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A biomechanical model is proposed for the growth of the brown alga Ecto-
carpus siliculosus. Featuring ramified uniseriate filaments, this alga has two

modes of growth: apical growth and intercalary growth with branching.

Apical growth occurs upon the mitosis of a young cell at one extremity

and leads to a new tip cell followed by a cylindrical cell, whereas branching

mainly occurs when a cylindrical cell becomes rounded and swells, forming

a spherical cell. Given the continuous interplay between cell growth and

swelling, a poroelastic model combining osmotic pressure and volumetric

growth is considered for the whole cell, cytoplasm and cell wall. The

model recovers the morphogenetic transformations of mature cells: trans-

formation of a cylindrical shape into spherical shape with a volumetric

increase, and then lateral branching. Our simulations show that the poro-

elastic model, including the Mooney–Rivlin approach for hyper-elastic

materials, can correctly reproduce the observations. In particular, branching

appears to be a plasticity effect due to the high level of tension created after

the increase in volume of mature cells.
1. Introduction
Morphoelasticity, the mathematical modelling of biological growth, is a fast-

developing area in embryogenesis and plant morphogenesis. From simple

growth laws, it can quantitatively explain the shapes observed in plants [1,2],

algae [3,4], fungi and pollen tubes [5,6] and organs [7,8]. Its domain of validity

applies to soft tissues, treated at the mesoscopic scale, hence larger than

individual cells. However, even at the level of an individual cell, during

mitosis in eukaryotic cells, mechanical forces play an important role [9,10]

and can explain how cells divide. In this study, we propose a biomechanical

model to explain key events in the development of the multicellular brown

alga Ectocarpus siliculosus occurring at the cellular level which, by multiplication

and competition, ultimately leads to the overall shape of this alga.

Brown algae have been less studied in the past compared with other algae

(green, red or yellow-green). They strongly differ from land plants or green

algae. For example, brown algae do not have microtubule cortex below the cell

membrane and this cortex is known to play an essential role in the cellular mor-

phogenesis of plants (because it controls the deposition of new material) [11–13].

From a phylogenetical viewpoint, brown algae are distinct from other multicellu-

lar lineages [14], and provide the opportunity to discover new developmental

organization, unknown until now. Among brown algae, E. siliculosus is a

model biological system for its ecological occurrence, and also as a genetic
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Figure 1. Developmental pattern of Ectocarpus siliculosus. (a) A 15-day-old sporophyte with few branching events; (b) a 20-day-old sporophyte after iteration of
branching; and (c) a four-week-old adult sphorophyte. (Online version in colour.)
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Figure 2. Electron microscopy images of Ectocarpus siliculosus cells. (a) Wall of a cylindrical cell; (b) rounding and branching events on neighbouring mature cells
with initiation of mitosis; and (c) development of the branched filament by successive mitosis. Copyright Sophie Le Panse and Bénédicte Charrier, Station Biologique
de Roscoff (France).
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model [14,15] for all brown algae. Made of tufts of a few centi-

metres (figure 1), E. siliculosus exhibits a uniseriate filament tree

structure. This simple morphology makes Ectocarpus an ideal

candidate for studying the morphogenesis of brown algae.

Moreover, Ectocarpus has a tremendous advantage that

makes it a good model system: due to its uniseriate filament

structure, each cell is in contact with the external environment,

i.e. the water, simplifying experimentations and observations.

At early stages, E. siliculosus develops mostly by apical

elongation of its filaments. Mitosis takes place perpendicularly

to the axis of the apical cell, providing new cells after apical

cell elongation, both events ensuring most of the filament

growth. Some rare divisions take place in the middle of the

filament and involve mature cells. Some of them give rise to

a new filament, growing relatively perpendicularly to the

main axis (figure 2). Since most new cells originate at the

tip, their shapes are elongated and cylindrical, contrary to

the mature cells at the centre of the filament which are spheri-

cal. Mature cells differentiate by ‘swelling’, i.e. changing from

cylindrical to quasi-spherical shapes, then initiate the branch-

ing event at the origin of a new filament. Their volume

increases during this shape transformation. The biological

function of this cell differentiation in Ectocarpus, which leads

to a change in shape, is not known. Rounding perhaps may

afford better resistance to environmental variations.

