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Abstract.
Background: Alzheimer’s disease (AD) etiopathogenesis remains partially unexplained. The main conceptual framework
used to study AD is the Amyloid Cascade Hypothesis, although the failure of recent clinical experimentation seems to reduce
its potential in AD research.
Objective: A possible explanation for the failure of clinical trials is that they are set too late in AD progression. Recent studies
suggest that the ventral tegmental area (VTA) degeneration could be one of the first events occurring in AD progression
(pre-plaque stage).
Methods: Here we investigate this hypothesis through a computational model and computer simulations validated with
behavioral and neural data from patients.
Results: We show that VTA degeneration might lead to system-level adjustments of catecholamine release, triggering a
sequence of events leading to relevant clinical and pathological signs of AD. These changes consist first in a midfrontal-
driven compensatory hyperactivation of both VTA and locus coeruleus (norepinephrine) followed, with the progression of the
VTA impairment, by a downregulation of catecholamine release. These processes could then trigger the neural degeneration
at the cortical and hippocampal levels, due to the chronic loss of the neuroprotective role of norepinephrine.
Conclusion: Our novel hypothesis might contribute to the formulation of a wider system-level view of AD which might help
to devise early diagnostic and therapeutic interventions.
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INTRODUCTION

Alzheimer’s disease (AD) is a severely disabling
neurodegenerative disorder leading to a progressive
memory loss followed by worsening deficits in all
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cognitive domains, including language, visuospatial
skills, and executive functions. Subtle non-cognitive
alterations such as depression and apathy are also
very common among people suffering from AD,
starting from the early and middle stages, whereas
motor impairments (e.g., dystonia, tremor) may
appear in the later stages [1, 2]. Several hypothe-
ses have been proposed to explain the causes of
AD. The main histopathological findings related to
AD are the abnormal accumulation of amyloid-�
(A�) oligomers leading to plaque formation and
the aggregation of hyperphosphorylated tau protein
into neurofibrillary tangles. Both phenomena pro-
duce cytotoxic effects leading to cortical cell death
[3, 4]. Another histopathological finding involves the
degeneration of subcortical neuromodulatory nuclei.
A common finding is, for example, the loss of cholin-
ergic neurons in the nucleus basalis of Meynert
(NbM) causing impairment in cholinergic neuro-
transmission in the cerebral cortex and other target
areas involved in learning, memory, and emotional
regulation (e.g., hippocampus and amygdala) [5–7],
and leading to the deterioration of cognitive func-
tions [8, 9]. Several data from postmortem studies
and murine models of AD suggest degenerative his-
tological abnormalities also in the main dopamine
(DA) nuclei, the ventral tegmental area (VTA) and the
substantia nigra pars compacta [10–12]. Pathological
alterations of the meso-cortico-limbic circuit might
contribute to cognitive and behavioral signs that may
occur early in the disease progression while impair-
ments of the meso-striatal circuit are associated to the
development of extrapyramidal motor deficits usually
occurring in the later stages of AD [13]. Another sub-
cortical neuromodulatory nucleus affected in AD is
the locus coeruleus (LC), the dorsal pontine nucleus
that synthesizes norepinephrine (NE), involved in
attention, memory, and various other aspects of cog-
nition [14–16]. Extensive analysis of tau lesions in
a large cohort, involving 2,332 non selected autopsy
cases ranging in age from 1 to 100 years of normal and
diseased brains, shows that abnormal (hyperphospho-
rylated) tau in a few neurons of the LC [17, 18] can
appear very early in the AD progression. Overall,
these data support a critical role of neuromodulatory
dysregulation, in particular of catecholamines (DA
and NE), in the AD-related pathophysiology [19].

However, the causes of these alterations, the rela-
tionship between them, and their potential role in
the AD progression are important elements not yet
elucidated [20]. Despite the large investments and
research carried out within the Amyloid Cascade

Hypothesis, it has not yet been possible to provide
a unifying theory on the causal relations between A�
oligomers formation, catecholamines dysregulation,
and cognitive/non-cognitive impairments, suggesting
the need of integrating these phenomena within a
system-neuroscience approach [19].

In this regard, Nobili and colleagues [20] inves-
tigated the structural alterations of the midbrain
dopaminergic system in a validated animal model of
AD (Tg2576 mouse). They found an age-dependent
dopaminergic neuron loss in the VTA at a stage
when hyperphosphorylated tau tangles, A�-plaque
deposition, or any sign of neurodegeneration in hip-
pocampal and cortical regions involved in memory
deficits has not yet occurred. The VTA degenera-
tion results in a lower DA outflow in the nucleus
accumbens and hippocampus and this is associated
with dysfunctions in memory performance, cost-
benefit decision-making, food reward processing,
and depressive-like symptoms [21]. These preclini-
cal results challenged clinical investigations aimed
to correlate dopaminergic alterations with cognitive
and non-cognitive alterations along the AD stages.

