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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder caused by insufficient dopamine
production due to the loss of 50% to 70% of dopaminergic neurons. A shortage of dopamine,
which is predominantly produced by the dopaminergic neurons within the substantia nigra, causes
clinical symptoms such as reduction of muscle mass, impaired body balance, akinesia, bradykinesia,
tremors, postural instability, etc. Lastly, this can lead to a total loss of physical movement and death.
Since no cure for PD has been developed up to now, researchers using cell cultures and animal
models focus their work on searching for potential therapeutic targets in order to develop effective
treatments. In recent years, genetic studies have prominently advocated for the role of improper
protein phosphorylation caused by a dysfunction in kinases and/or phosphatases as an important
player in progression and pathogenesis of PD. Thus, in this review, we focus on the role of selected
MAP kinases such as JNKs, ERK1/2, and p38 MAP kinases in PD pathology.
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1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder of the central nervous system (CNS),
which affects about 1% of human population over the age of 60 [1] around the world and, for which, up
to now, no cure has been developed [2]. Resting tremor, rigidity, hypokinesia, and postural instability
are the four cardinal motor symptoms of PD resulting from the loss of dopaminergic neurons in the
substantia nigra pars compacta, which is a key regulatory structure of basal ganglia circuitry. As the
disease progresses, patients frequently develop cognitive impairment and depression. Most motor
symptoms can be attributed to the degeneration of dopaminergic neurons within the substantia nigra
pars compacta [3]. Nonetheless, in recent years, it has become increasingly appreciated that several
other non-dopaminergic neuronal populations also degenerate (Figure 1). These include various
autonomic nuclei and the locus coeruleus as well as glutamatergic neurons throughout the cerebral
cortex. PD is characterized by the formation of specific inclusions called Lewy bodies (LBs) in neurons
of several brain structures. LBs consist mostly of misfolded proteins such as α-synuclein, tubulin
and microtubule associated proteins, ubiquitin, amyloid precursor protein, synaptic vesicle proteins,
various enzymes, and chaperons/co-chaperons [4].
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Figure 1. Principal pathological processes in PD etiology and clinical hallmarks of the disease.
SNpc—substantia nigra pars compacta, VTA—ventral tegmental area.

The MAP (mitogen-activated protein) kinase family is one of the oldest and evolutionally
conserved family of serine/threonine protein kinases responsible for intracellular signaling in
Eukaryota [5]. MAPKs (MAP kinases) regulate many physiological processes such as gene expression,
mitosis, metabolism, cell differentiation and motility, stress response, survival, or cell death [6].
In mammalian cells, there are four main groups of conventional MAPKs: ERK1/2 (called also
MAPK3 and MAPK1, respectively), ERK5, JNKs (JNK1, JNK2, and JNK3 called MAPK8, MAPK9, and
MAPK10, respectively) and p38 MAPKs (p38α, p38β, p38γ, and p38δ called also MAPK14, MAPK11,
MAPK12, and MAPK13, respectively). All these isoforms share sequence similarities but their cellular
targets/substrates differ substantially. In addition, atypical MAPKs including NLK (Nemo-like kinase),
ERK3/4, and ERK7/8 classified into a separate group have been described [6]. All these kinases
collaborate in transmitting signals from numerous extracellular stimuli and control intracellular
processes triggered by them. Thus, in consequence, MAPKs are capable of phosphorylating and
altering the activities of countless substrates in different subcellular compartments. MAPK substrates
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have been found not only in the cytoplasm but also in mitochondria, the Golgi apparatus, the
endoplasmic reticulum, and the nucleus [7,8].

