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Abstract

Spatial epidemiological tools are increasingly being applied to emerging viral zoonoses (EVZ), partly because of improving analytical
methods and technologies for data capture and management, and partly because the demand is growing for more objective ways of allo-
cating limited resources in the face of the emerging threat posed by these diseases. This review documents applications of geographical
information systems (GIS), remote sensing (RS) and spatially-explicit statistical and mathematical models to epidemiological studies of
EVZ.

Landscape epidemiology uses statistical associations between environmental variables and diseases to study and predict their spatial
distributions. Phylogeography augments epidemiological knowledge by studying the evolution of viral genetics through space and time.
Cluster detection and early warning systems assist surveillance and can permit timely interventions. Advanced statistical models can
accommodate spatial dependence present in epidemiological datasets and can permit assessment of uncertainties in disease data and pre-
dictions. Mathematical models are particularly useful for testing and comparing alternative control strategies, whereas spatial decision-
support systems integrate a variety of spatial epidemiological tools to facilitate widespread dissemination and interpretation of disease
data. Improved spatial data collection systems and greater practical application of spatial epidemiological tools should be applied in real-
world scenarios.
� 2008 Elsevier Ltd. All rights reserved.
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Introduction

Recent decades have seen a rapid increase in the number
of new viral diseases of humans, most of which are zoo-
notic. Concurrently, several existing viral zoonoses that
had stable, limited geographical ranges (due mainly to dis-
ease control activities) have undergone resurgence. This has
occurred at the same time as rapid growth in human pop-
ulations and increasing economic globalisation. Associa-
tions between disease emergence, population growth and
1090-0233/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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globalisation are related to urbanisation, deforestation,
and construction of new infrastructure (such as highways,
dams and irrigation systems). These all have an impact
on vector habitat availability, inadequate supply of hygie-
nic water (necessitating collection and storage of water,
thereby providing more vector breeding sites), and the
increase in international movement of humans, livestock
and commodities, leading to carriage of exotic pathogens
and vectors to new geographical areas (Gubler, 2002). Spe-
cific examples include the spread of severe acute respiratory
syndrome (SARS) via air transportation and the spread of
the Asian tiger mosquito (Aedes albopictus), a potential
vector species for several arboviruses, via international
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trade in used tyres and garden accoutrements (Benedict et
al., 2007). Coupled with these developments are genetic
evolutionary changes in viruses that have led to the appear-
ance of novel pathogenic strains (Real et al., 2005a).

Emerging viral zoonoses (EVZ) form an important sub-
set of viral diseases in that they impact both on the health
of human populations and the economics of livestock pro-
duction and associated industries, necessitating communi-
cation and integration of disease control efforts between
medical and veterinary services. As EVZ are expanding in
their geographical range, it is essential to understand the
epidemiological and ecological drivers of these diseases.
Spatial epidemiology is the study of the spatial distribution
of disease and associated factors. Geographical informa-
tion systems (GIS), remote sensing (RS), spatial statistics
and spatially-explicit mathematical models constitute a
powerful suite of tools for the study, prevention and con-
trol of EVZ and other infectious diseases. Applications
include analysing, explaining and predicting the spatiotem-
poral dimensions of epidemics, understanding the environ-
mental determinants of disease distributions (particularly
climatic and landscape features), refining risk-based sur-
veillance approaches (where surveillance resources are allo-
cated to areas or sub-populations having the greatest
estimated risk of disease emergence or outbreaks) (Stark
et al., 2006), and geographical targeting and evaluation
of interventions, leading to improved efficiency in the dis-
tribution of scarce resources.

In recent years the number and variety of spatial epide-
miological applications in EVZ has rapidly increased, both
as the technology and methods for undertaking these stud-
ies have improved and the importance of EVZ has become
more widely apparent. The aims of this review are to doc-
ument these developments and to highlight areas where
further methodological development and application of
spatial epidemiological tools would be most useful in miti-
gating the emerging global threat of EVZ.