Apical growth has been extensively investigated for diverse

types of natural structures such as pollen tubes, fungi and root

hairs [16,17]. Usually modelling is restricted to the tip of an infi-

nite cell and growth is controlled by turgor pressure, which is

high in these systems. Here, we address the role of physical

forces in the transition of a cylindrical cell into a spherical one,
and assess how this process can result in branching. We used a

purely biomechanical model of growth and chose the poroelastic

formalism, because it allows coupling of the osmotic pressure

with the stresses induced simultaneously in the cell wall and

in the cytoplasm. Elastic constants for the cell wall, necessary

to reproduce the observations, have been measured1; unknown

values for the soft interior were estimated or varied in our

simulations. We tested two models of finite elasticity, the

neo-Hookean (n-H) and the Mooney–Rivlin (M-R) models

[19,20], and we performed the simulations using FEBio soft-

ware.2 With this framework, we show that cell growth,

combined with an imposed pressure, explains the morpho-

logical changes observed at the cellular level. In addition,

branching appears to be the consequence of the accumulation

of stresses in the cell wall, exceeding the stability limit and

modifying the growth rate locally.

The paper is organized as follows: §2 gives a description

of the cylindrical cell, cytoplasm and cell wall. §3 is devoted

to the poroelastic model and details the two hyper-elastic

models treated in the simulations. §4 focuses on the rounding

of a cylindrical cell and §5 on the branching. Finally, the

conclusion, §6, gives suggestions for future work on multiple

branching events. Appendix A provides more details on the

poroelastic model.
2. Morphology of Ectocarpus siliculosus: from
cells to organism

Structural information on cell composition is necessary for

morphogenetic studies, especially for living species which
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are protected by cell walls that are stiffer than the soft interior

of the cell, such as in plants, bacteria and algae. As in plants,

the cellular structure of E. siliculosus involves a cytoplasm,

bounded by the plasma membrane and surrounded by a cell

wall. The cytoplasm contains organelles such as the nucleus,

the chloroplastic endoplasmic reticulum and envelope,

mitochondria, lamellae and, in the centre, a vacuole contained

in a membrane called the tonoplast (see fig. 4 of [15]). Half

of the cytoplasmic volume is occupied by the giant ribbon-

shaped chloroplast [15], the content of which is mainly made

of lipids (thylakoids) and proteins (photosystems). The details

of such complex inhomogeneous structures cannot be included

in a biomechanical treatment, but one can keep in mind that

the interior of the cell has a dual structure: a soft gelatinous sub-

stance and a liquid. The gel itself, involving lipid vesicles,

proteins and organelles, has some stiffness, even if its value

is not known presently.

Contrary to animal cells, the outer layer is surrounded

by a cell wall: the lateral sides of the wall in contact with

the environment (i.e the water) and the transversal walls that

separate two neighbouring cells. For E. siliculosus, studies con-

cerning wall composition generally focus on a phylogenetic

perspective [21]. Like plants, this alga produces cellulose,

but probably in a smaller proportion [22]. The main cell wall

component is an anionic polysaccharide called alginate. How-

ever, the arrangement of the polymers inside the cell is not

known, as only hypothetical models have been proposed in

1986 [23] and in 2014 [22]. More recently, however, a very

detailed study [24] combining electron microscopy, electron

tomography and chemical treatments revealed the full struc-

ture of E. siliculosus cell walls, both for the lateral and

transversal walls. The chemical treatments in [24] confirm

the composition of the walls. By changing the concentration

of Ca2þ and adding sorbitol, it is possible to disintegrate the

walls, proving that fibrils are made of alginate–calcium

fibrous gels. Electron microscopy demonstrates that the cell

walls have a multi-layer structure in which the alginate fibrils

are not uniformly distributed and ordered. In fact, the lateral

wall of an upright filament studied in [24] has three sub-

layers, of approximately the same thickness, contrary to the

transversal wall made of only two layers, and contrary to pros-

trate filaments which also exhibit two sub-layers (figure 2a).

Each sub-layer is characterized by fibril organization. In the

innermost layer, parallel and in close vicinity to the plasma

membrane, the fibrils are denser and more ordered, aligned

in the same direction as the plasma membrane, as shown in

figure 2a. They become looser in the intermediate sub-layer

and the alignment is weakened and even disappears in the

outermost layer.