1.1. MAPK Signalling

The MAPK signalling cascade provides a mechanism for cells to respond to a catalogue of
external signals. In fact, the diversity and specificity of cellular responses is facilitated through a linear
cascade of events, which is comprised of a sequentially operating set of three evolutionarily conserved
groups of protein kinases known as: MAPK, MAPK kinase (MAP2K), and MAPK kinase kinase
(MAP3K). MAP3Ks are serine/threonine kinases, which are activated either via phosphorylation
and/or due to the interaction with a small GTP-binding protein of the Ras/Rho family in response
to extracellular stimulus. MAP3Ks activation results in phosphorylation and activation of MAP2Ks,
which consequently stimulate MAPKs activity through dual phosphorylation of threonine and tyrosine
residues positioned in the activation loop of kinase subdomain VIII. The activated MAPKs then
phosphorylate target substrates specifically on serine or threonine residues followed by a proline
residue. MAP2Ks such as MEK3 and MEK6 are activated by a wide range of MAP3Ks (MEKK1–3,
MLK2/3, ASK1, Tpl2, TAK1, and TAO1/2), which become activated in response to oxidative stress,
UV irradiation, hypoxia, ischemia, and cytokines including IL-1 (interleukin-1) and TNF-α (tumor
necrosis factor alpha). Lastly, these events lead to altered gene expression and modulate crucial cellular
functions under normal and pathological conditions such as Parkinson’s disease [9].

1.2. JNK Signaling

JNKs (c-Jun N-terminal kinases) are a family of protein kinases activated in response to cytokines,
growth factors, pathogens, and stress. JNK-mediated signaling pathways affect gene expression,
neuronal plasticity, regeneration, apoptosis, or cellular senescence [10]. JNKs are activated through
a dual phosphorylation of threonine and tyrosine residues within a threonine-proline-tyrosine
(Thr-Pro-Tyr) motif by two MAP kinase kinases: MKK4 and MKK7. These two MAP kinase kinases
can be inactivated by serine/threonine and tyrosine protein phosphatases [9]. In addition to the
regulation by upstream kinases, the JNK signaling pathways are modulated by various scaffolding
proteins including JNK-interacting protein 1, 2, and 3 (JIP1-3). The JNK family consists of 10 isoforms
derived from three genes: JNK1 (four isoforms), JNK2 (four isoforms), and JNK3 (two isoforms).
In mammalian cells, JNK1 and JNK2 are ubiquitously expressed while JNK3 is found mainly in the
brain, heart, and testis [11]. In order to understand the biological function of JNKs, gene knockout
studies were performed. It was found that mice deficient in JNK1, JNK2, JNK3, and JNK1/JNK3 or
JNK2/JNK3 survived normally. Compound mutants lacking genes encoding JNK1 and JNK2 were
embryonically lethal and had severe dysregulation of apoptosis of brain cells [12]. Under normal
conditions, JNKs phosphorylate a variety of substrates. Examples of these substrates include a diverse
assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in
cytoskeleton regulation (DCX, Tau, WDR62), cell membrane receptors (e.g., BMPR2), mitochondrial
proteins (e.g., Mcl1 and Bim), or proteins involved in vesicular transport (e.g., JIP1 and JIP3) [13].

In mammalian brains, JNK transcripts have been detected at levels similar to those in
peripheral organs. However, JNK activity is noticeably higher in CNS than in peripheral
organs. This activity can be increased by noninvasive environmental stimuli, which underlines
the important role of JNKs in the brain [14] under norm and pathology and suggests that it may
be implicated in neurodegenerative disorders such as Parkinson’s disease [15]. In this respect, it
should be stressed that JNKs can be activated by a number of factors implicated in PD such as
toxicants [16] and unfolded/misfolded proteins [17]. Some studies have demonstrated that JNKs
are significantly activated in several common animal models of PD induced by neurotoxins such
as MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), 6-OHDA (6-hydroxydopamine) or LPS
(lipopolysaccharide) [18–21]. Genetic deletion of JNK2 and JNK3 protects against MPTP-induced
neurodegeneration in mice [22]. Moreover, some other studies have indicated that antioxidant and
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anti-inflammatory compounds provide neuroprotection in the MPTP and 6-OHDA model of PD,
at least in part, through the inhibition of JNK activation [23,24]. In addition, it was found that
inhibition of JNKs with the SP-600125 inhibitor protects dopaminergic neurons both from MPP+
(1-methyl-4-phenylpyridinium)-induced neuronal apoptosis in vitro and in MPTP and 6-OHDA
models of PD [15]. Another inhibitor of JNKs, SR-3306, was found to reduce the loss of dopaminergic
cell bodies in the substantia nigra and their terminals in the striatum [25]. SR-3306 was also shown
to have a therapeutic effect in Alzheimer’s disease. A marked improvement of cognitive deficits,
a significant decrease in the amount of β-amyloid plaques, and a decrease in tau phosphorylation
in inflammatory responses were observed in transgenic animals treated for 12 weeks with the JNK
inhibitor SP-600125 [26]. Recently, it has been reported that instant activation of JNK phosphorylation
following treatment of cells with the HMGB1 (high mobility group box 1) protein cause an increase in
the expression of tyrosine hydroxylase. The imbalance of this reduces dopamine synthesis and induces
PD [27].

