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Abstract

The North American endemic genus Penstemon (Mitchell) has a recent geologic origin of

ca. 3.6 million years ago (MYA) during the Pliocene/Pleistocene transition and has under-

gone a rapid adaptive evolutionary radiation with ca. 285 species of perennial forbs and

sub-shrubs. Penstemon is divided into six subgenera occupying all North American habitats

including the Arctic tundra, Central American tropical forests, alpine meadows, arid deserts,

and temperate grasslands. Due to the rapid rate of diversification and speciation, previous

phylogenetic studies using individual and concatenated chloroplast sequences have failed

to resolve many polytomic clades. We investigated the efficacy of utilizing the plastid

genomes (plastomes) of 29 species in the Lamiales order, including five newly sequenced

Penstemon plastomes, for analyzing phylogenetic relationships and resolving problematic

clades. We compared whole-plastome based phylogenies to phylogenies based on individ-

ual gene sequences (matK, ndhF, psaA, psbA, rbcL, rpoC2, and rps2) and concatenated

sequences. We also We found that our whole-plastome based phylogeny had higher nodal

support than all other phylogenies, which suggests that it provides greater accuracy in

describing the hierarchal relationships among taxa as compared to other methods. We

found that the genus Penstemon forms a monophyletic clade sister to, but separate from,

the Old World taxa of the Plantaginaceae family included in our study. Our whole-plastome

based phylogeny also supports the rearrangement of the Scrophulariaceae family and

improves resolution of major clades and genera of the Lamiales.

Introduction

The genus of Penstemon (Mitchell) is a large group of ca. 285 species of flowering plants

endemic to North America [1–3]. A recently released report by Wolfe, Blischak (3)
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hypothesize the origin for Penstemon around the Pliocene/Pleistocene transition ca. 3.6 million

years ago (MYA) [3]. This genus has extraordinary genetic and phenotypic diversity as evi-

denced by the array of ecosystems it inhabits and number of published taxa [4]. Geographic

distribution ranges from the Yukon River Basin of Alaska and Canada to the Yucatan Penin-

sula of Mexico and Guatemala. The rapid and recent diversification and speciation in Penste-
mon is associated with dramatic differences in diploid genome size ranging from 462

megabase pairs (Mbp) in P. dissectus to 922 Mbp in P. nitidus [5]. The rate of speciation, span

in genome sizes, and relatively low mutation rate in plastome coding regions creates a unique

challenge for systematists attempting to fully resolve phylogenetic relationships in Penstemon.

Recent phylogenetic analyses of many Penstemon taxa using a small number of diagnostic

plastid genetic regions indicated that some of these subgenera may be poly- or paraphyletic [1,

2, 6]. As a result, Freeman (2019) proposed that the subgenera be reduced to two: Dasanthera,

reconstructed by combining Dasanthera and Cryptostemon; and Penstemon, reconstructed by

combining Saccanthera, Dissecti,Habroanthus, and Penstemon [7]. Regardless, most Penste-
mon taxonomists continue to use the historic subgenera classification as work continues to

resolve problematic clades (i.e. gene tree discordance, polytomy, polyphyly, paraphyly, etc.)

within and among subgenera and sections [8–10].

Phylogenetic investigations of Scrophulariaceae, the family to which Penstemon was previ-

ously described, using the rbcL and ndhF plastid genes revealed that the family was polyphy-

letic which led to extensive taxonomic revision of this family and a reorganization of the

Lamiales order including placing the genus Penstemon into the Plantaginaceae family [11–13].

These revisions have been verified through multiple independent studies using other combina-

tions of plastid genes [12–15]. Basal nodes of the Lamiales lineages have consistently had a

high degree of resolution and nodal support in these phylogenetic studies. However, lineages

inclusive of more recent diversification typically have poor resolution and low nodal support

(polyphyly, paraphyly, and polytomies)–such as observed in Penstemon [2] and Plantago [16]–

and are typified by low levels of variation in individual gene sequences [17].

Due to their maternal inheritance, magnoliid chloroplast genomes are conserved within

each Order and Family [18] and are characterized by low rates of mutation/nucleotide substi-

tution and recombination, plastid gene sequences are useful for studying the evolutionary his-

tory of land plants [19–21]. However, most phylogenetic analyses utilize few plastid genes to

classify taxa, withmatK, ndhF, rbcL, and rps2 genes among the more common sequences used

[11, 22, 23]. Selective pressure typically varies between genes, causing varying substitution

rates and introduces data bias in observed in phylogenetic inference of individual gene

sequences [19, 24]. Phylogenetic resolution can be improved, however, by using multiple

concatenated genes [25–27], non-coding regions including introns [28–30], and partial geno-

mic regions (i.e. long single-copy, short single-copy, inverted repeat, etc.) [31].