Literature search and selected emerging viral zoonoses

A search of PubMed was conducted using search terms
selected to identify studies relating to spatial epidemiology
(e.g. ‘spatial’, ‘geographic’), epidemic preparedness and
resource planning (e.g. ‘preparedness’, ‘early warning’,
‘risk analysis’) and EVZ. After an initial search it became
apparent that the vast majority of studies had been con-
ducted in four EVZ, namely West Nile virus (WNV),
highly pathogenic avian influenza (HPAI), Rift Valley
fever (RVF) and rabies. We limited our review to these dis-
eases and present them as illustrative examples.

The four EVZ have diverse epidemiological features;
WNV and RVF are arboviral diseases, with the primary
vertebrate hosts of the former being birds and the latter
being ungulate livestock species. Rabies is predominantly
spread amongst wildlife reservoirs by direct transmission
(with rare animal to human transmission) and HPAI has
involved the emergence of new, pathogenic strains with
direct bird to bird, occasional bird to human, and rare
human to human transmission. In addition to local trans-
mission, each of the diseases can be spread long distances
by varying means: migrations of infected wild birds
(WNV and HPAI) (Gilbert et al., 2006b), carriage of insect
vectors by wind or human transportation (RVF) and trans-
portation of livestock (RVF and HPAI) or wildlife (rabies),
for example via livestock trade, nomadic migration of
herds or for wildlife restocking.

There has been a rapid increase in the geographical
ranges of WNV and RVF in recent decades; WNV spread
from Africa, the Middle East and Asia to Europe and the
Americas in the late 1990 s, and RVF moved from sub-
Saharan Africa to Egypt in the late 1970s, followed by
the Arabian peninsula in the first decade of the 21st cen-
tury. Rabies has been resurgent in Europe and North
America in the last 3–4 decades and HPAI, particularly
subtype H5N1, has emerged as a new global threat, spark-
ing fears of a pandemic if efficient human to human trans-
mission becomes established (Poland et al., 2007).

In this review we subdivide spatial epidemiology into
component disciplines (landscape epidemiology, phyloge-
ography, statistical and mathematical modelling) and broad
applications (cluster detection and early warning, spatial
decision-support systems), to demonstrate the breadth of
this emerging field. While this review does not provide
detailed critical appraisal of each method (due to space lim-
itations), we have summarised the appropriate data sources,
applications, advantages and limitations of the methods in
Table 1. For more information see Pfeiffer et al. (2008).

Landscape epidemiology

Landscape epidemiology builds on the relationships
between ecology and disease to study and predict spatial
distributions of diseases, their vectors or hosts. In general,
landscape epidemiology involves the integration of epide-
miological data (e.g. surveillance or field survey data) and
(often) RS-derived climatic, topographical and other infor-
mation relating to the environment, such as land cover and
normalised difference vegetation index (NDVI, a measure
of vegetation cover), in a GIS. Subsequent statistical anal-
ysis of the relationships between the epidemiological and
environmental data is conducted, leading to inference
about the relationships and, often, predictions of disease
outcomes in non-sampled locations.

Several EVZ have an insect vector as the intermediate
host and vector sensitivities to climatic factors, such as
rainfall, humidity and temperature, mean that spatial and
spatiotemporal distributions of EVZ in animals and
humans are also associated with these factors. Therefore,
climate associations are apparent both in studies of vector
populations and disease distributions. For example, Bol-
ling et al. (2005) reported that an abundance of WNV vec-
tors in Texas was associated with temperature and
precipitation, whilst Ward et al. (2005) and Brownstein et
al. (2002) found that clustering of WNV in equines and



Table 1
Applications and limitations of spatial epidemiological methods for studying emerging viral zoonoses

Method Appropriate data source(s) Applications Advantages Limitations

Field
surveys

Surveillance Literature Experts Exploration/
hypothesis
generation

Cluster
detection

Spatial
prediction

Surveillance/
early
warning

Intervention
planning

Landscape
epidemiology

Ecological niche
models

� � � � ? Can determine suitability
of environment for
diseases or vectors. Useful
where limited field data are
available.

Mostly use variable quality
data or laboratory data
unrepresentative of real-
world conditions;
Simplistic. Difficult to
validate without field data.

Decision
sciences;
fuzzy sets,
MCDA,
WLC

� � � ? ? Can determine suitability
of environment for
diseases or vectors. Useful
where limited field data are
available.

Few applications, limited
in scope. Subjective nature
of parameter estimation.
Difficult to validate
without field data.