The electro-tomography technique identifies junctions

between fibrils and quantifies their number: here again,

more junctions are present in the innermost layer. These junc-

tions may make the wall stiffer if the fibrils are linked

together, a simple rule giving a Young’s modulus proportional

to the number of junctions per unit volume [25]. The inter-

dependence between the fibrils of alginate and the cellulose

micro-fibrils has not been fully elucidated, but it seems that

cellulose micro-fibrils have no specific orientation. This is con-

firmed by transmission spectroscopy experiments as shown in

figure 2a. This information on the anisotropy and inhomogen-

eity of the wall architecture is crucial for the modelling of the

rounding and branching of mature cells. Clearly, to the best

of our knowledge, the cells of this alga (interior and wall)
cannot be considered as simple balloons under pressure,

even in a crude approach. Unfortunately, to the best of our

knowledge, there are no similar studies on apical (tip) cells,

and we limit our work to rounding and branching.
3. The model
Because the life of an alga obviously takes place in water, the

structure of the cells will depend on the surrounding water

which is either the sea, freshwater or any nutrient bath in a

laboratory vessel. The mechanical and chemical stresses

these algae will undergo are diverse and likely change the

cell wall composition. For this reason, we chose the poro-

elastic model which offers the possibility to include a

mixture of materials: dry elastic compounds, a fluid com-

pound and a solute responsible for the osmotic pressure,

which may vary according to the cell environment [26,27].

3.1. From structural composition to biomechanical
constant evaluation

Let us first discuss the dry compound since an important

question for modelling involves the elastic behaviour of

each compartment, once the cell structure has been establi-

shed. However, the experimental mechanical measurements

on E. siliculosus are uncommon. In [18], it is mentioned that

the algal cell wall has a stiffness of between 1 and 100 MPa,

but a more precise estimation of the Young’s modulus Ec of

the cell wall rather indicates 22 MPa, using preliminary

atomic force microscopy experiments on prostrate filaments

(see endnote 1). Theoretically, recent models have attempted

to evaluate the elastic properties of fibre networks [28] from

the microscopic structure, but the answer depends not only

on the characteristics of one filament (its geometry and intrin-

sic bending modulus), but also on the matrix and the cross

linkers, which here seem to be the cellulose micro-fibrils.

A naive estimation of 1% of cellulose micro-fibrils, each of

them having a Young’s modulus of around 100 GPa [29],

gives a stiffness of 1 GPa for the whole wall, which is of

course exaggerated by a factor of order 50. For alginate

hydrogels, the results also depend on concentration, but for

a few per cent, stiffness is roughly 0.1 MPa (or less). This

value is much lower than the estimated experimental value

and also much softer than the cellulose stiffness estimation.

Therefore, it is likely that the stiffness of the cell wall is

dominated by cellulose micro-fibrils which are relatively dis-

organized and disordered, although mostly oriented

perpendicularly to the alginate fibres, as demonstrated in

[24]. The situation of the cell interior is even more compli-

cated in the absence of any measurement. Therefore, in the

following, we will vary the Young’s modulus Es between

0.1 and 5 MPa. In addition, we must keep in mind that

these estimations only concern the ‘dry’ part or the solid

component of the cell, which also contains water and solutes.

3.2. Our poroelastic model with three compounds
Our model will involve two different connected materials,

both of them made of a mixture of three compounds: dry

matter, fluid matter and a solute, located inside the cell at

the source of osmotic pressure. Exchanges across the cell

wall are possible for the fluid, but not for the solute. The por-

oelastic model allows these exchanges with the environment
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such as, for example, the outer reservoir of the cell or the sea