Historically, phylogenetic studies used few sequences and/or taxa due to the limiting cost of

sequencing, and the computational demand of sequence assembly, alignment, and analyses. In

recent years, the cost and ease of DNA sequencing, along with advances in computational

power and algorithms for genome assembly and phylogenetic analyses have improved to the

point that, as of January 2021, there have been 4,650 Viridiplantae plastomes published on the

National Center for Biotechnology Information (NCBI) website (www.ncbi.nlm.nih.gov).

These plastomes represent 4,616 unique taxa from 1,795 genera. In 2020 alone there were

1,165 new plastomes were published. Yet this valuable resource is underutilized in evolution

evolutionary and phylogenetic studies, as the majority of plastome assembly announcements

publish phylogenies based on concatenated sequences.

The process of examining multiple chloroplast gene sequences (individually or

concatenated) to infer maximum likelihood (ML) phylogenetic relationships treats each
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character as independent. However, this violates the assumption of independence inherent in

ML analyses as each locus is dependent and linked on single heritable plastid chromosome

that does not undergo recombination [32, 33]. Basing phylogenetic analyses on whole organel-

lar sequences rather than individual gene sequences does not violate the assumption of inde-

pendence. This also improves phylogenetic resolution and confidence can be improved using

whole-plastome sequences because the coding, noncoding, single-copy (long and short), and

inverted repeat regions each accumulate point mutations at different rates within a plastome

[34]. This then creates a phylogeny that represents the whole evolutionary history of the taxa

based on the plastid genome.

Here we report the assembled and annotated plastomes of P. cyaneus, P. dissectus, P. pal-
meri, P. personatus, and P. rostriflorus, representing theHabroanthus, Dissecti, Penstemon,

Cryptostemon, and Saccanthera subgenera, respectively. We include the previously published

plastome of P. fruticosus [35] in our analyses to represent the basal subgenus, Dasanthera, thus

including representatives from all recognized Penstemon subgenera. We had three primary

objectives to guide our studies of Penstemon plastomes. First, document the complete plastome

sequences for species representing each Penstemon subgenus. Second, evaluate these species

for evolutionarily significant similarities and differences in plastome structure, using microsat-

ellite simple sequence repeats (SSRs), repetitive sequences, nucleotide variants, expansion/con-

traction of the inverted repeats, plastome synteny, and the phylogenetic positions of the

subgenera within Penstemon. Lastly, evaluate the efficacy of using whole-plastome sequences

to resolve problematic clades within the Lamiales (i.e. gene tree discordance, polytomy, and

low nodal support) when compared to phylogenies based on single-genematK, ndhF, psaA,

psbA, rbcL, rpoC2, and rps2 sequences and a concatenated sequence composed of the above

listed genes [11–13].

Materials and methods

DNA extraction, sequencing, and plastome assembly and annotation

We extracted DNA from leaves of greenhouse grown P. cyaneus, P. dissectus, P. fruticosus, P.

palmeri, P. personatus, and P. rostriflorus (Fig 1) using a modified CTAB purification method

[36]. We diluted the DNA to a minimum concentration of 5 ng and whole genome sequences

were generated using the pair-end (2 x 250 bp) Illumina HiSeq platform (Illumina Inc., San

Diego, CA) at the Brigham Young University DNA Sequencing Center (Provo, Utah, USA).

To isolate the plastome sequences from the unpaired genomic reads with NOVOPlasty

(https://github.com/ndierckx/NOVOPlasty) [37] we used four combinations of seed inputs

and reference plastomes: 1) P. fruticosus as the seed without a reference 2) P. fruticosus for

both the seed and reference, 3) Erythranthe lutea as the seed without a reference, and 4) E.

lutea as the seed and P. fruticosus as the reference. Then, we assembled the isolated sequences

from all NOVOPlasty runs using the Geneious v11.0.3 De Novo Assembly tool [38] with the P.

fruticosus plastome reference [35] to create a circularized plastome sequence. Next, we evalu-

ated each assembly for coverage and identified sequence gaps (P. cyaneus and P. palmeri) and

filled these gaps with additional NOVOPlasty runs using the portion of the P. fruticosus plas-

tome sequence that spanned each gap as a seed reference.