JNKs are not only implicated in the survival of dopaminergic neurons but also in
dopamine transmission, which is, among the pathways, most impaired during the course
of Parkinson’s disease [28]. Dopamine plays a central role in motor and cognitive
functions as well as in reward processing by regulating glutamatergic inputs in the striatum.
Release of dopamine rapidly exerts its influence on synaptic transmission and regulates both
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate)
receptors [29]. JNKs were found to be downstream targets of postsynaptic NMDA receptors and,
moreover, NMDA activity is linked to the presence of a JNK scaffolding protein, JIP1. It was shown
that NMDA-evoked glutamate release is controlled by presynaptic JNK-JIP1 interaction. Using
JNK2 knock-out mice, it was proven that this kinase is essential in mediating glutamate release [30].
Activation of the glutamatergic pathway together with the dopaminergic one is responsible for synaptic
plasticity, long-term potentiation (LTP), and long-term depression (LTD), which underlie motor
learning. Accordingly, it has been found that LTP and LTD are altered in animal models of PD [31].
In addition, it has been found that the JNK1-Rac1 signaling pathway mediates phosphorylation of
serine 295 in the PSD-95 (postsynaptic density protein 95) protein and, thus, enhances its synaptic
accumulation and capability to recruit surface AMPA receptors and, lastly, potentiates excitatory
postsynaptic currents [32]. It is worth mentioning that AMPA receptors, which are extremely relevant
for synaptic plasticity, are physiological substrates of JNKs [33]. Lately, it has been found that, in
a mouse model of PD, the JNK pathway is required for dopamine D1 receptor (D1R)-dependent
modulation of corticostriatal synaptic plasticity. Pharmacological activation of D1R evokes a large
increase in JNK phosphorylation. Electrophysiological experiments on brain slices from PD mice show
that inhibition of JNK signaling in the pathway of striatal projection neurons prevents the increase in
synaptic strength caused by activation of D1Rs [28].

It should be stressed that JNKs are implicated in other processes essential for neuronal homeostasis
that seem to be severely dysregulated during Parkinson’s disease. For example, JNKs seem to play
a role in protein transport in the brain. A study on Caenorhabditis elegans provides evidence that
components of the JNK pathway are necessary for normal protein transport [34] and JNKs have been
shown to modulate the interaction of kinesin with microtubules [35]. Therefore, inadequate JNK
activity may be at the root of the impairment in the axonal transport frequently observed in PD and a
number of many other neurodegenerative disorders [36,37].

JNK signaling is also linked to the apoptosis in neurons [38]. There is a study showing that, in
cultured neurons, c-Jun activation is required for NGF (nerve growth factor) withdrawal-induced
apoptosis and inhibition of c-Jun protects neurons from induced cell death. For instance, NGF
deprivation-induced apoptosis is associated with the activation of the GTPase Cdc42 and JNKs in
primary superior cervical ganglion sympathetic neurons. In addition, overexpression of the MAP3K
apoptosis signal-regulated kinase 1 (ASK1), has been found to activate JNKs and to induce apoptosis in
NGF-differentiated pheochromocytoma PC12 cells and primary rat sympathetic neurons [39]. On the
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other hand, inhibition of JNK signaling has been shown to reduce apoptosis of many other cells [40–43].
Therefore, JNKs may be critical for pathological cell death observed in Parkinson’s disease [44].