Ecological
regression
models

� � � � ? ? Can explain or predict
spatial variation. Quantify
associations between
multiple variables and
disease outcomes.

Depend on good-quality
data. Assumes no spatial
data dependence.
Inflexible. Inadequate
uncertainty representation.

Phylogeography � � � ? Provide auxiliary
information on the genetic
evolution of organisms
through space and time.
Potentially could be used
to trace origins of EVZ
outbreaks.

Practical applicability not
clear; limited to being an
exploratory tool.

Cluster
detection
statistics
(e.g. scan
statistics)

� � � � � ? Useful for delineating
spatiotemporal clusters of
disease, syndromic
surveillance and early
warning.

Dependent on timely data
collection. Decisions
regarding maximum search
area/population at risk are
subjective.

Spatially explicit
statistical models

Geostatistical
models

� � � � � ? ? Can explain or predict
spatial variation, represent
prediction uncertainty and
account for multiple
covariates. Model
validation is
straightforward using
cross-validation
techniques.

Dependent on good-quality
data. Predictions
influenced by trend,
outliers and non-normal
distributions. Need to
accommodate anisotropy
and non-stationarity if
present in data.

Frequentist
mixed effects
models

� � � � � ? ? Can accommodate
hierarchical datasets,
multiple covariates and
spatial dependence.

Uncertainty, small sample
sizes or incomplete data
not dealt with as strongly
as Bayesian approach.

Bayesian mixed
effects
models

� � � � � � � ? ? Can accommodate prior
information, hierarchical
datasets, incomplete and
small area datasets,
multiple covariates and
spatial dependence.
Effective uncertainty
representation.

Can be computationally
intensive. Incorporation of
prior information can be
subjective. Can lead to
over-smoothing of
important disease clusters.

Spatially explicit
mathematical
models

� � � � � � � � ? Useful in determining
impact of interventions on
disease transmission.
Multiple scenarios can be
studied and compared.
Highly flexible.

Can be computationally
intensive. Incorporating
spatial dimension increases
model complexity.
Defining model structure
can be subjective. Difficult
to validate without field
data.

Spatial decision
support
systems

� � � � � � � � � Can exploit multiple
technologies (geographical
information systems,
statistical and
mathematical models,
decision-support
modules), multiple data
sources and permit
widespread dissemination
of epidemiological data.

Dependent on timely access
to good-quality data.
Statistical, mathematical
and decision-support
models are ‘black boxes’
from the user’s perspective.
Expensive and time-
consuming to construct.

MCDA = multiple criteria decision analysis; WLC = weighted linear combination; ‘�’ indicates demonstrated data/applications of the method; ‘?’
indicate potential data/applications of the method.
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humans was associated with NDVI. With WNV, urban
landscapes have been identified as potentially important
areas of disease activity (Ruiz et al., 2007). A clear associ-
ation between rainfall seasonality, vector abundance and
RVF prevalence has been demonstrated in Senegal (Bicout
and Sabatier, 2004).
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Spatial distributions of EVZ that involve wildlife reser-
voirs are also sensitive to climate and landscape as wildlife
habitat suitability is largely determined by these drivers.
Leblond et al. (2007) found that clustering of WNV among
equines in southern France was associated with types of
wetland and vegetation cover thought to provide favour-
able nesting habitats for wild birds.

Several statistical methods have been applied in land-
scape epidemiology. Statistical algorithms have been used
to predict vector habitats based on the climatic tolerances
of the vector (often determined in laboratory studies)
– so-called ecological niche modelling. For example, Peter-
son et al. (2003) used statistical algorithms based on
climate to predict WNV vector habitats and Benedict et
al. (2007) used ecological niche models to predict the global
distribution of A. albopictus. In the latter study, they also
considered the risk of importation of the mosquito to
new countries in used tyres and across borders shared
between infested and non-infested countries. Medlock et
al. (2007) used ecological niche models to map potential
distributions of WNV vectors in Great Britain.