We annotated the assembled plastomes using the GeSeq webserver (https://chlorobox.

mpimp-golm.mpg.de/geseq.html) [39] with the default parameters, and NCBI reference

sequences from Olea europaea, Scrophularia buergeriana, S. takesimensis, Veronica nakaiana,

V. persica, and Veronicastrum sibiricum, and corrected any gene annotations that were missing

start/stop codons or introns manually. Once we completed the annotations, we submitted all

sequences and the annotations to NCBI.
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Simple sequence repeats and repeat structure

To evaluate the assembled plastomes for SSRs and repeat region similarity among Penstemon
subgenera we used the MISA microsatellite predicting webserver (http://misaweb.ipk-

gatersleben.de/) [40]. Our identified SSRs were based on homopolymer and copolymer lengths

of five for di-, four for tri-, and three for tetra-, penta- and hexa-nucleotide repeats using the

default parameters. Using the REPuter webserver (https://bibiserv.cebitec.uni-bielefeld.de/

reputer) we identified repeat regions in the forward and reverse direction as well as comple-

ment and palindrome sequences [41]. We used a 20 base pair minimum repeat size without a

minimum distance between repeat sites.

Single nucleotide polymorphisms and codon preference

For the alignment of all sequences to the P. fruticosus reference we utilized MAFFT webserver

(https://mafft.cbrc.jp/alignment/server/) [42] and identified the variable sites, SNPs and indels, with

Geneious v11.0.3 [38]. To measure the relative synonymous codon usage (RSCU), we used the

“Codon Usage Bias” function of DnaSP v6 [43], defined as the ratio between the frequency of use to

expected frequency for each codon [44] within aligned protein coding DNA sequence (CDS).

Fig 1. Photos of each species and respective subgenus included in this study. Clockwise from the upper left: Penstemon fruticosus (Dasanthera), P. rostriflorus
(Saccanthera), P. personatus (Cryptostemon), P. palmeri (Penstemon), P. cyaneus (Habroanthus), and P. dissectus (Dissecti). Photo credits: Mikel R. Stevens and Jason M.

Stettler.

https://doi.org/10.1371/journal.pone.0261143.g001
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Synteny blocks

To examine structural variants at the inverted repeat (IR) region junction sites, we employed

IRScope webserver (https://irscope.shinyapps.io/irapp/) [45] and visually evaluated the struc-

tural variants within the Penstemon genus and within a subset of taxa from the Lamiales order

(Table 1). To do this, we downloaded the GenBank files for each taxon (Table 1) from NCBI

for the IRScope input. The IRScope webserver processes ten plastomes at a time, so we made

several submissions of plastome groups to compare the IR junctions of all taxa using the Sola-
num lycopersicumGenBank file as an outgroup reference for uniform alignment of each

submission.

Phylogenetic analysis

For the whole-plastome phylogeny, we aligned the plastome sequences of our six Penstemon
species, 22 additional species from the Lamiales order, and So. lycopersicum as an outgroup

(Table 1) using the MAFFT webserver [42]. To perform the ML analysis we used the GTR+G4

evolutionary model was performed in IQ-TREE with 1,000 bootstrap support [46, 47]. For the

individual gene sequence phylogenies, we made sequence alignments for ndhF, rbcL, and rps2
sequences of the same species as the whole-plastome phylogeny using the MUSCLE webserver

(https://www.ebi.ac.uk/Tools/msa/muscle/) [48]. For the concatenated phylogeny, we used the

aligned sequences ofmatK, ndhF, psaA, psbA, rbcL, rpoC2, and rps2 from each species, which

we concatenated using Python v2.7.5. We performed ML analyses for each gene sequence and

concatenated sequences, using the TN+G4 evolutionary model in IQ-TREE with 1,000

Table 1. Lamiales order and outgroup taxa included in our phylogenetic analyses.

