the growth hormone secretagogue receptor (GSH-R) in 1999. Ghrelin is a
peptide consisting of 28 amino acids with n-octanoylation at serine 3 [10]. It acts as a stimulator for
the release of growth hormones from the pituitary via GSH-R, similar to the hormone that stimulates
the release of hypothalamic growth hormones [10]. Ghrelin also stimulates the appetite via the
hypothalamic arcuate nucleus, which is known to be a regulator of food intake [11]. Expression
levels of ghrelin mRNA and protein in the stomach are significantly upregulated by fasting [12].
Neuropeptide Y (NPY) and agouti-related protein (AgRP) are neural peptides that are increased by
fasting, and ghrelin induces hyperphagia by activating NPY/AgRP neurons in the arcuate nucleus of
the hypothalamus and by accelerating the production of NPY/AgRP proteins [13–15]. Ghrelin also
suppresses pro-opio-melanocortin (POMC) neurons in the hypothalamic arcuate nucleus and prevents
the release of the feeding-deterrent peptide POMC. In contrast, leptin, which is known to work as a
mediator of long-term regulation of energy balance by suppressing food intake and inducing weight
loss, is released from adipose tissue and exerts the opposite effect to ghrelin on NPY/AgRP and POMC
neurons in the hypothalamic arcuate nucleus [16]. Ghrelin and leptin thus compete to regulate energy.
In addition to appetite regulation, ghrelin plays various other roles, including stimulating gastric acid
release and gastric motility [17], suppressing thermogenesis [18], and having anti-inflammatory and
immune-regulatory effects [19].

Ghrelin-producing cells mainly exist in the stomach and especially in the fundus. Circulating
ghrelin levels were reduced to 20% after fundectomy in rats [20], and the total ghrelin volume was
reduced to 35%–45% after total gastrectomy in humans [21,22]. This indicates that other organs
also produce ghrelin and continue to do so after gastrectomy. The small intestine and colon are
representative ghrelin-producing organs, although the populations of the relevant cells are smaller than
in the stomach [23]. Ghrelin gene expression has also been detected in various organs, including the
brain [24], heart [25], lung [26], testis [27], and pancreatic ε cells [8]. Pancreatic ε cells are particularly
important sources of ghrelin during human fetal development, but their numbers decrease in adults.
This situation is in contrast to the stomach, where ghrelin-producing cells are scarce during pregnancy
and increase significantly in adults [8]. Pancreatic ε cells are thought to not only produce ghrelin during
pregnancy and to replace the stomach following gastrectomy, but they may also regulate pancreatic
hormones produced by other endocrine cells than those that regulate the appetite.

In this review, we summarize the development and characteristics of pancreatic ε cells and
consider the roles of ghrelin released from the pancreas.

3. ε Cell Development

Ghrelin-producing cells were identified in human pancreatic islets in 2002. Date et al. first
demonstrated the presence of ghrelin and detected ghrelin-producing cells in the periphery of human
islets, in a similar location to glucagon-producing cells, as in rat islets [28]. Wierup et al. also revealed
ghrelin-producing cells in the peripheral rim of the islets at midgestation (18–22 weeks). The population
accounted for approximately 10% of islet cells at midgestation, and this decreased to approximately 1%
in adults. Ghrelin (GHRL) mRNA was also detected in the peripheral cells of fetal islets but decreased
in adults. In contrast, few ghrelin-producing cells were seen in the stomach at midgestation, but their
numbers increased in adults [8]. Andralojc and Sarker’s groups provided further details about the
population of ghrelin-producing ε cells. Andralojc et al. observed single ε cells at gestational week
13, which started to aggregate at week 17, surrounded the primitive islets at week 21, and began to
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decrease at week 23. The population of ε cells accounted for 15% of the islets at week 21, 30% at week
23, 4% at birth, and <1% in adults [29]. On the other hand, Sarker et al. detected ghrelin-producing
cells from gestational week 11 [30]. Volante et al. confirmed the presence of ghrelin-producing cells
and GHRL mRNA in human islets [31]. In mice, several studies revealed ghrelin-expressing cells
at embryonic days 8.5–10.5 (E8.5–10.5) [3,32], which is the equivalent of gestational weeks 8–9 in
humans [33]. This indicates that ε cells are evident earlier than other islet cell types.