Numerous studies have implicated JNKs in oxidative stress, which is known to play an important
role in Parkinson’s disease and other neurodegenerative disorders [45–47]. Research on Drosophila
melanogaster showed that flies with mutations that accelerate JNK signaling accumulate less oxidative
damage and live longer than wild-type flies [48]. JNKs activation has been also linked to stress evoked
by misfolded proteins. Neuropathogenic forms of the huntingtin receptor and the androgen receptor
were shown to inhibit axonal transport [49] and subsequent studies showed that this inhibition is
mediated by JNK [37].

It should be noted that several other studies provide new insights into the role of JNK-mediated
pathways in the control of the balance of autophagy in response to genotoxic stress i.e., the process
that plays an important role in neurodegeneration including Parkinson’s disease [50–52].

1.3. ERK1/2 Signaling

The ERK1/2 (extracellular signal–regulated kinases 1 and 2) signaling cascade is a central
MAPK pathway that plays a role in the regulation of various cellular processes such as proliferation,
differentiation, development, learning, survival, apoptosis etc. [6]. This pathway is activated by growth
factors [53], insulin [54], ligands of G protein-coupled receptors [55], or stress factors [56]. All these
activators trigger a signal transmission by interacting with specific receptors such as receptors with
tyrosine kinase activity (RTKs) or G protein-coupled receptors (GPCRs) [57].

Under a normal condition, the ERK1/2 pathway plays an essential role in the regulation of
transcription. It phosphorylates and activates different transcription factors such as Elk1, c-Fos, p53,
Ets1/2, c-Myc, and NFAT, which, in turn, activate numerous genes that encode proteins involved in
proliferation [58]. Activation of ERK1/2 is crucial for efficient G1/S phase progression in a normal cell
cycle. As mentioned above, ERK1/2 directly phosphorylate Elk1, which is involved in the expression
of immediate-early genes. In addition, through direct phosphorylation of c-Fos, ERK1/2 promotes
its association with c-Jun and the formation of a transcriptionally active AP-1 (activator protein 1)
complex. The expression of cyclin D1, which is a protein that interacts with CDKs (cyclin-dependent
kinases), permits G1/S transition depending on AP-1 activity [9]. In addition, ERK1/2 extend the
MAPK cascade by phosphorylating and activating MAPKAPK (MAPK activated protein kinase) family
members including RSKs (ribosomal S6 kinases), MSKs (mitogen and stress activated protein kinases),
and MNKs (MAPK interacting protein kinases) [8]. Additionally, ERK1/2 phosphorylate members of
the STAT transcription factor family (STAT1, STAT3, STAT4, and STAT5), which are known to mediate
many aspects of survival, proliferation, differentiation [59], cytokine dependent inflammation [60],
and apoptosis [61]. Genetic studies highlight differences between ERK1 and ERK2 isoforms. Some of
them show that ERK1-null mice are neurologically normal with no impairment in the ability to learn,
which may suggest that ERK2 compensates for the loss of ERK1 [62]. In contrast, it was shown that
ERK2 knock-out mice are embryonically lethal [63].

In an adult mammalian central nervous system, ERK1/2 are expressed at a higher level in
post-mitotic neurons. Immunohistochemical studies have demonstrated that ERK2 is localized in
the soma and dendritic trees of neurons of the neocortex, the hippocampus, the striatum, and the
cerebellum [64].