Taxon Family Order Plastome Length CG % NCBI Reference Publication Year

Solanum lycopersicum Solanaceae Solanales 155,461 37.86 NC_007898.3 2014

Haberlea rhodopensis Gesneriaceae Lamiales 153,099 37.80 NC_031852.1 2016

Streptocarpus teitensis Gesneriaceae Lamiales 153,207 37.60 NC_037184.1 2018

Salvia japonica Lamiaceae Lamiales 153,995 38.00 NC_035233.1 2017

Salvia miltiorrhiza Lamiaceae Lamiales 151,328 38.02 NC_020431.1 2013

Salvia rosmarinus Lamiaceae Lamiales 152,462 38.00 NC_027259.1 2015

Olea europaea Oleaceae Lamiales 155,888 37.80 NC_013707.2 2017

Castilleja paramensis Orobanchaceae Lamiales 152,926 38.20 NC_031805.1 2016

Pedicularis hallaisanensis Orobanchaceae Lamiales 143,469 38.70 NC_037433.1 2018

Erythranthe lutea Phrymaceae Lamiales 153,150 37.70 NC_030212.1 2016

Digitalis lanata Plantaginaceae Lamiales 153,108 38.60 NC_034688.1 2017

Penstemon fruticosus Plantaginaceae Lamiales 152,704 37.90 MG_201976.1 2017

Plantago depressa Plantaginaceae Lamiales 164,617 38.00 NC_041161.1 2019

Plantago lagopus Plantaginaceae Lamiales 145,936 38.30 NC_041420.1 2019

Plantago maritima Plantaginaceae Lamiales 158,358 38.60 NC_028519.1 2015

Plantago media Plantaginaceae Lamiales 164,130 38.00 NC_028520.1 2015

Plantago ovata Plantaginaceae Lamiales 149,739 38.30 NC_041421.1 2019

Veronica nakaiana Plantaginaceae Lamiales 152,319 37.90 NC_031153.1 2016

Veronica persica Plantaginaceae Lamiales 150,198 37.90 NC_031344.1 2016

Veronicastrum sibericum Plantaginaceae Lamiales 152,930 38.30 NC_031345.1 2016

Scrophularia buergeriana Scrophulariaceae Lamiales 153,631 38.00 NC_031437.1 2016

Scrophularia dentata Scrophulariaceae Lamiales 152,600 38.00 NC_036942.1 2018

Scrophularia henryi Scrophulariaceae Lamiales 152,868 38.00 NC_036943.1 2018

Scrophularia takesimensis Scrophulariaceae Lamiales 152,425 38.10 NC_026202.1 2015

https://doi.org/10.1371/journal.pone.0261143.t001
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bootstrap support. To view and annotate the optimal ML from all ML analyses, we used the

TreeGraph 2 v2.15.0–887 software [49].

Results and discussion

Assembly and annotation

The number of paired-end reads we sequenced ranged from 81,521,066 in P. palmeri to

19,370,452 in P. dissectus representing an estimated total genome coverage of 18.26x to 6.42x,

respectively [5] (Table 2). The mean sequence length for paired reads was 279 bp for all species

(Table 2). The NOVOPlasty output log identified between 12,238,056 (P. palmeri) and

2,414,370 (P. rostriflorus) reads that aligned to the reference plastome sequence, assembled

between 1,141,338 (P. palmeri) and 643,118 (P. rostriflorus), at an average organelle coverage

of between 62,837 (P. personatus) and 16,203 (P. cyaneus) (Table 2). The lengths of each assem-

bled plastome sequences ranged between 152,659 bp (P. palmeri) and 153,091 (P. personatus),
which were very similar to the previously published P. fruticosus reference plastome (152,704

bp) [35]. All plastomes showed the typical angiosperm quadripartite structure [50]. The long

single copy (LSC) lengths ranged from 84,217 bp (P. personatus) to 83,795 bp (P. palmeri). The

short single copy (SSC) lengths ranged from 17,818 bp (P. personatus) to 17,780 bp (P. dissec-
tus). The IR lengths ranged from 25,564 bp (P. rostriflorus) to 25,528 bp (P. personatus)
(Table 3).

In our plastome annotations, we identified identical genes for all species. Each had 83

unique CDS genes and four rRNA genes, as does the P. fruticosus reference. However, P. fruti-
cosus has 29 unique tRNA genes and the rest of the plastomes had 30 unique tRNA genes

(Table 3). We aligned the five Penstemon plastomes to P. fruticosus and identified 8,577

sequence variants, including 1,729 single nucleotide polymorphisms (SNPs) and 6,848 indels

between all species.

We identified possible pseudogenization of the ndhD gene in all lineages except P. fruticosus
due to a start-loss missense mutation, which shifted the start codon to the 128th position in the

amino acid sequence. The ndhD gene in the IR regions had an identical mutation in both IRa

and IRb sequences. Additionally, we found at least three indels in the final 18 codons of ndhD,

which caused frame shifts and early termination of the amino acid sequence. Penstemon dissec-
tus, P. palmeri, and P. cyaneus had identical ndhD gene sequences and indels, which supports

the monophyly of this clade as all three taxa inherited this mutation through a common

Table 2. Whole genome Illumina (250x250) pair-end sequencing results, and NOVOPlasty Penstemon plastome assembly reports.