Methods from the decision sciences such as fuzzy sets,
multiple criteria decision analysis (MCDA) and weighted
linear combination (WLC), also allow the creation of algo-
rithms for spatial prediction. MCDA is a method that can
be used for determining environmental suitability of a loca-
tion for a particular outcome (such as presence of a disease)
given the values of multiple determinants at that location
(such as vegetation cover, slope and elevation, and distance
from aquatic habitats). Suitability estimation can be ‘hard’;
i.e. a location is 100% suitable if all determinants have
acceptable values (according to a defined threshold) at
the location and 0% suitable if any of the determinants
have unacceptable values, as in the Boolean ‘AND’ opera-
tor, or 100% suitable if any of the determinants has an
acceptable value, as in the Boolean ‘OR’ operator; or
‘fuzzy’; where, rather than having an acceptability thresh-
old, suitability varies for each determinant over a range
of probabilities between 0% and 100%.

With the fuzzy approach, a method for combining the
suitability probabilities across all determinants is neces-
sary. WLC is such a method, where the relative importance
of each determinant can be estimated and a weighted suit-
ability across all determinants calculated. Clements et al.
(2006b) presented a framework for spatial risk assessment
of RVF in Africa using MCDA and WLC. They promoted
this approach as a rapid and pragmatic method for map-
ping disease ecology in the absence of large epidemiological
datasets, when such maps are necessary to plan interven-
tions and other risk management strategies. These methods
are also highly applicable for resource-allocation planning,
though there is still a dearth of such applications in spatial
epidemiology.

Regression models have been widely applied in land-
scape epidemiology. The type of regression model (logistic,
Poisson, linear, etc.) is determined by the type of outcome
variable to be predicted (e.g. binary, count, continuous),
and environmental variables measured at sampled loca-
tions are entered as covariates. The resultant model is then
either used to predict the outcome variable at non-sampled
locations, based on observed values of the covariates at the
prediction locations, or to explain observed patterns of dis-
ease on the basis of the model covariates.

Using logistic regression, Shaman et al. (2005) found
that the spatiotemporal patterns of WNV transmission in
humans and sentinel poultry flocks in southern Florida
were associated with drought and land surface wetness
prior to the time of transmission. They subsequently pro-
posed forecasting WNV epidemics according to variation
in water table depth. Gibbs et al. (2006), using logistic
regression, found that intermediate housing density areas,
minimum temperature in January and land use were asso-
ciated with serostatus of WNV in wild birds. Diuk-Wasser
et al. (2006) used logistic regression, with RS-derived cli-
matic variables as the predictors and numbers of mosqui-
toes trapped as the outcome, to predict areas of high and
low vector abundance across the US state of Connecticut.
Lucey et al. (2002) investigated the spread of raccoon
rabies across Connecticut. The variable modelled was time
from the first date of appearance of rabies in the state (t)
and varying-order polynomial trend surfaces were fit to
the observed t (with higher-order polynomials allowing
for more localised curvature in the fitted trend surface).
They found that rivers provided an important semi-perme-
able barrier to the advance of the epidemic.

Other statistical methods include principal compo-
nents analysis and discriminant analysis. For example,
Mongoh et al. (2007) found, using principal components
analysis, that the number of equine WNV cases in North
Dakota was associated with elevation, temperature and
precipitation.

Phylogeography

Spatial analysis of genetic variation (‘phylogeography’)
aims to determine the genetic evolution of diseases in space
and time, supplementing epidemiological knowledge of dis-
ease emergence. Phylogeographical studies can help iden-
tify environmental features that influence observed viral
genetic heterogeneities (Real et al., 2005b).

Kobayashi et al. (2006) conducted a phylogeographical
analysis of rabies virus in Brazilian cattle and demon-
strated that different subgroups were spatially clustered,
with clusters separated by mountain ranges, believed to
limit migrations of vampire bats. Nadin-Davis et al.
(1999) also demonstrated spatial clustering of rabies virus
subgroups among red foxes in Ontario, Canada. Significant
correlation was found between ‘genetic distance’ and ‘geo-
graphical distance’, with most genetic variation arising due
to geographical isolation (Real et al., 2005a). Biek et al.
(2007) conducted a phylogeographical study of the raccoon
rabies epidemic in the US, finding that geographical fea-
tures such as the Appalachian Mountains influenced the
rate of spread of the epidemic.
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Chen et al. (2006) conducted a large-scale phylogeo-
graphical study of the HPAI H5N1 epidemic in Asia. They
found regionally-distinct subgroups of the virus, confirm-
ing southern China as the origin of repeated introductions
into neighbouring countries. Bertolotti et al. (2007) found
little geographical but significant temporal variation in
the phylogeny of WNV in the US, with increasing viral
diversification from 2002 to 2005. Bird et al. (2007) con-
ducted a phylogeographical study of RVF virus, finding
distinct subgroups in western, southern and central Africa,
indicative of local virus origins, and other subgroups that
encompassed divergent geographical areas (e.g. Egypt,
Zimbabwe and Madagascar), indicative of possible long-
distance translocation. Virus from the 2000 Arabian epi-
demic was similar to east African isolates, suggesting an
origin from that region. While outside the scope of this
review, we also recommend Randolph and Rogers (2006)
for an informative phylogeographical study of tick borne
encephalitis, another important EVZ.