whose detailed composition can be found in [30]. Consider-

ing the initial volume of the sample as the unit of volume,

we call fs
r, the solid volume fraction of the mixture (com-

pared with the unit of volume), then the fluid volume

fraction becomes J � fs
r once the solute volume fraction is

neglected. Since J concerns the whole mixture, in the absence

of growth, J ¼ Det(F), where F is the elastic deformation

gradient of the whole mixture. In the following, we use the

convention of bold letters for tensors. If cr is the number of

moles per unit volume of the solute, ce the osmolarity of

the external environment (the sea for example), then osmotic

pressure is, for a dilute solution, according to the laws

of thermodynamics

p ¼ RT
cr

J � fs
r

� ce

� �
, ð3:1Þ

where R is the universal gas constant: R ¼ 8.314 � 1026

MPa (nmol K)21, T the absolute temperature: T ¼ 298 K. To

ensure that the initial cylindrical configuration is a stress-

free reference configuration, we impose cr ¼ ð1� fs
rÞce in

the initial state prior to growth. Then we increase the outer

tension 2pe (obtained from equation (3.1)) to reach the

desired osmotic pressure and we get a configuration that is

obviously not stress free. Considering the case of biological

growth and no swelling, all the constituents of the cell will

vary identically with the same factor (this hypothesis is not

mandatory, but is reasonable). Then cr and fr will be multi-

plied by the same factor of proportionality to represent

biological growth [31,32]. Mechanical stresses are induced

by growth under the constraints of the boundary conditions,

at the border between the wall and the cell interior, and the

wall and the sea. In addition, a strong constraint originates

from the limited possibility of extension of the growing cell

because it is confined by its two neighbours. Owing to the

rather strong deformation of the cell during the rounding

event, which approximatively doubles the cell volume, mech-

anical stresses are evaluated by finite elasticity for soft

materials [19,20]. Although the rounding is a dynamic

process, it is very slow compared with any mechanical time-

scale. Therefore, from the viewpoint of elasticity, the cell

shape results from an equilibrium between the osmotic pressure

and the boundary constraints, at a given volume. Thus, the cell

elasticity model (the wall and the cell interior) has tremendous

importance and must be considered in detail. Hence, Cauchy

stress [19,20] is related to the elastic solid stress according to

s ¼ �pIþ se, ð3:2Þ

wherese is the stress derived from the hyper-elastic models and

p is given by equation (3.1). The complete set of partial differen-

tial equations is detailed in [31,32] and in the FEBio manual (see

endnote 2). Applying the equilibrium equation r � s ¼ 0 and

the boundary conditions helps to solve the unknown J which

gives the final volume of the cell. A simple example is given

in appendix A. For the cell wall, different initial data can be

chosen. Many constitutive laws for biological tissues have

been introduced, more or less simple in terms of the fundamen-

tal invariants Ij of strain. The most common are the n-H and the

M-R models [19]. Because the cell interior is gelatinous, the n-H

model is well adapted. However, for the cell wall, a more soph-

isticated representation may be necessary. Superposed on both

elastic models (n-H or M-R), we can include fibres in the cell

walls, but from the modelling viewpoint, disorganized fibres
(cellulose micro-fibrils) without a well-defined orientation

simply make the cell wall stiffer [33,34]. We do not include

the elasticity of fibres (except for numerical tests). However,

they are incorporated in a coarse-grained approach in n-H

and M-R models. Of course, neglecting the orientation of the

fibres is justified for growth of cylindrical cells but maybe not

for the apical cell [35]. It is worthwhile to mention that includ-

ing the fibres in the model increases the number of invariants

[19,20] as well as the number of unknown parameters because

unfortunately there is little experimental data for Ectocarpus.

Let us first explain the hyper-elasticity model chosen for

the cell.

3.3. The neo-Hookean elasticity for the solid
component of the poroelastic model

The compressible n-H model is the one most encountered in

biomechanics. Based on the entropic elasticity of polymer sol-

utions [36], it has a nonlinear stress–strain behaviour and it

reduces to the classical linear elasticity for small strains. The

hyper-elastic energy density per unit volume Wn-H requires

two coefficients:

Wn-H ¼
m

2
ðI1 � 3� 2 ln JÞ þ l

2
ðln JÞ2: ð3:3Þ

I1 is the first invariant of the right Cauchy–Green deformation

tensor: I1 ¼ Tr(FT F). l and m are the Lamé parameters defined

in linear elasticity and related to the Young’s modulus E and

Poisson ratio n via the relationships [37]

m ¼ E
2ð1þ nÞ and l ¼ nE

ð1þ nÞð1� 2nÞ : ð3:4Þ

3.4. The Mooney – Rivlin model
The M-R model is sometimes preferred: due to an additive

parameter, it allows a more flexible representation of

nonlinearities at large deformations. It reads

WMR ¼ c1ðI1 � 3Þ þ c2ðI2 � 3Þ þ K
2
ðln JÞ2, ð3:5Þ

where c1 and c2 are the M-R coefficients and I2 is the second

invariant of the deviatoric right Cauchy–Green deformation

tensor: I2 ¼ 1
2 ½ðTrðFTFÞÞ2 � TrðFTFÞ2�. The coefficient K is the

bulk modulus or a penalty parameter for volume increase.

It has the same significance as linear elasticity [37]. For

small strains, we can relate c1 and c2 to the shear modulus

m, introduced in equation (3.4), and obtain

m ¼ 2ðc1 þ c2Þ: ð3:6Þ
4. From cylindrical to spherical cells
Differentiation occurs in mature cylindrical cells located at

some distance from the apical cell. The process of transforming

the initial cylindrical shape into a quasi-spherical one (figure 3)

occurs via a significant increase of volume, approximately

doubling the initial volume, calculated from the cell dimen-

sions reported in [38]. Differentiation is a much more

delicate problem compared with the growth of a sphere

studied previously [39,40]. The cylinder to sphere transform-

ation requires that the two transversal cell walls, frontiers

between two neighbouring cells, do not move and growth is
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Table 1. Cellular parameters.