The ERK1/2 pathway mediates dopaminergic and glutamatergic signaling in the central nervous
system and maintains normal activity of striatal neurons. Activation of ERK1/2 is important for
associative learning, memory, visual cortical plasticity, etc. [65]. In addition, it is involved in
the activation of D1 and D2 dopamine receptors in the striatum and ionotropic or metabotropic
glutamatergic receptors in the dentate gyrus [66]. Moreover, it has been shown that the ERK1/2
signaling pathway plays an important role in the maintenance of spatial memory and long-term fear
memory [67]. Another study has revealed the importance of ERK1/2 phosphorylation in neuronal
development. Transiently repressed ERK1/2 phosphorylation in mice during the neonatal stage by
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intraperitoneal injection of MEK1/2 inhibitor, SL327, caused apoptosis of brain cells and had an effect
on brain functioning: reduced LTP, impaired memory, and deficits in social behavior [68].

ERK1/2 signaling is involved in neuronal death, which is a major phenomenon in all
neurodegenerative diseases including Parkinson’s disease [69]. Using the oligodendroglial CG4 cell
line, it was shown that H2O2-induced cell death is prevented by the application of the ERK1⁄2 pathway
inhibitor, PD98059 [70]. Additionally, it has been shown that nitric oxide produced by glial cells induces
neuronal degeneration through ERK1⁄2 activation [71] and that this degeneration might be blocked by
applying, PD98059 [72]. Application of another inhibitor of this pathway, U0126, also indicated that
death of striatal neurons induced by dopamine was associated with ERK1⁄2 activation [73].

There are several processes that link ERK1/2 and Parkinson’s disease. In particular, these
include: oxidative stress and mitochondria dysfunction, cell survival and apoptosis, neuroprotection,
and inflammation. Regarding mitochondria dysfunction, it was found that, in the substantia
nigra of PD patients, there is a mild deficiency in mitochondrial complex I [74]. Moreover, using
confocal microscopy, it was established that phosphorylated ERK1/2 (p-ERK1/2) immune-reactivity
was associated with mitochondrial proteins called MsSOPs and that some vesicular-appearing
p-ERK1/2 granules enveloped enlarged mitochondria. In addition, p-ERK1/2 were found within
the mitochondria of degenerating neurons derived from Parkinson’s disease patients and patients
with Lewy body dementia [75]. There are also some other studies that support an idea that ERK1/2
inhibition activates both apoptotic and necrotic cell death-inducing pathways [76]. ERK1/2 directly
phosphorylates mitochondrial transcription factor A (TFAM) on serine 117, which affects TFAM-DNA
binding and, in consequence, leads to mitochondrial dysfunction. In addition, it was found that TFAM,
which is downregulated by ERK1/2 in cells chronically treated with a complex 1 inhibitor, MPP+,
regulates mitochondrial biogenesis [77]. Regarding oxidative stress, Wang et al. [78] have shown that
the DJ-1 transcription factor interacted with ERK1/2 and was required for the nuclear translocation of
ERK1/2. This translocation was suppressed in DJ-1 knock-down cells and DJ-1 null mice treated with
an oxidative insult. Additionally, endoplasmic reticulum (ER) stress seems to play a critical role in the
progression of Parkinson’s disease. Results obtained by Cai et al. [79] indicate that ER stress-induced
apoptosis in PD might be inhibited by a basic fibroblast growth factor (bFGF). Administration of
bFGF improved motor function recovery, increased tyrosine hydroxylase positive neuron survival,
and upregulated the levels of neurotransmitters in the brain of a rat model of Parkinson’s disease.
Another study has shown that a redox protein, thioredoxin-1, protects neurons from injuries and
attenuates symptoms of Parkinson’s disease [80]. Additionally, it has been shown that the ERK1/2-
and JNK1/2-c-Jun systems are linked with L-DOPA-induced neurotoxicity of dopaminergic neurons
in a cellular model of PD [81] and that PI3K/Akt and ERK1/2 signaling pathways are involved in
the protection of dopaminergic neurons against MPTP/MPP+-induced neurotoxicity [82]. In addition
to that, it was found that, in LPS-induced PD models in vivo and in vitro, a flavonoid known as
licochalcone A (Lico.A) significantly inhibited the production of pro-inflammatory mediators and
microglial activation by blocking phosphorylation of ERK1/2 [83].