Whole Genome Sequencing P. cyaneus P. dissectus P. palmeri P. personatus P. rostriflorus
Nuclear Genome Size (Mbp)a 753 462 688 495 565

Number of Reads 40,895,418 19,370,452 81,521,066 33,780,614 36,386,168

Mean Read Length (bp) 314.8 250.7 281.8 256.7 290.8

Sequenced Bases (Gb) 8.54 3.06 13.9 5.44 8.01

Estimated Genome Coverage (x) 10.18 6.42 18.26 10.99 14.42

CG Content (%) 37.62 36.98 36.32 36.72 35.21

NOVOPlasty Assembly

Aligned Reads 9,905,064 3,276,548 12,238,056 6,416,454 2,414,370

Assembled Reads 1,039,070 759,358 1,141,338 1,001,622 643,118

Average Organelle Coverage (x) 16,203 32,084 20,041 62,837 23,605

CG Content (%) 37.86 37.84 37.87 37.87 37.84

aNuclear genome size estimates were produced through flow cytometry by (Broderick et al, 2011).

https://doi.org/10.1371/journal.pone.0261143.t002
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ancestor. We also identified a missense mutation in the stop codon of the rps12 gene in P. pal-
meri, which extended the protein by 22 amino acids. We only observed this mutation in P. pal-
meri, which indicates that the mutation occurred after P. palmeri (subgenus Penstemon)

diverged from the P. cyaneus (Habroanthus) and P. dissectus (Dissecti) lineages. Without addi-

tional taxa sampling from the Penstemon andHabroanthus subgenera we are unable to deter-

mine whether this rps12mutation is unique to P. palmeri, or if it is common in the Penstemon
subgenus.

Repeat analysis

Overall, the number and size of repeats were comparable among Penstemon species. Our P.

fruticosus reference contained 19 SSRs ranging in size from seven dinucleotide repeats to ten

tetranucleotide repeats. The number of SSRs in the species tested were very similar to the refer-

ence, ranging from 15 in P. cyaneus and P. palmeri to 18 in P. personatus. Penstemon dissectus
had the only pentanucleotide repeat (Table 4).

Due to their heritable physical location and length, and ease of amplification protocols,

SSRs make ideal markers for population genetic and phylogenetic studies of closely related

taxa [51]. The majority of identified Penstemon plastid SSRs appeared to be homologous loci

across the different Penstemon lineages. Their exact physical locations and lengths varied due

to indel mutations. We observed several incidences where two SSR loci (S1 Table) were physi-

cally separated or absent in some linages, but directly adjacent in other taxa. This could indi-

cate that there is an indel mutation between the two loci or point mutations within one or

both SSR intervening sequence(s). These loci could be useful to test homology and observe

Table 3. Plastome sequence assembly results. Total sizes of the Penstemon plastome, long single copy (LSC), short single copy (SSC), and inverted repeat (IR) for each

species, as well as the counts of total genes, coding DNA sequence (CDS), rRNA, tRNA, and duplicated genes (within IR regions), followed by the NCBI sequence and

annotation submission ID number.

P. cyaneus P. dissectus P. palmeri P. personatus P. rostriflorus
Total Length 152,822 152,951 152,659 153,091 153,087

LSC 83,940 84,109 83,795 84,217 84,161

SSC 17,812 17,780 17,802 17,818 17,798

IR 25,535 25,531 25,531 25,528 25,564

Total Genes 114 114 114 114 114

CDS 83 83 83 83 83

rRNA 4 4 4 4 4

tRNA 30 30 30 30 30

Duplicated Genes 21 21 21 21 21

NCBI Submission ID MK391143 MK2183578 MK656967 MK940755 MK940756

https://doi.org/10.1371/journal.pone.0261143.t003

Table 4. Simple sequence repeats. The number of each type of simple sequence repeats (SSRs) identified in each plastome using the MISA webserver (http://misaweb.

ipk-gatersleben.de/). Penstemon fruticosus is included in this study as a reference for the basal clade of Penstemon.

Dinucleotide Trinucleotide Tetranucleotide Pentanucleotide Total Repeats

P. fruticosus 7 2 10 0 19

P. cyaneus 5 1 9 0 15

P. dissectus 6 1 9 1 17

P. palmeri 6 1 8 0 15

P. personatus 7 1 10 0 18

P. rostriflorus 6 1 10 0 17

https://doi.org/10.1371/journal.pone.0261143.t004
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changes in populations, lineages, and clades over time. Upon validation of universal primers

for physical location, SSR length, and point mutations, these SSRs could be excellent popula-

tion genetics tools, but such evaluations were beyond the scope of this research.