cr(nmol mm23) ce(nmol mm23) fs
r E(MPa) n

cell wall k[90 2 810] k � 100 [0.1 2 0.9] 22 0.4

soft interior [900 2 8100] 1000 [0.1 2 0.9] Es 0.4

k = 0.1
red  Es = 0.1
blue  Es = 1
green  Es = 5

pe = 0

pe = –1

pe = –3.5

k = 10k = 1

Figure 4. Final cell shapes when growth proceeds according to the n-H model
for both the cell wall and the cell interior. The wall Young’s modulus is fixed to
the experimental value of 22 MPa while the cell interior Young’s modulus Es

varies from 0.1, 1 to 5 (red, blue and green lines, respectively). Lines indicate
the cell contour during growth, the line thickness represents the numerical
results. Note the rounding that occurs with time and a slight decrease in thick-
ness. The wall tension 2pe (opposite of pressure) is applied to the external cell
wall with varying amplitudes from top to bottom.
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constrained by the adjacent cells. To explain this geometrical

transformation, the combined action of growth and of external

tension is required. The osmotic pressure due to the presence

of the solute plays this role. Thus, the cell is initially modelled

as a cylinder made of a thin external elastic wall and a soft

gelatinous interior (figure 3), with length L set to L ¼ 30 mm,

W the initial diameter set to W ¼ 10 mm, these two values

being given in [38], and a thickness t chosen as t ¼ 1 mm (esti-

mated from figure 2a). These sizes are different from those we

can extract from [24], especially the diameter which is closer to

25 mm. For convenience, the osmotic pressure is represented

by a negative pressure 2 pe (or tension) applied to the outside

surface of the cell wall that we vary. The internal cell pressure,

3.34 MPa, according to [41], is about 1 MPa higher than the

external medium (the sea water being at 2.3 MPa, according

to [30]). The period between the increase in external tension

and the growth process is not crucial for computations, and

can be considered either instantaneous or long-lasting. In prac-

tice, for simplicity, the numerical simulation of cell rounding

was decomposed into two steps. The first step consisted of

applying linearly increasing pressure; the second step involved

coupling the imposed pressure with the increase in cell volume.

In the numerical simulations, we chose values in the vicinity of

the experimental ones, but we also simulated several examples

to show the competition between growth and osmotic pressure

during the shape transition, varying the elasticity of both cell

components: the wall and the cell interior.

4.1. Results with the Neo-Hookean hyper-elasticity
This model was chosen both for the cell wall and the gelati-

nous cell interior, but with different values. The elastic

properties and the growth of the cell are listed in table 1.

All parameters were chosen to gradually represent growth

from an initially cylindrical shape to a rounding shape.

Thus, fr
s and cr increased over computational time while ce

was kept constant. Much larger than the cell wall, the soft

interior contributes more in the change of shape and

parameters were chosen to be as close as possible to the

experiments. The growth ratio of the cell wall is controlled
by k (see appendix A for the role of k). Increasing the magni-

tude of k induces cell growth. Three different values of k
were selected (0.1, 1, 10) and three values for pressure

(0 MPa, 21 MPa, 23.5 MPa). The value of the cell interior

Young’s modulus Es also varied, but was small compared

with the cell wall Ec ¼ 22 MPa, deduced from the experi-

ment (see endnote 1). The corresponding results, with

different values of the Young’s modulus of the cell interior

(Es ¼ 0.1 MPa, 1 MPa, 5 MPa) are given in each panel

of figure 4. The cell wall is represented in colour with a

thickness calculated by the model. Independently of the over-

pressure value, a soft interior favours rounding and even

under growth conditions, a more rigid cell interior favours a

cylindrical shape. Pressure also favours rounding; however,
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Figure 5. Final cell shapes, the interior Young’s modulus being Es ¼ 0.1 MPa, in the n-H approximation (for the definition, see equation (3.3)). Tension (opposite
of pressure) is applied with varying amplitude. Colours in the cell indicate the level of the von Mises stresses (see colour scales) inside the cell wall.
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when growth increases (with the parameter k), the thickening

of the cell wall slightly inhibits rounding. Our calculation

does not show obvious thickness variation along the cell

wall. From left to right in every row of figure 4, the cell wall

becomes thicker under the same external pressure. When thick-

ness increases, the cell wall becomes stiffer and is more difficult

to push out from the interior. Hence, the shape becomes a puffy

cylinder at the end of each row. From top to bottom in each

column, pressure increases the volume of the cell and makes

it rounder. Moreover, the thickness of the cell wall becomes

more uniform. The results for Es ¼ 1 MPa and 5 MPa in

figure 4 (blue and green lines) illustrate that cell volume

decreases with increased modulus Es. This is due to the coup-

ling effects, equation (3.2), between the volume change J and

the elastic properties of the matrix material. The final shapes

are more like a peanut than a sphere under low pressure.