Lastly, it should be mentioned that some of the functions attributed to ERK1/2 in neuronal
survival might be carried out by ERK5 since PD98059 and U0126 known as MEK1/2 inhibitors might
inhibit the ERK5 pathway as well [84,85]. There is also a study that sheds light on the distinct roles
of ERK1/2 and ERK5 in the survival of dopaminergic neurons under physiological conditions and
acute oxidative stress. The latter condition is extensively linked to the molecular pathogenesis of
Parkinson’s disease. The interaction between ERK5 and ERK1/2 pathways was found to promote
basal survival of dopaminergic neurons when exposed to oxidative stress. When both pathways were
inhibited, the decline in basal survival of MN9D dopaminergic cells after exposure to a toxic agent,
6-OHDA, was observed. In addition, it was found that ERK5 and ERK1/2 have different roles in
neuronal metabolism. Activation of ERK5 promoted the survival of MN9D cells but had no influence
on the toxic effect of 6-OHDA on these cells [86].
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1.4. p38 MAPK Signaling

The p38 MAPKs are strongly activated by extracellular stimuli such as UV light, heat shock,
osmotic shock, inflammatory cytokines (e.g., TNF-α, IL-1β), or growth factors (e.g., CSF-1). Thus, these
kinases are also known as stress-activated ones [87]. There are four isoforms of p38 MAPKs known
as α, β, γ, and δ. All of them share up to 60% sequence similarities and 40% to 45% with other MAP
kinase family members [88]. p38 MAPK isoforms have a different expression pattern. p38α MAPK is
ubiquitously expressed in most cell types. p38β MAPK is mainly expressed in the brain while p38γ
MAPK—in skeletal muscle and p38δ MAPK—is expressed in endocrine glands [89].

Regarding the role of p38α MAPK, it was found that the knockout of the gene encoding this protein
is lethal [90] while mice lacking the p38β gene were viable and exhibited no apparent health problems.
When embryonic fibroblasts from p38β−/− mice were analyzed, expression and activation of p38α
MAPK, ERK1/2, and JNKs in response to cellular stress remained unchanged, which suggests that the
α isoform of p38 MAPK is the main one responsible for controlling all of the detrimental consequences
of the p38 MAPK activation such as microglia activation, neuro-inflammation, oxidative stress due to
reactive oxygen species (ROS) accumulation, nitric oxide activity, and neuronal apoptosis [91–93].

It is worthy to note that several lines of evidence suggest that p38 MAPKs play a role in neuronal
apoptosis, which is linked to Parkinson’s disease [94,95]. For instance, it has been reported that they
induce apoptosis by phosphorylating Bcl-2 (B-cell lymphoma 2) family members [96]. Interestingly,
phosphorylation of one such member, BimEL, on serine 65 may be a common regulatory point for
cell death induced by both p38 MAPK and JNK pathways [97]. In addition, oxidative stress in
dopaminergic neurons has been shown to trigger the p38 MAPK pathway which, in consequence,
may lead to uncontrolled activation of apoptosis in cellular and animal models of Parkinson’s
disease [98–100]. Together these data suggest that both oxidative stress and p38 MAPK operate
to balance the pro-apoptotic and anti-apoptotic phenotypes of dopaminergic neurons. Some other
studies show the link between the generation of ROS, initiation of the p38 MAPK/JNK signaling,
and apoptosis of neuronal cells in different models of Parkinson’s disease [101–105]. Interestingly,
it has been shown that the exacerbating effects of deletion of Park2 gene (encoding parkin protein)
on ethanol-induced ROS generation, mitophagy, mitochondrial dysfunction, and cell death were
reduced by p38 MAPK inhibitor, SB203580, in vitro and in vivo. In the case of dopaminergic neurons
it has been shown that deletion of this gene exacerbates ethanol-induced damage through p38 MAPK
dependent inhibition of autophagy and mitochondrial function [106]. Similar data revealed that the
p38 MAPK-parkin signaling pathway regulates mitochondrial homeostasis and neuronal degeneration
in the A53T α-synuclein mutant model of Parkinson’s disease [107].