REPuter identified 49 total repeats (reverse, complement, forward, and palindrome) for all

species including P. fruticosus. However, the types, sizes, and locations of these repeats varied

among species (Fig 2). The majority of repeats (88–96%) were smaller than 30 bp for all species

and were located in the LSC region (61–55%). Penstemon fruticosus had the most palindromic

repeats (14%) and P. personatus and P. rostriflorus had the fewest (8%). Penstemon dissectus
had the most complimentary repeats (8%) and P. personatus had the fewest (2%).

The ploidy level within the Penstemon genus ranges from diploid to dodecaploid, with dip-

loid genome sizes ranging from 463 Mbp in P. dissectus to 922 Mbp in P. nitidus [5]. Although

the species included in this study are diploid, P. cyaneus has a nuclear genome up to 63% larger

than the other taxa in this study (Table 2). Along with its large nuclear genome size, P. cyaneus
has approximately double the number of repetitive elements in its nuclear genome as com-

pared to P. dissectus and P. fruticosus [52]. The causes and origins of diploid genome enlarge-

ment in Penstemon remains mostly unstudied, and it is unknown whether gene duplication

including ectopic recombination, replication slippage, or retrotransposition also play a role.

Since plastome size is uninfluenced by ploidy level or nuclear genome size, the number and

composition of the repetitive elements in the chloroplasts are comparable between our Penste-
mon taxa. All plastome genes in a given lineage are orthologous, inherited from a common

maternal ancestor, which make plastomes ideal for phylogenetic studies as determining homo-

logs, paralogs, and pseudogenization unnecessary. Investigations of nuclear genome mutations

are ideal for studying the genetic changes that occurred during speciation and diversification,

but plastomes are ideal to construct maternal evolutionary histories and phylogenies.

Codon usage

The RSCU for each amino acid was nearly identical among all species (S2 Table). We observed

61 unique codons for the 20 amino acids used in all CDS in our Penstemon plastomes. Seven-

teen of these codons were preferred over the other codons for the same amino acid. However,

our plastome annotations only identified 30 tRNA codon genes in our Penstemon species (29

in P. fruticosus), only 11 of which were for the preferred amino acid codons. This indicates

that the remaining 31 tRNA codons, including five preferred tRNA codons, come directly

from the host cell’s cytosol and are not produced by the chloroplast’s genome. Chloroplast

genomes commonly encode around 30 tRNA genes, and like mitochondria, import tRNAs

from the cytosol which are produced by the nucleus [53]. The overall chloroplast genome size

is greatly reduced from the ancestral cyanobacteria species, which have up to 12,000 CDS

genes, compared to a chloroplast’s 80–230, primarily through horizontal gene transfer [54, 55].

Synteny block analyses

The IR junctions were well conserved within the Penstemon genus as we only observed minor

expansions/contractions that were not useful to clarify phylogenetic relationships (Fig 3A).

Penstemon fruticosus had the largest IR regions at 25,598 bp and P. personatus had the shortest

at 25,527 bp. However, we observed several structural variants within the Lamiales order that

did clarify phylogeny. We observed major structural changes within the Plantaginaceae family,

specifically several expansions of the IR regions into the SSC regions within the genus Plantago
(Fig 3B). The sizes of the IR region were highly variable, ranging from 20,336 bp, in Pl. lagopus,
to 38,398 bp in Pl.media. The remaining taxa in this family, excluding those within Plantago,

have consistent IR region sizes of 25,465 bp to 25,757 bp. One of the most phylogenetically
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significant structural changes we observed was the complete inversion of the IRb-SSC-IRa

regions in the Orobanchaceae taxa Castilleja paramensis and Pedicularis hallaisanensis (Fig

3C). This inversion has major implications for the placement of this family within the phylog-

eny of the Lamiales order, which we will discuss in the context of our ML phylogenetic analy-

ses. We also observed the expansion of the LSC region and contraction of the IR regions in

Haberlea rhodopensis (Fig 3D).