The applications of phylogeography described above are
descriptive or exploratory. To maximise the potential of
this approach, we suggest that future applications should
integrate phylogeographical analysis with ecological meth-
ods, including spatial statistical and mathematical model-
ling approaches to quantify, explain and predict disease
distributions.

Cluster detection and early warning systems

Spatial and spatiotemporal cluster detection statistics,
including the K-function (Gatrell and Bailey, 1996), Cuzick
and Edwards test (Cuzick and Edwards, 1990), Knox’s test
(Knox, 1964) and the spatial scan statistic (Kulldorff and
Nagarwalla, 1995), have been used retrospectively to detect
and characterise clusters of cases of HPAI H5N1 and
H7N1 in poultry (Mulatti et al., 2007; Pfeiffer et al.,
2007), WNV (Brownstein et al., 2002; Ward et al., 2005)
and rabies (Recuenco et al., 2007; Tinline et al., 2002),
and adverse events associated with rabies vaccination
(Moore et al., 2005).

Surveillance of WNV in North America involves cap-
ture and virological examination of mosquitoes, monitor-
ing of sentinel bird flocks and reporting, collecting, and
virological testing of dead birds (Eidson et al., 2001a,b).
Recently, novel prospective cluster detection analyses by
Mostashari et al. (2003), who used the spatiotemporal scan
statistic developed by Kulldorff et al. (1998), and Theophi-
lides et al. (2003), who applied Knox’s test for spatiotem-
poral clustering, have been conducted to detect dead bird
clusters in New York in real-time, prompting timely inter-
ventions in delineated high-risk areas. Detected clusters
corresponded with virological isolation of WNV from mos-
quitoes and the occurrence of human cases, suggesting they
were sensitive early predictors of the timing and location of
human WNV cases.

Climate anomalies, particularly deviations from long-
term average precipitation (represented by NDVI) have
been investigated as potential early warning surveillance
indicators of RVF epidemics in East Africa (Anyamba et
al., 2001, 2002; Linthicum et al., 1987, 1999). In addition,
the Southern Oscillation Index and sea surface tempera-
tures in the Pacific and Indian Oceans (which measure
the El Niño Southern oscillation climatic phenomenon)
have been investigated as possible early warning RVF indi-
cators in this region (Anyamba et al., 2001; Linthicum et
al., 1999). Use of RS to detect flooded areas that provide
RVF mosquito habitats has also been proposed as a com-
ponent of RVF surveillance (Linthicum et al., 1990, 1991;
Pope et al., 1991).

Spatially-explicit statistical models

The statistical methods described in the landscape epide-
miology section, particularly the regression approaches,
require an assumption of independence between observa-
tions. However, most infectious diseases demonstrate spa-
tial dependence, where measures are more similar
between spatially proximate locations than between distant
locations, either because transmission requires close prox-
imity or because environmental determinants of disease
themselves are spatially heterogeneous. If spatial depen-
dence is ignored, the result is spuriously narrow standard
errors and low P-values for covariate effects.

Additionally, most decisions regarding disease control
involve uncertainty. In spatial epidemiology this can be
related to uncertainty about model predictions, the param-
eters on which models are based, or the disease, climatic
and demographic data that are used to inform these
parameters. A thorough understanding of uncertainties
propagated through data, parameter selection, modelling
and prediction, is essential to determine the risks and con-
sequences associated with disease control decision-making.