Attention to p38 MAPKs in terms of neurodegeneration is driven by the fact that these kinases are
involved in dopaminergic signaling, which is a pathway known to be disrupted during Parkinson’s
disease [93]. There is a study by Wu et al. [108] showing that degeneration of nigral dopaminergic
neurons was accompanied by an increase in the level of p38 MAPKs and their phosphorylated forms.
In agreement are the results published by Yoon et al. [109] showing that phosphorylation of p38 MAPKs
by the LRRK2-ASK1 pathway regulated neuronal toxicity and apoptosis. Pharmacological inhibition of
this kinase with SB203580 blunted MPTP neurotoxin induced cell apoptosis [110]. Similarly, neuronal
protection was observed by applying another p38 MAPK inhibitor, SB239063 [111], or celastrol in
rotenone-evoked neuroblastoma SH-SY5Y cellular model of Parkinson’s disease [112].

An important issue in Parkinson’s disease is neuro-inflammation that can be associated with
alterations in glial cells including astrocytes and microglia. The response of neurons to activation of
microglia promotes oxidative stress, inflammation, and cytokine-receptor-mediated apoptosis, which
eventually contribute to the death of dopaminergic neurons and to the progression of the disease [113].
Rotenone, which is an inhibitor of the mitochondrial complex I, can directly activate microglial
cells through the p38 MAPK pathway and initiate dopaminergic neuronal damage in substantia
nigra, which ultimately results in parkinsonism. Unfortunately, the exact mechanism behind the
selective degeneration of nigral dopaminergic neurons is not fully understood [103]. Moreover, it
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has been reported that montelukas, which is a cysteinyl leukotriene receptor antagonist, exerted
neuroprotective effects in the rotenone-induced PD animal model through the attenuation of microglial
cell activation and p38 MAPK expression [114]. It has been suggested that degeneration of nigral
dopaminergic neurons was followed by an increase in the expression of p38 MAPKs, p53, and Bax
(Bcl-2-associated X protein). Neurotoxins exhibited a similar effect on the level of these proteins in
cultured pheochromocytoma PC12 cells, which shows that this phenomenon occurs both in vitro and
in vivo. When activated, Bax is exported into the mitochondrial membrane where it oligomerizes and
triggers mitochondrial apoptotic signaling. This observation strongly indicates that p38 MAPK/p53
stimulation of Bax can certainly contribute to rotenone’s neurotoxicity in models of Parkinson’s
disease [108]. p38 MAPK also plays a role in neurotoxicity induced by MPTP [115].

Inflammation and autophagy are highly interdependent cellular processes. Autophagy plays
an anti-inflammatory role and suppresses pro-inflammatory process by regulating innate immune
signalling pathways and inflammasome activity [116]. Inflammatory signals also function to
reciprocally control autophagy [117]. However, the mechanism of mutual regulation of both processes
is not yet explained. A recent study has shown that the α isoform of p38 MAPK plays a direct
and essential role in relieving autophagic control in response to an inflammatory signal by direct
phosphorylation of UNC51-like kinase-1, which is the serine/threonine kinase involved in the
autophagic cascade in microglia. Moreover, phosphorylation of UNC51-like kinase-1 by p38α MAPK
inhibited activity of this kinase, disrupted its interaction with autophagy-related protein 13, ATG13,
and, thus, reduced the level of autophagy [118]. Because autophagy disorders are more commonly
associated with neurodegenerative diseases, the role of p38 MAPKs in autophagy was studied
in a human neuroblastoma SK-N-SH cellular model of Parkinson’s disease. The studies revealed
that microRNA (miR)-181a regulated apoptosis and autophagy by inhibiting the p38 MAPK/JNK
pathway [119].