This shape is similar to the symmetrical buckling that occurs

in a bilayer cylinder under growth [42]. The von Mises stress

distribution in the cell wall for Es ¼ 0.1 MPa is indicated in

each panel of figure 5. This case corresponds to figure 4, red

lines. The cell wall is coloured according to the legend bar on

left. The von Mises stress is a scalar stress value that can be

computed from the Cauchy stress tensor

sv ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
sijsij

r
, ð4:1Þ
where sij is the component of the stress deviator tensor

sdev ¼ s� 1

3
ðtrsÞI. It is an indicator of the level of stress

generated by the deformation. For all cases, the highest stress

value is located in the centre of the cell wall, which shows

that this part can be elastically weakened, thus allowing

branching under pressure. This fact justifies the choice of the

location of the branching initiation at the centre, as shown in

the next section.

4.2. Results with the Mooney – Rivlin hyper-elasticity
The following correspondence can be achieved between these

coefficients and the measured Young’s modulus Ec according

to the relationships of equation (3.6):

c1 þ c2 � 3:92 MPa and K � 36:67 MPa: ð4:2Þ

From equation (4.2), we assign three values to the couple

(c1, c2). For the first case, c1 ¼ 3.92, c2 ¼ 0, the M-R model

reduces to the n-H constitutive model, close to the limit of

incompressibility. The final shapes in figure 6 (shown in

red) are similar to the ones of figure 4 (shown in red) for n-H

materials, but the cells are much rounder especially when

the pressure increases to 23.5 MPa. Unsurprisingly, pressure

always makes the cell rounder. Although its experimental

value is relatively low compared to the cell wall, it has a notice-

able effect. When growth is greater, the calculation cannot
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c2 = 3.9
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pe = –3.5

k = 10k = 1

Figure 6. Cell shapes according to the M-R model. Definitions of the coefficients are given in equation (3.3). Tension (i.e. opposite of pressure) is applied with
varying amplitude.
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always converge. In figure 6 (shown in blue) c1 ¼ 1.92 and c2 ¼

2, one important feature is that the thickness of the cell wall

becomes uniform for each shape. The shapes are generally

spherical except the last one with more growth and high

pressure. Finally, in the third case, c1 ¼ 0.02, c2 ¼ 3.9, the

shape is similar to the second case when the pressure is

21 MPa and 0 MPa. Because of the well-known singularity

of the M-R model, when c2 is negative, convergence also

becomes difficult in this range of parameters and growth is

limited. As above, the M-R model gives a variety of different

final shapes, for different parameter values. Regardless of the

elastic model used, our simulations do not show wrinkling

instabilities characteristic of cylinder geometry [42–44].
5. Branching
Filament branching occurs mainly on round cells in Ectocarpus
[38]. Therefore, we attempted to model the emergence of a

branch once the rounding process is finished. From the current

observation, we assumed that branching corresponds to a

bulge in the orthogonal direction of the primary filament.

Subsequent apical growth of this bulge generates a new cell

through mitosis, and re-iteration of the growth steps leads to

the formation of a secondary filament. For a better understand-

ing of this branching phenomenon, we modified our previous

model and introduced plasticity at a precise location on the

external surface of the cell wall that corresponds to a high ten-

sile state. This plasticity induces an increase in the local growth

rate, due to the excess tension, according to the law of homeo-

stasis, or similarly, to Lockhart’s law for plants [45]. Both laws

suggest the existence of a tensional threshold to induce prolifer-

ation. In the case of plants, in the original paper of Lockhart

[45], growth is represented by an irreversible extension of the

cell wall which occurs when the stresses, induced by turgor

pressure acting on the cell wall, exceed a given threshold

called yield stress. In the case of a cylindrical cell, this law pre-

dicts that the relative rate of length increase is directly

proportional to the difference between the tension inside the

wall and a critical value called the yield stress. For compu-

tational purposes, we cannot apply this law gradually. We

simplify the model by a rectangular plastic zone with the high-

est growth rate. Initially, this zone is located on one side, at the
middle (figure 7a). Owing to growth, it changes its shape and

makes a tip shown in figure 7b,c. This particular zone is at the

origin of the branching event. All the parameters of the cell

materials are listed in table 2. The whole simulation now

consists of three different steps:

(1) Application of the pressure pe ¼ 21 MPa on the external

surface of the cell wall; it is maintained in steps 2 and 3.