Geostatistics provides a framework for modelling spa-
tial dependence in point data (or representative coordinates
of area data, such as centroids) using semivariograms, and
for interpolating a variable to non-sampled locations using
kriging. Ward (2006) presented a geostatistical analysis of
equine WNV encephalomyelitis cases in Texas, where the
county-level outcomes were cumulative incidence and tim-
ing of detection of the initial case. Spatial dependence was
a feature of both outcomes and analysis allowed a spatial
assessment of both the spread of WNV and the overall risk
of WNV disease among equines in different areas of the
state.

With aggregated disease data, hierarchical or random-
effects models have been developed to account for within-unit
clustering. Pfeiffer et al. (2007) presented a random-effects
model of HPAI H5N1 in poultry in Vietnam. Covariates were
added to explain geographical variation in HPAI risk. The
percentage surface area covered by rice paddies and density
of waterfowl and chickens were associated with HPAI activ-
ity. An advance in hierarchical modelling is to incorporate
the spatial dependence structure of observations from neigh-
bouring spatial units. Yiannakoulias et al. (2006) and
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Yiannakoulias and Svenson (2007) presented generalised lin-
ear mixed models of WNV incidence in humans in the Cana-
dian province of Alberta, where spatial dependence between
municipalities was accommodated using a semivariogram.
Gilbert et al. (2006a) used a similar approach to analyse the
spatial distribution of HPAI H5N1 cases in poultry in Thai-
land. The most important determinant was the distribution
of free-grazing ducks, highlighting the role of this species in
the transmission of HPAI in Asia.

A further advance has been the application of Bayesian
methods, which have become increasingly popular due to
their ability not only to incorporate spatial dependence,
but also to fully represent uncertainty in model outputs
(Best et al., 2005). Clements et al. (2007a) presented a fully
Bayesian conditional autoregressive (CAR) model (Besag
et al., 1991) of serological prevalence of RVF in humans
and livestock in Africa, where the data were obtained from
a systematic review of the literature. Clustering of positive
RVF serostatus was found in areas known to be affected by
epidemics, suggesting that antibodies persisted in the pop-
ulation in inter-epidemic periods. Brownstein et al. (2004)
also used a fully Bayesian CAR model to map incidence
of WNV in the US and Beroll et al. (2007) used an empir-
ical Bayesian CAR model to spatially smooth bird mortal-
ity and human WNV incidence data from Ontario,
Canada.

Bayesian models have also been applied to point data,
with the spatial dependence structure incorporated using
semivariograms; so-called model-based or Bayesian geosta-
tistics (Diggle et al., 1998). An example is a spatial analysis
of RVF seroprevalence in Senegal, presented by Clements
et al. (2007b). Maps of the standard errors of the posterior
distributions allowed the uncertainty surrounding the pre-
dictions to be assessed. Clements et al. (2006b) also pre-
sented an application of Dempster-Shafer analysis as part
of a spatial risk assessment of RVF in Africa. This
approach is a more flexible generalisation of Bayesian anal-
ysis allowing detailed representation of extreme uncer-
tainty, although it is still exploratory, with few
epidemiological applications.

Spatially-explicit mathematical models

Mathematical models, which aim to represent biological
system dynamics in a parsimonious way, provide powerful
and cost-effective tools for assessing the impact of changes
imposed on the system, such as alternative disease interven-
tions. Incorporation of spatial relationships between ana-
lytical units (individuals, farms, administrative areas) in
mathematical models enables accommodation of heteroge-
neous mixing of populations (i.e. where pairs of individuals
have contact probabilities that are dependent on the dis-
tance and direction between them, or modified by topo-
graphic barriers or human imposition of movement
restrictions) and heterogeneous transmission probabilities,
that might be related to the environment (e.g. wind speed
and direction for airborne viruses, climate-dependent insect
densities for vector-borne diseases), distance and direction
from exposure sites or heterogeneous distribution of inter-
ventions such as vaccines. The importance of distance-
dependent transmission was demonstrated by Boender et
al. (2007), who reported that between-flock transmission
probabilities of HPAI H7N7 decreased with distance from
infected poultry farms during the 2003 epidemic in the
Netherlands. Recently, mathematical modellers have aimed
to incorporate spatially heterogeneous mixing and trans-
mission probabilities in their models. This has tended to
increase model complexity but often gives a more accurate
representation of disease dynamics; a trade-off that is an
important consideration for all modelling approaches.