The first step in pancreatic development involves the specification of the primitive endoderm
from pluripotent stem cells in blastocysts. This step occurs at E3–5 in mice. Gastrulation to produce
the developing ectoderm, mesoderm, and endoderm occurs shortly after specification, and definitive
endoderm (DE) cells, which are the origin of pancreas, then form at E6.5–7.5 in mice. The second
specification step involves the formation of the posterior gut endoderm, which develops into the midgut
and hindgut, from DE cells [34]. Differentiation of the various types of pancreatic cells begins at E8.5
based on the identification of multipotent pancreatic progenitor cells. Expression of the homeodomain
transcription factor pancreas/duodenum homeobox protein 1 (PDX-1) is also seen at this time [35].
PDX-1 is an essential factor in the development of acinar, duct, and islet cells. However, although
PDX-1 is expressed in exocrine and endocrine progenitors throughout early embryogenesis, it is only
expressed in duct progenitors between E9.5 and 12.5 [33,35]. Basic helix–loop–helix transcription
factor neurogenin-3 (NGN-3) is another essential factor for the development of endocrine cells,
including ε cells [32,33] (Figure 1A). It is first observed in the dorsal pancreatic epithelium at E9,
increases from E9.5 to 15.5, and then decreases to a very low level in the neonatal pancreas [36].
Unlike PDX-1, which correlates with the development of exocrine, endocrine, and ductal cells, NGN-3
plays a role in paving the way for differentiation into endocrine progenitors [33]. α cells are first
detected in islets at E9.5, followed by β cells within the next 24 h, δ cells at E14.0, and PP cells at
E18.0 [37]. Hellar et al. confirmed that NGN-3 was required for the differentiation of endocrine
cells. For example, ghrelin/glucagon double-expressing endocrine cells were seen at E18.5 in normal
mice, while no ghrelin-producing cells coexpressing insulin, somatostatin, or PP were detected at the
same time. The population of ghrelin/glucagon double-producing cells (i.e., α cells) peaked at E10.5
and then decreased during pregnancy. In contrast, the population of cells expressing ghrelin alone
(ghrelin+glucagon− cells, i.e., ε cells) increased at E15.5 (30%), was maintained during pregnancy,
and decreased significantly at birth [32]. Transcription factor V-maf musculoaponeurotic fibrosarcoma
oncogene homolog A (MAFA) also contributes to islet development and maturation by binding to the
enhancer/promoter region of the insulin gene and driving insulin expression in response to glucose [33].
MAFA is seen at E13.5 but only in insulin-producing cells [38]. Recent studies have revealed that the
MAFA level in neonatal islet decreases [39], and development of α and ε cells instead of β cells in
pancreatic progenitors occurs in MAFA inhibition under hypothyroidism [40].

The mechanism of why ε cells increase during gestation and decrease before birth is unclear.
We consider that the reason lies on the expression patterns of PDX-1, NGN-3, and MAFA. As described
previously, PDX-1 and NGN-3 have the role of pancreatic endocrine specification. The peak of the
expression level in PDX-1 is at E8–9 (mouse) and week 8 (human) and at E11–12 and weeks 10–11 in
NGN-3. MAFA expression begins at this time. In other words, maturation of ε and α cells progresses
at this time, while that of β cells just begins. The population of β cells gradually increases following
the increase of MAFA expression, which results in the decrease of ε cells.

ε cells are evident earlier than other islet cell types. Several studies have revealed ghrelin-expressing
cells at E8.5–10.5 in mice [3,32], indicating that ε cells differentiate earlier than other islet endocrine cells.
The key transcription factors involved in ε cell differentiation are Nk2 homeobox (Nkx2.2), paired box
protein Pax-4 (Pax4), paired box protein Pax-6 (Pax6), and aristaless-related homeobox (Arx).