Although IRScope is a visualization tool and not an analytical tool, it is demonstrably useful

for observing and identifying plastome structural, or synteny block, changes near the IR junc-

tions such as inversions, and IR expansion/contraction. These types of structural have previ-

ously been identified in plastids of the Orobanchaceae family [14] and in the genera

Pelargonium [56] and Plantago [57]. Plastome structural variants are heritable and can provide

valuable insight into evolution and speciation [58]. Many of these mutations can be traced

through the evolutionary process of land plants and used as a phylogenetic tool to provide evi-

dence of shared ancestry [59, 60]. We found that the major structural mutations we observed

with IRScope correlated with highly supported clades in our whole-plastome phylogenetic

analysis. Unfortunately, these informative mutations are excluded from phylogenetic analyses

that use isolated gene sequences, both individual and concatenated, as they are absent of

genome structural variants.

Phylogenetic analyses

Our whole-plastome phylogenetic tree supports the revision of the Scrophulariaceae. In previ-

ous studies only the basal nodes have consistently had a high degree of resolution and nodal

support [14]. While lineages inclusive of more recent diversification, such as observed in Pen-
stemon [2] and Plantago [16], typically have poor resolution and low nodal support (polyphyly,

paraphyly, and polytomies) and are typified by low levels of variation in individual gene

sequences [17]. These lineages are only now well resolved in our whole-plastome phylogeny

with all but two nodes having statistically significant bootstrap support values (BSV) above 95

[61], and all nodes with BSV above 90 (Fig 4A). This high overall nodal support is an indica-

tion of a highly stable and reliable phylogeny [62].

The phylogenetic trees derived from individual gene sequences in this study had drastically

different topologies with lower overall nodal support as compared to our whole-plastome phy-

logeny. In our whole-plastome phylogeny, we observed 24 of 27 nodes with BSV of 100

(Table 5). In contrast, the phylogenies based on the individual gene sequences (matK, ndhF,

psaA, psbA, rbcL, rpoC2, and rps2) and concatenated sequence observed nodes with BS of 100

ranging from two (psbA) to 18 (concatenated). Although the phylogeny based on concatenated

sequences (Fig 4B) had greater nodal support than the phylogenies base on individual

sequences, 22% of its nodes were not statistically significant with BSV less than 90. Only two

(7%) of the nodes in the whole-plastome phylogeny were not significant, and no nodes had BS

less than 90.

The sequences selected for phylogenetic analysis is crucial to the inference of the resulting

tree. Genes that are vital to the function of photosynthesis such as psaA and psbA, for example,

are highly conserved since mutations in these encoded proteins must not be deleterious to the

proper function of photosynthesis. Our ML phylogeny of these two gene sequences had very

low resolution because there was very little variation between species (S1 Fig). We also

observed polytomic clades within the genera Penstemon and Scrophularia due to little variation

Fig 2. Chloroplast sequence repeats. Repeat size, location, and type for all six Penstemon subgenera identified using

REPuter.

https://doi.org/10.1371/journal.pone.0261143.g002
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Fig 3. IRScope visualizations of inverted repeat (IR) and short-single copy (SSC) junctions. A. Variation among Penstemon
taxa: the ycf1 fragment at the SSC-IRb junction (JSB) in P. dissectus, P. palmeri, and P. cyaneus. B. Successive expansions of the IR

regions into the SSC region observed in the genus Plantago. C. Total inversion of the IRa-SSC-IRb plastome segment in the

Orobanchaceae genera C. paramensis and P. hallaisanensis. D. A reduction in IR length associated with an expansion of the LSC

region inH. rhodopensis compared to our basal lineage, Olea europaea.

https://doi.org/10.1371/journal.pone.0261143.g003
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Fig 4. Maximum likelihood phylogenies of the Whole-plastome, concatenated sequence, ndhF, and rps2 sequences. A. The whole-plastome

sequence phylogeny. B. The concatenated sequence (matK, ndhF, psaA, psbA, rbcL, rpoC2, and rps2) phylogeny. C. The ndhF sequence phylogeny. D.

The rps2 sequence phylogeny. Bootstrap support values below 95 are emphasized with red circles.

https://doi.org/10.1371/journal.pone.0261143.g004

Table 5. Comparison of nodal support in our plastid phylogenetic trees. The node count and percentages for each phylogeny based on whole-plastome, individual

gene sequences (matK, ndhF, psaA, psbA, rbcL, rpoC2, and rps2), and concatenated sequences with the specified level of nodal support.