Both Boender et al. (2007) and Le Menach et al. (2006)
reported spatially-explicit mathematical models of HPAI
transmission in farmed poultry, calibrated using data from
the HPAI H7N7 epidemic mentioned above. In the study
by Le Menach et al. (2006) the contact structure was cate-
gorised into short, medium and long-range contacts, each
characterising different contact modes (e.g. aerosol disper-
sion, transmission by personnel, transmission by long-dis-
tance truck transportation), with separate contact rates
calculated for each category, both before and after the
implementation of a control programme. The time between
detection of the disease on a farm and depopulation of the
affected farm was found to be the most important determi-
nant of the magnitude of the epidemic.

Colizza et al. (2007) presented a stochastic spatial simu-
lation model of global influenza pandemics. The structure
was a standard susceptible-latent-infectious-recovered
compartmental model, with the infectious group subdi-
vided into symptomatics allowed and not allowed to travel,
and asymptomatics. The contact structure was based on
the global air transportation network and transmission
intensity was allowed to vary temporally, to incorporate
known influenza seasonality. An intervention was incorpo-
rated by adding an additional compartment; infectious,
symptomatic and receiving antiviral (AV) therapy. Differ-
ent results were obtained depending on the season and geo-
graphical origin of the pandemic and different levels of AV
use.

Peterson et al. (2003) used a spatial simulation model to
predict the spread of WNV in North America via mosqui-
toes and wild migratory birds. The geographical distribu-
tions of these populations were included as model
parameters, the former derived from ecological niche mod-
els and the latter from existing demographic data. The
results confirmed that wild migratory birds were important
vehicles for the observed long-distance dispersal of WNV
in North America.

Smith et al. (2002) used a spatial simulation model to
study spread of raccoon rabies in Connecticut, where the
local rate of transmission between adjacent townships
was varied according to human population density and
whether townships were separated by a river. The model
was calibrated with existing surveillance data. The results
suggested that rivers provided a natural barrier that greatly
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impeded the local spread of rabies (in agreement with
Lucey et al., 2002), and that long-distance dispersal was a
relatively common occurrence. The model was subse-
quently applied to different geographical areas, including
New York state (Real et al., 2005b) and Ohio (Russell et
al., 2005). Smith et al. (2005) investigated the impact of for-
ested areas on the spread of the Connecticut raccoon rabies
epidemic and found that forestation significantly slowed
the spread.

Thulke et al. (1999) presented a spatially-explicit simula-
tion model of fox rabies. A grid was used to define the
neighbourhood relationships between small fox communi-
ties. A temporal dimension, modelled in two-month time-
steps, was constructed to represent the seasonal dynamics
of fox populations. The epidemiology of rabies was repre-
sented by allocating various states (susceptible, infected,
extinct and immune due to vaccination) to the fox commu-
nities. Their aim was to answer specific, practical questions
about the control of rabies in Europe, including: ‘How long
after cessation of vaccine distribution is a new rabies epi-
demic likely to be detected by surveillance?’; ‘When is the
best time to stop long-term, large-scale vaccination?’ and
‘In what size area should emergency vaccine be distributed
in the case of a post-vaccination epidemic?’

Smith and Harris (1991) reported a stochastic spatial
simulation model of rabies epidemics in urban areas of
England, incorporating observed spatial heterogeneity in
fox populations. They tested a range of scenarios, including
varying levels, timing and geographical range of fox con-
trol interventions, and found that the successful interven-
tions depended on the density of the fox population.

Spatial decision-support systems

Incorporation of a spatial component in animal health
information systems represents an evolution from simple
disease reporting systems towards spatial decision-support
systems (SDSS) (Kruska et al., 1995). SDSS integrate GIS,
specialised databases that facilitate the collation, visualisa-
tion, querying and interpretation of spatial datasets, with a
range of analytical methods to support the planning and
assessment of health care alternatives (McLafferty, 2003).
The common structure is a user interface overlying a geo-
graphically-enabled database, linked to a system for data-
base management and querying and a set of analytical
tools aimed at facilitating the decision-making process.
Internet-based SDSS are increasing in number, allowing
for wide access to the technology. SDSS can be used for
early warning and planning of responses to epidemics,
remote management and statistical analysis of disease data,
presentation of decision-support tools and improving com-
munication networks between scientists (Ptochos et al.,
2004). SDSS have been demonstrated to shorten decision
times and improve decision accuracy in relation to complex
problems (Crossland et al., 1995).