(2) Growth of the whole cell.

(3) Growth arrest except for the branched part.

The results for the cell shape are shown in figure 7b at six

different times. At first time, the cell shape changes slowly

under pressure, then becomes more rounded and relatively

symmetrical and grows significantly as shown in step 2. In

step 3, dissymmetry appears between the left and right sides

of the cell and distortion increases on the left side where the

plastic zone is located. Such asymmetry is surprising and unex-

pected: it is as if all the excess pressure concentrates in the

bulge. It is also observed in our set of photographs and

movies (not shown) and in the picture in figure 2c. Despite

differences in the growth coefficients, the wall thickness

remains relatively homogeneous with constant thickness.

This is typical of the M-R model; the same simulation per-

formed with the n-H model fails to give satisfactory results.

In figure 7c, the change in the external wall over time is

shown in the same graph. In this graph, the wall thickness cor-

responds to the simulations. For practical reasons, going from

an initially cylindrical to a rounded cell, then to a distorted

cell with a bulge requires introducing by hand a plastic zone

in the computations, in a discontinuous manner due to soft-

ware limitations. This plastic zone exists in living systems

because mechanical forces automatically induce a local

modification in the wall structure and also modify growth, as

indicated by Lockhart’s law [45]. Of course, these modifi-

cations occur gradually in nature, contrary to our simulations

which introduce a discontinuous growth behaviour. Several

geometries were tested for the plastic zone and it turns out

that the quasi-rectangular one, which looks like the initial

cylindrical geometry, was the most adequate. In order to test

our simulations, we made another choice. We began with a

quasi-spherical cellular shape, choosing a rounded cell
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Figure 7. (a) Geometry of the cell with a plastic zone located in mid-position. (b) Change in the cell shape in the three steps of growth as described in §5. Note the
right – left asymmetry as growth proceeds. (c) Change in the cell wall over time.

Table 2. Parameters for the branching of an initially cylindrical cell.

ca
r ca

e fs
r elastic parametersb

cell wall [90 2 810] 100 [0.1 2 0.9] c1 ¼ 1.92; c2 ¼ 2; K ¼ 36.67

interior [900 2 8100] 1000 [0.1 2 0.9] Es ¼ 0.1; n ¼ 0.4

tip area 200[9.8 2 98 2 294] 2000 [0.02 2 0.2 2 0.6] c1 ¼ 1.92; c2 ¼ 2; K ¼ 36.67
aValues are in nmol mm23.
bThe Young’s modulus Es and Poisson’s ratio n for the neo-Hookean model are according to equation (3.3) and c1, c2 and K are the coefficients of the
Mooney – Rivlin model according to equation (3.5).
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shown in figure 8, as initial configuration. The height of the

cell is L ¼ 30 mm, the diameter of the top and bottom ends is

D ¼ 10 mm, the diameter of the central part is Dc ¼ 30 mm.

The thickness of the cell wall is t ¼ 1 mm. This spherical

shape looks like the final equilibrium state under growth and

osmotic pressure, but here it is chosen as an initial stress-free

configuration. Hence, the pressure is no longer applied, cell

growth is reduced except in the circular plastic zone, of initial

radius Rf ¼ 3 mm, located on one side. The whole simulation

consists only of one step. All the parameters of the cell

materials are listed in table 3. The results also give a correct

explanation for branching. However, with these initial con-

ditions, which mimic the usual case of an already round cell

undergoing a branching event, the change in shape appears

to be restricted to the plastic zone and its immediate vicinity.

In particular, the opposite side of the cell is not flattened as it

is when the defect in the cell wall is present at the time of

rounding (cf. figures 7 and 8). From the viewpoint of elasticity,

the two approaches are different, since the latter process elim-

inates the stresses accumulated by the rounding of the cylinder.

The flattening on the opposite side of the bulge, experimentally

observed (figure 2b), is of course in favour of the cylinder

transformation treatment, but observation of branching
events in our collection set also shows the second possibility.

We conclude that the two scenarios occur in nature.
6. Conclusion
The poroelastic model with M-R hyper-elasticity gives a satis-

factory representation of the key features occurring during the

morphogenesis of E. siliculosus, a brown alga made of uniseriate

filaments. Here, we focused on the change from a cylindrical to

a spherical cell via an increase in volume and on branching.