Nkx2.2 is a member of the NK2 class of homeodomain transcription factors and is expressed at
E8.5–9. Sussel and colleagues examined the contribution of Nkx2.2 to endocrine cell differentiation
by immunohistochemistry and revealed that β cells were absent and α and PP cells were reduced in
Nkx2.2 knockout mouse embryos [41]. Nkx2.2 plays an important role in β-cell differentiation but
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also contributes to the differentiation of α and PP cells; however, its role in ε cells is unclear. In 2004,
Prado et al. first demonstrated a role for Nkx2.2 in ε cell development using microarray analysis of
Nkx2.2−/− mouse pancreas [3] and found no insulin-producing cells and few glucagon-producing
cells in the islets of Nkx2.2−/− mice. Moreover, they showed that the population of novel endocrine
cells without insulin, glucagon, somatostatin, and PP expression was increased in the mutant islets.
Upregulation of both Ghrl mRNA and protein were detected in the Nkx2.2 mutant islets (Figure 1).
They therefore considered that Nkx2.2 is a key transcription factor involved in directing differentiation
towardβ or ε cells [41]. They also detected ghrelin-producing cells in the islets of wild-type mice during
the prenatal period and showed that this population became very small in adults. During the neonatal
stage, approximately one-third of ghrelin-producing cells coexpressed glucagon, while the residual
two-thirds only expressed glucagon, but there was no coexpression of ghrelin with insulin, somatostatin,
or PP. After this study, the Hill and Sussel group showed that upregulation of ghrelin-producing
cells under Nkx2.2 null conditions was not responsible for the loss of insulin-producing cells, and the
absence of insulin did not induce the upregulation of ghrelin [42]. Later, they clarified the existence of
interaction between Nkx2.2 and NeuroD1, a basic helix–loop–helix transcription factor expressed in the
central nervous system, intestine, and pancreas [43,44]. In the study, ε cells and Ghrl gene expression
were significantly increased in Nkx2.2−/− mouse islets but reduced in Nkx2.2 and NeuroD double
knockout islets. In contrast, the absence of Nkx2.2 decreased the expression of glucagon and pancreatic
polypeptide, and knockout of NeuroD with partial deletion of Nkx2.2 rescued the numbers of α and
PP cells (Figure 1B) [44]. Nkx2.2 receives regulation of NGN-3, and NeuroD1 receives regulation of
Nkx2.2. Nkx2.2 decides the development of β or α cells by the activation or prevention of NeuroD
under an NGN-3+ condition [44]. These results suggest that regulation among Nkx2.2 and NeuroD
may contribute to deciding the fate of endocrine cells, including ε cells [44,45]. Wang et al. also
examined the effect of Pax4 knockout on the differentiation of ε cells to clarify if the specification from
β to ε cells requires Nkx2.2. Pax4 contributes to the differentiation of β cells, and its absence results in
a reduction of β cells, similar to Nkx2.2 [46]. Cells expressing ghrelin gene and protein levels were
significantly increased in Pax4 knockout mice from E14.5 to birth (Figure 1A). In contrast to Nkx2.2
knockout, a small population of β cells was maintained in Pax4 knockout islets, while the expression
of Pax6, which is positively regulated by Nkx2.2, was not affected by Pax4 deletion. They concluded
that endocrine progenitors, stimulated by NGN-3, differentiate into β cells in the presence of Nkx2.2 or
Pax4 and into ghrelin-producing ε cells in the absence of Nkx2.2 or Pax4. However, the same group
later revealed that Nkx2.2 plays a more complex role in the specification to ε cells by demonstrating
that Nkx2.2 could bind to and activate the ghrelin promoter [47]. In contrast, Wang and colleagues
showed that Pax4 could bind to and repress the ghrelin promoter [48]. The Hill and Sussel group
suggested that the upregulation of ghrelin under Nkx2.2 null conditions is not due to the loss of
the ghrelin promoter and considered that Nkx2.2 contributes to the activation of ghrelin in mature
ε cells [47]. This was supported by Dominguez Gutierrez et al. using single human islet cell RNA
sequencing [49]. Regarding Pax6, which is a key factor for generating neural neuronal lineages in
the central nervous system and differentiating non-neuronal lineages of the eye [50,51], Swisa and
colleague revealed that the absence of Pax6 inhibited production of β cells and induced increase of ε
cells using db/db mice, a Type 2 DM animal model (Figure 1A) [52]. In summary, the role of Nkx2.2 in
the differentiation of ε cells is as follow: (1) deletion of Nkx2.2 contributes to the differentiation of ε
cells from endocrine progenitors or other endocrine cells like β cells; (2) the differentiation into ε cells
is regulated by interaction with other transcription factors, including NeuroD1; and (3) the maturation
of ε cells needs Nkx2.2 expression.