SDSS have been incorporated into national risk assess-
ment exercises, such as Spain’s HPAI strategic preventive
plan (Martinez et al., 2007) and a risk assessment of emer-
gence of HPAI in Ethiopia (Goutard et al., 2007). Clements
et al. (2002) presented a SDSS for livestock diseases using
data from national disease reports to the Office Interna-
tional des Epizooties. Choropleth maps, tables and textual
information were presented to facilitate interpretation of
the data. Ehlers et al. (2003) described the integration of
a GIS and spatial statistical analyses in a comprehensive
SDSS, VetGIS, to assist management of the 1999–2000
H7N1 HPAI epidemic in northern Italy. VetGIS was used
to plot the geographical distribution of affected and at-risk
poultry flocks, helping to define intervention and surveil-
lance zones.

Blanton et al. (2006) reported an Internet-based SDSS
for rabies in the US, RabID. The aim was to enhance
rabies surveillance in real-time, including evaluation of a
wildlife oral vaccination programme. The SDSS composed
of a spatially-enabled database with in-built macros for
data processing, and a mapping application, allowing run-
ning of queries and overlays of surveillance data on maps
of political boundaries, roads, waterways and land cover.

SDSS for WNV management include the West Nile
Virus Information System (WeNiVIS) (Revesz and Wu,
2006) and the integrated system for public health monitor-
ing of West Nile virus (ISPHM-WNV) (Gosselin et al.,
2005). In these systems, surveillance data from sentinel
chickens, dead wild birds, mosquitoes, humans and equines
were mapped, allowing visual analysis of the spread of
WNV in different areas of North America. In ISPHM-
WNV, spatial and temporal querying of the data and sta-
tistical analysis (including detection of spatial clusters using
the spatial scan statistic) were enabled.
Conclusions

While the number and quality of spatial epidemiological
applications in EVZ are increasing, the full potential of
these methods is yet to be achieved (Table 1). One major
reason is that, in common with other fields of epidemiol-
ogy, data quality is often inadequate – reliable predictions
depend on high-quality input data, regardless of the sophis-
tication of the statistical methods used. In spatial epidemi-
ology, datasets used were not usually collected for spatial
analytical purposes and have limitations with respect to
geographical coverage and density, and accuracy of geore-
ferencing. While many mathematical and statistical model-
ling approaches have been developed to make best use of
sub-optimal or incomplete data, epidemiologists still need
to work more closely with public health officials on
improving the quality of surveillance data and (ideally)
designing field surveys or surveillance methods that explic-
itly accommodate subsequent spatial analysis. We argue
that better evidence, including practical demonstration, of
the benefits of spatial epidemiological approaches will lead
to increased investment by public health funding bodies to
collect better quality data.
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Other reasons relate to the limited scope of previous
applications. First, spatial epidemiology has been largely
confined to descriptive and exploratory investigations.
There have been few examples of spatial epidemiological
studies where tangible improvements in the prevention
and control of EVZ have been successfully demonstrated.
Secondly, while maps can provide valuable tools for
resource-allocation planning, few studies have made the
leap from spatial prediction to integration of disease map-
ping into a resource-allocation plan for EVZ control, or to
inform risk-based surveillance. An example of the former
in the field of tropical parasitic disease (schistosomiasis)
epidemiology was presented by Clements et al. (2006a),
who mapped intervention zones based on parasitological
field data and spatial statistical models. In an example of
the latter, a spatial risk assessment of a bacterial zoonosis
(salmonellosis) was used to inform risk-based surveillance
of this disease (Benschop et al., 2008).

In our opinion, spatial epidemiological studies need to be
further integrated with operational and economic assess-
ments (in consultation with public health officials and
health economists) to enable thorough analyses of alterna-
tive strategies. The future of spatial epidemiology lies both
in strengthening data collection systems and further demon-
strating its applicability in real-world decision-making.
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