These cellular events concern mature cells located in the central

half of the filament. The simulations, carried out with FEBio

software (see endnote 2), give satisfactory information on

cellular morphogenetic events for a range of realistic elastic

parameters, even if this software does not have the flexibility

required for mechano-transduction processes necessary for

branching. We would have preferred to introduce the plastic

zone continuously as a function of the local stress induced by

growth and osmotic pressure. This study shows the importance

of the coupling of biological growth and mechanical properties

in cell morphology. Growth clearly induces residual stresses in

the cell wall, initiating a symmetry breaking and bulging



Table 3. Cellular parameters for the branching of a quasi-spherical cell.

ca
r ca

e fs
r Elastic parametersb

cell wall [0.9 2 8.1] 1 [0.1 2 0.9] c1 ¼ 1.92; c2 ¼ 2; K ¼ 36.67

interior [4.5 2 40.5] 5 [0.1 2 0.9] Es ¼ 0.1; n ¼ 0.4

tip area 1000[9 2 81] 10000 [0.1 2 0.9] c1 ¼ 1.92; c2 ¼ 2; K ¼ 36.67
aValues are in nmol mm23.
bThe Young’s modulus Es and Poisson’s ratio n for the neo-Hookean model are according to equation (3.3) and c1, c2 and K are the coefficients of the M-R
model according to equation (3.5).
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Figure 8. (a) Geometry of the cell with a plastic zone located in mid-pos-
ition, (b) change in the cell wall over time and (c) change in the cell shape
during growth.
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process, then a mitosis event as shown in the experiments

(figure 2c). Future studies can explore the competition of

branching events in neighbouring quasi-spherical cells as

shown in figure 2b. Here, the cells are considered as isolated

with interactions between neighbours limited to the inter-

cellular junctions. However, neighbouring cells communicate

via ion channels and the process of rounding is not completely

independent. A previous model (cellular automaton Ectomat

[46]) suggested that the rounding process depends only on

the geometrical nature of the neighbouring cells: rounding

will occur only if one neighbouring cell is already round.

Hence, at least one cell must be round in the initial stages to

allow the initiation of the series of cell shape transitions. Another

future direction involves apical growth. Many theoretical

models have been proposed in the recent past, concerning

yeast, pollen tubes and fungi. With more biological information

on the wall structure at the tip, these models can be good candi-

dates for studying morphogenetic processes in E. siliculosus also.
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Endnotes
1Charrier B et al. unpublished results obtained with atomic force
microscopy, technique explained in [18].
2FEBio software for nonlinear finite-element analysis in biomechanics
and biophysics, developed at the University of Utah and Columbia
University (free access).
Appendix A
In this appendix, we explain the method used in FEBio soft-

ware that we adapted to our study. Cell growth can be

modelled by using equation (3.1) in §3.2 for fluid pressure

and allowing the parameters fs
r and cr (normally constant)

to increase over time as a result of biological growth. Since

cell growth is often accompanied by cell division, and since

daughter cells typically have the same solid and solute content

as their parent cell, it is convenient to assume that fs
r and cr

increase proportionally. To ensure that the initial configuration

is a stress-free reference configuration, let cr ¼ ð1� fs
rÞce in the

initial state prior to growth. The Cauchy stress for the cell

growth model is

s ¼ �pIþ se: ðA 1Þ

For instance, cr ¼ [900 2 r900], fs
r ¼ ½0:1� r0:1�, ce ¼ 1000 as

shown in table 1 ([a 2 ra] represents the interval variation).

From equation (3.1), assuming isotropic free growth and iso-

tropic shape, se is only a function of J which depends on

the hyper-elastic model, as explained in §3.2. Defining F(J ),

such that se ¼ F(J)I, we derive an equation for J

RT
cr

J � fs
r

� ce

� �
¼ FðJÞ: ðA 2Þ

However, in our case, we have boundary conditions that gen-

erate a non-trivial shape for our cell. As mentioned in §3.2, the

equilibrium equations are then

r � s ¼ 0 and sn,n ¼ �pe, st,n ¼ 0

on the lateral wall:
ðA 3Þ

In addition, transverse walls are considered as rigid and there

is no displacement. The determination of Js can only be done

by using finite-element numerical software. It is not a constant

and only the final calculation gives us an estimation of cell

growth. A factor k can also be introduced in the pressure on

the left-hand side of equation (A 2). It modifies the growth

property of the cell wall compared with the interior or to the

plastic zone compared with the wall, in the case of different

materials. As shown in figure 5, increasing k makes the wall

more rigid because k ¼ 10 gives a growing cell which remains

roughly cylindrical.
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