Regarding Arx, Heller and colleagues examined the roles of Arx and Pax4 in ε cell
differentiation [32]. Arx is a homeobox-containing gene, notably expressed in nerve and pancreas
development. Arx-deficient animals develop hypoglycemia with dehydration as a result of a lack
of mature α cells and an increase of β cells [53]. They showed that ghrelin+glucagon+ α cells were
significantly reduced in Arx-mutant pancreas, while ghrelin+glucagon− ε cells were still detected
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(Figure 1). Regarding Pax4, its deletion caused an increase in α cells and losses of β and δ cells [53],
while the population of ε cells remained unchanged. They concluded that both Arx and Pax4
upregulated and downregulated the population of α cells but had no influence on ε cells. Importantly,
they confirmed that ε cells are regulated by Pax6. ε cells were increased and the α-cell population was
decreased in Pax6-mutant islets, while there were fewer ε cells compared with α cells in normal islets
(Figure 1). They concluded that the formation of ε cells required NGN-3 expression, similar to the
other four types of endocrine cells. Arx and Pax4 contributed to the increase in α-cell but not ε-cell
genesis, while the specification of α to ε cells occurred by Pax6 knockout. Mastracci et al. subsequently
revealed more detailed roles for Nkx2.2 and Arx in developing ε cells, such as the fact that Arx is not
necessary for the specification of ε cells but works on NGN-3+ endocrine progenitor cells to regulate
ghrelin gene expression under Nkx2.2 null conditions [43].
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Figure 1. Differentiation of pancreatic ε cells. (A) Differentiation into various endocrine cells, 
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Differentiation of ε cells needs the inhibition of various transcription factors, including Nkx2.2, Pax4, 

Figure 1. Differentiation of pancreatic ε cells. (A) Differentiation into various endocrine cells, including
ε cells from endocrine progenitors, which receive the stimulation of PDX-1 and NGN-3. Differentiation
of ε cells needs the inhibition of various transcription factors, including Nkx2.2, Pax4, Pax6, or MAFA.
(B) NeuroD1 contributes to shifting the population between ε and α/PP cells under the Nkx2.2 null
condition. Arx: aristaless-related homeobox, MAFA: V-maf musculoaponeurotic fibrosarcoma oncogene
homolog A, NGN3: neurogenin 3, Nkx2.2: Nk2 homeobox, Pax4: paired box protein Pax-4, Pax6:
paired box protein Pax-6, PDX-1: pancreas/duodenum homeobox protein 1, PP: pancreatic polypeptide.
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Finally, ε cells may have a unique role as multipotent progenitors. According to a recent study by
Arnes et al., most ghrelin-producing cells change to PP and α cells, while none give rise to β or δ cells.
They also showed that ghrelin-producing cells could differentiate into exocrine and ductal cells [54].
This may explain why the population of pancreatic ε cells decreases in adults.

4. Role of Ghrelin in Interactions between ε Cells and Other Cells

Ghrelin released from ε cells is recognized as an important factor contributing to the interactions
between ε cells and other endocrine cells, with the role of ghrelin-producing ε cells in regulating β
cells of particular importance.

Ghrelin is classified as acylated (AG) or unacylated (UAG) according to the presence of absence of
acylation of the third serine residue. UAG is also called des-acyl ghrelin [55] (Figure 2A). Acylation is
essential for binding ghrelin receptor GHS-R1a and is achieved by enzyme ghrelin O-acyl-transferase [56,57].
GHS-R1a is thus a specific receptor for AG and does not bind to UAG. GHS-R1a has been detected
in human and rodent islets and is located in most α cells and some β cells in rats [28,58] and in
insulin-producing β cells in humans [59]. Both AG and UAG are derived from cleavage of the
N-terminal fragment of prepro-ghrelin. Obestatin (OB) is a novel 23 amino acid ghrelin gene-derived
peptide (Figure 2A) derived from the C-terminal fragment of the ghrelin precursor [55]. However,
the factor that cleaves OB from prepro-ghrelin is still unclear. AG and OB are mainly produced in
the stomach but have also been detected in the pancreas [55,60–62]. G protein-coupled receptor 39 is
considered to be a receptor for OB and is also expressed in human and rodent islets [63,64].

As noted above, regulation of islet function, especially β cells, is an important function of ghrelin
released from ε cells. However, the roles of ghrelin in β cells may be complex. Various studies
have revealed that ghrelin administration increases blood glucose and decreases plasma insulin in
humans and rodents [58,65], and the deletion of ghrelin derived from ε cells significantly enhances
glucose-induced insulin release [58,66,67] (Figure 2A). The main contributor to increased blood glucose
is AG. The first step in restricting insulin release by AG is activation of GHS-R on β cells, which in
turn stimulates the GTP-binding protein Gαi2 and suppresses the cAMP signaling pathway in β cells.
The decrease of cAMP then induces activation of delayed outward K+ (Kv) channels, which inhibits Ca2+