Sequence Total Nodes BSV = 100 BSV� 95 BSV > 95 BSV > 90

Whole-Plastome 27 24 (89%) 25 (93%) 2 (7%) 0 (0%)

Concatenated 27 18 (67%) 20 (74%) 6 (22%) 6 (22%)

matK 26 14 (54%) 17 (65%) 10 (38%) 9 (35%)

ndhF 25 13 (52%) 15 (60%) 10 (40%) 6 (24%)

psaA 26 8 (31%) 12 (46%) 14 (54%) 11 (42%)

psbA 26 2 (8%) 9 (35%) 17 (65%) 14 (54%)

rbcL 26 8 (31%) 11 (42%) 15 (58%) 12 (46%)

rpoC2 26 14 (54%) 16 (62%) 10 (38%) 6 (23%)

rps2 22 6 (27%) 11 (50%) 11 (50%) 7 (32%)

https://doi.org/10.1371/journal.pone.0261143.t005
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between species (Fig 4D). Sequence concatenation appears to stabilize resolution and nodal

support as the number of sequences in the concatenation grows. However, the resolution is

unreliable because concatenation creates an artificial chromosome sequence constructed from

a subset of gene sequences in an arbitrary order. Even if all CDS sequences are used, it will still

be unreliable and will omit heritable structural variants including unannotated pseudogenes

that are crucial to constructing the evolutionary history of a lineage.

The origin of the complete inversion of the IRa-SSC-IRb region we observed in Castilleja
paramensis and Ped. hallaisanensis with IRScope (Fig 3C) is a crucial structural variant that

may play a key role in understanding the evolution and diversification of Orobanchaceae.

However, the locus for the ndhF gene is located within this inversion but is unannotated in

Ped. hallaisanensis due to a deletion or pseudogenization, which causes its sequence to be

omitted from phylogenetic analyses of the ndhF sequence alone or in concatenation studies

(Fig 4C). The placement of this family varies greatly in each phylogenetic analysis we per-

formed. Interestingly, the Orobanchaceae with this inversion is often placed as a basal clade to

most of the Lamiales after O. europaea in the rbcL phylogeny (S2 Fig), or to the Phrymaceae

and Lamiaceae families in the psaA (S1 Fig), psbA (S1 Fig), rpoC2 (S2 Fig), rps2 (Fig 4D), and

concatenated sequence phylogeny (Fig 4B). The nodal support of this family varied from very

low in the psbA phylogeny (BS = 7) to significant (BS�95) in the whole-plastome,

concatenated sequence, and ndhF phylogenies.

Our method of isolating and extracting plastome sequences from whole-genome sequenc-

ing data without additional DNA extraction steps is a cost-efficient method for plastome

sequencing and assembly. Whole genome sequencing on the Illumina HiSeq 2500 (2x250)

platform can produce 125–150 Gb on a single flow cell lane, with multiplexing possible up to

12 samples, at an approximate cost of $20.00–30.00 per Gb of data. NOVOPlasty recovered

16,000x to 62,000x coverage from our whole genome sequencing runs, indicating that minimal

whole genome coverage (Table 2) will contain sufficient plastome sequences for assembly and

analysis.

Conclusion

As a result of this research, we have produced and submitted the assembled and annotated

plastome sequences of P. cyaneus, P. dissectus, P. palmeri, P. personatus, and P. rostriflorus to

the NCBI GenBank DNA sequence database. These sequences, with the previously published

P. fruticosus plastome [35], complete the representation of all Penstemon subgenera.

Whole-plastome based phylogenetic analyses improved the resolution of the Lamiales

order, the Plantaginaceae, and the genus Penstemon with high nodal support. Whole-plastome

phylogenies are superior to both individual and concatenated chloroplast sequences as they

provide more polymorphic markers that add statistical power to the tested hypotheses [34],

they provide high statistical nodal support, and they detect heritable genome rearrangements,

including inversions and IR expansions/contractions, and group taxa according to these

genome structural changes. We found that a major limitation of both individual and

concatenated gene sequence-based phylogenies is that heritable structural rearrangements are

excluded from the analyses. Since these rearrangements are heritable, they are crucial to accu-

rate phylogenetic relationships and may be critical to the resolution of phylogenetic ambigui-

ties of closely related and recently classified taxa [16, 63].

Our findings also suggest that Penstemon represents a unique monophyletic lineage in the

Plantaginaceae family and warrant further exploration with a broad sampling of Penstemon
taxa along with Old World and New World genera of the Plantaginaceae family to resolve

problematic clades; a process particularly challenging using conventional markers and
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methods. Such work would assuredly further our understanding of the origins, evolution, and

diversification of Penstemon within Plantaginaceae.
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