2. Conclusions

Consistent with the critical role of MAPKs in key cellular activities including cell proliferation,
differentiation, and survival or death. The MAPK signaling pathways have been implicated in the
pathogenesis of many human diseases. Various observations suggest that they contribute to Parkinson’s
disease-related pathological processes such as oxidative stress, neuro-inflammation, autophagy, and
neuronal death (Figure 2). In addition, MAPK inhibitors demonstrate important neuroprotective
properties upstream of the execution of apoptosis in dopaminergic neurons. Therefore, discovering
the relationship between MAPK pathways and the prominent pathological processes observed during
Parkinson’s disease progression may not only aid us to understand the etiology of this disease but also
lend insight into molecular targets for the development of therapeutic drugs.
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Figure 2. Involvement of MAPKs in processes that lead to Parkinson’s disease pathology. Different
stimuli (stress stimuli, growth factors, cytokines, mitogens, pathogens, toxins) induce activation of
MAPK pathways including activation of MAPKKK and MAPKK followed by phosphorylation of
downstream targets such as JNKs, p38 MAPKs, and ERK1/2. JNKs and p38 MAPKs are grouped
together due to their involvement in the “death pathway” (marked in red) while ERK1/2 is believed
to promote cell growth and differentiation (marked in green). Activation of JNKs and p38 MAPKs
promote oxidative stress and apoptosis, which are main contributors to PD pathogenesis. Oxidative
stress may also cause microglial activation and chronic inflammation, which are toxic for brain cells and
leads to PD pathology. In addition, ERK1/2 contribute to apoptosis of brain cells through the activation
of NFAT and p53 and to neuronal inflammation through the activation of STATs. Both ERK1/2 and
JNKs activate mTOR signaling, which promotes neurodegeneration such as that observed in PD.
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Abbreviations

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (agonist of the AMPA receptor)
ASK1 Apoptosis signal-regulating kinase 1
AKT protein kinase B
ATG13 autophagy-related protein 13
bFGF basic fibroblast growth factor
Cdc42 cell division control protein 42 homolog
CNS central nervous system
CSF-1 colony stimulating factor 1
ERK1/2 extracellular regulated kinase 1 and 2
EGFR epidermal growth factor receptor
GPCR G protein-coupled receptors
HMGB1 high mobility group protein 1
IL-1β interleukin 1β
JIP1 JNK interacting protein 1
JNK c-Jun N-terminal kinase
LBs Lewy bodies
L-DOPA L-3,4-dihydroxyphenylalanine
LRRK2 leucine-rich repeat kinase 2
LTD long-term depression
MAP kinase mitogen activated protein kinase
MEK3 and 6 mitogen-activated protein kinase kinase 3 and 6
MEKK1–3 mitogen-activated protein kinase kinase kinase 1 to 3
MLK2/3 mixed lineage kinases 2/3
MN9D cell line used as a model of dopaminergic neurons
MNK MAPK interacting protein kinase
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MPP+ 1-methyl-4-phenylpyridinium
MSK mitogen and stress activated protein kinase
NGF neurite growth factor
NMDA N-Methyl-D-aspartic acid
NO nitric oxide
6-OHDA 6-hydroxydopamine
PD Parkinson’s disease
LTP long-term potentiation
TH tyrosine hydroxylase
Rac1 GTPase, member of the Rho family
ROS reactive oxygen species
RTKs receptor tyrosine kinases
RSK ribosomal S6 kinase
SN substantia nigra
STAT signal transducer and activator of transcription
TAK1 transforming growth factor beta-activated kinase 1
TAO1/2 thousand and one amino acid kinases 1/2
TFAM mitochondrial transcription factor A
TNF-α tumor necrosis factor α
Tpl2 tumor progression locus 2 kinase
UNC51-like
kinase-1

serine/threonine kinase involved in the autophagic cascade

NFAT nuclear factor of activated T-cells
PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase
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