channels on β cells and suppresses the influx of Ca2+ and insulin release. Ca2+ channels are controlled
by ATP-sensitive K+ (KATP) channels, which are in turn regulated by glucose stimulation [68]. Blockade
of ghrelin function and administration of GHS-R antagonists can thus improve the insulin-releasing
function. The other mechanism of blood glucose increase by AG involves the stimulation of PP and δ
cells, leading to the suppression of insulin release [69,70]. Indeed, it becomes clear that the decrease of
insulin release by ghrelin stimulation goes through GHS-R on δ cells rather than β cells (Figure 2B).
This phenomenon was first clarified by DiGruccio’s group, which revealed that AG activated GHS-R on
δ cells, increased intracellular calcium, and promoted somatostatin secretion, which regulated insulin
secretion from β cells [70]. Adriaenssens’s group also clarified that ghrelin administration to mouse
islets increased somatostatin release and decreased insulin and glucagon releases. The decreased
insulin and glucagon releases did not occur by ghrelin administration under blockade of somatostatin
receptor [71]. On the other hand, some studies have indicated that pancreatic AG might contribute
to regulating β cell survival and function by affecting cell proliferation and growth and inhibiting
apoptosis [72,73]. It is unclear if these AG functions occur via binding to GHS-R. Unlike AG, UAG is not
involved in increasing blood glucose levels and decreasing plasma insulin levels, but coadministration
of UAG and AG improves insulin sensitivity [74] (Figure 2). Delhanty and colleague also revealed
that UAG improves insulin sensitivity by modulating lipid metabolism [75]. They considered that
the modulation is brought by suppression of various insulin resistant-correlated genes, including
Lcn2 [76] and Ucp2 [77]. On the other hand, some studies have denied the improvement of insulin
sensitivity by UAG [78,79]. Furthermore, UAG increased islet cell mass, promoted the survival
of β cells, and prevented the induction of diabetes mellitus in streptozotocin-treated rats [80,81].
OB released from the pancreas plays an important role in the development and homeostasis of the
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pancreas [62] and in the generation of β cells from pancreatic precursor cells in mice [82]. OB also
stimulates insulin release from β cell lines, inhibits apoptosis of β cells, and contributes to β-cell
survival [83] (Figure 2). The prevention of β-cell apoptosis by OB administration was proven in a
type 2 diabetes animal model [84]. Moreover, a recent study revealed that OB had the potential to
regenerate insulin-producing cells from mesenchymal stem cells [85].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 14 
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Figure 2. Effects of ghrelin for β cells. (A) Three ghrelin subtypes (AG, UAG, OB) regulate β
cell functions, including insulin release, cellular proliferation and growth, and insulin sensitivity.
(B) Regarding insulin release, it is clear that insulin release receives regulation from δ cells under AG
stimulation rather than direct stimulation of AG to β cells. AG: acylated ghrelin, GHS-R: growth
hormone secretagog receptor, OB: obestatin, UAG: unacylated ghrelin.
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In summary, ε cells influence other endocrine cells, especially β cells, by releasing ghrelin. Ghrelin
suppresses insulin release from β cells and increases blood glucose levels as well as contributes to
cellular growth and inhibits apoptosis of β cells. These complex functions of ghrelin might be due to
the existence of different subtypes, and further studies are needed to elucidate its mechanisms.

5. Conclusions

Almost 20 years have passed since the existence of pancreatic ε cells was confirmed, and many
aspects of their characteristics, mechanisms of differentiation, and regulatory roles in other cells have
been clarified. Importantly, ε cells have been shown to regulate various functions of β cells, including
the control of blood glucose levels and cellular growth. These results suggest that strategies targeting ε
cells may provide new treatment options for patients with diabetes mellitus. For example, regulation
of acylated ghrelin released from epsilon cells may contribute to the improvement of insulin release
and stabilization of blood glucose levels.
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Abbreviations

AG acylated ghrelin
AgRP agouti-related protein
Arx aristaless-related homeobox
DE definitive endoderm
E embryonic day
GHS-R growth hormone secretagogue receptor
MAFA V-maf musculoaponeurotic fibrosarcoma oncogene homolog A
NGN-3 neurogenin-3
Nkx2.2 Nk2 homeobox 2
NPY neuropeptide Y
OB Obestatin
Pax4 paired box protein Pax-4
Pax6 paired box protein Pax-6
PDX-1 pancreas/duodenum homeobox protein 1
POMC pro-opio-melanocortin
PP pancreatic polypeptide
UAG unacylated ghrelin
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