An MRI study corroborated this finding by show-
ing a positive correlation between the VTA volume
and both hippocampal size and memory performance
in a cohort of patients compared with healthy controls
[22], while other authors used functional brain mag-
netic resonance imaging (fMRI) at rest to investigate
the VTA-driven modulation of connectivity in AD
brains and its impact on behavioral symptoms [23].
Very recently, it has been reported a positive correla-
tion of atrophy in VTA projecting areas with severity
of depression, apathy, and anxiety in the prodromal
phase of AD while no metabolic connectivity changes
have been detected within nigrostriatal pathway [24].

In this paper, we propose a hypothesis to clarify
the role of catecholamines dysregulation in the AD
progression. In order to introduce the hypothesis in a
detailed operational form capable of producing quan-
titative testable predictions, we formulate it through
a neuro-computational model. This builds on a previ-
ous model, the Reinforcement Meta-Learner (RML),
proposed by Silvetti and colleagues and validated
with different datasets [25]. We chose this model
because it simulates the dynamics involved in the
modulation operated by the medial prefrontal cor-
tex on two subcortical nuclei critically involved in
AD development, the VTA [20, 22] and the LC [26].
Through the RML we articulate the hypothesis for
which a primary loss of dopaminergic neurons in the
VTA causes a dysregulation of catecholamine release
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Fig. 1. a) Overview of the RML model. This consists of two interacting systems: a state-action selection system (dACCBoost and dACCAct),
based on reinforcement learning processes, and a parameter modulation system via catecholamine release (VTA and LC). The RML model
can be connected to an external neural component (e.g., the model FROST representing the fronto-parietal network) that is targeted by the LC
output (NE), while the entire system (RML + external component) interacts with the environment. Modified from [25]. b) The FROST model
[28] simulates a fronto-parietal network for visuo-spatial WM (F, prefrontal neurons; P, parietal neurons). The RML-FROST integrated
system can perform visuo-spatial WM tasks by optimizing prefrontal activity (F) via LC activity. c) Plot showing the gain field modulation
by LC on one prefrontal (F) neuron, during a delayed matching-to-sample task. A stimulus is presented inside the receptive field of the
neuron, followed by a delay period, and then by a second stimulus (target) in the same spatial position.

(including NE), starting a cascade of complex effects
that first lead to motivational and cognitive impair-
ments during the early stages of the disease, and then
evolve toward the A� oligomers formation and the
tau protein aggregation into neurofibrillary tangles,
possibly due to the chronic loss of the neuroprotective
role of NE. To show this, we administered to the RML
two different behavioral tasks while damaging the
model component simulating the VTA, and compared
the behavioral and neural dynamics of the model with
those from human patients at the early stages of AD.
Both the behavioral and neural dynamics of the model
agree with data from human patients. This corrobo-
rates our hypothesis on the catecholamine role in AD
pathogenesis and highlights the potential utility of the
model to formulate a wider system-level view of AD
and device new computer-based early diagnostic and
therapeutic tools.

The Material and Methods section describes the
equations composing the RML model and the simula-
tions details (the interested reader can refer to [25] for
a wider description of the RML and the broad range of
neuroscience domains where it can be applied). The
reader who is not interested in the technical details
of the model can directly move to the Results sec-
tion, where we provide a qualitative description of
the model.

MATERIALS AND METHODS

RML equations

The RML architecture consists of four computa-
tional modules, two simulating part of the medial

Table 1
Parameters list and values of the model

Parameter Value Meaning Equation

ρ 0.2 TD-learning signal decay 6a
� 0.1 DA dynamics 6a
τ 0.6 Softmax temperature 2
� 0.3 low-pass filter meta-parameter 5c–d
� 0.2 Learning rate lower bound 5a
ω 0.15 Boosting cost 6b

prefrontal cortex: the dorsal anterior cingulate cor-
tex (dACCAct and dACCBoost) and two simulating
the brainstem catecholamine nuclei (VTA and LC).
Cortical and subcortical modules are reciprocally
connected in order to generate a control loop that opti-
mizes both catecholamines release (subcortical) and
decision-making operations (cortical) while the RML
interacts with the external environment (Fig. 1a). This
machinery allows the optimization of neuromodula-
tion supporting the cognitive and behavioral efficacy
of the RML while it executes a task.

Here we describe the RML functioning in its
discrete-time implementation. All the free parame-
ters of the model, reported in Table 1, were set as in
Silvetti et al. [25] (see also this work for the dynam-
ical version of the model). The software used for
the simulations can be downloaded from the RML
GitHub repository: https://github.com/AL458/RML.
Data from human studies were extracted from the
figures of their relative articles by means of WebPlot-
Digitizer (https://automeris.io/WebPlotDigitizer/).

We now describe the functioning and equations of
each RML component.

https://github.com/AL458/RML
https://automeris.io/WebPlotDigitizer/
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dACCAct
The central equations in this module govern the

state/action value updates:

�vt (s, a) = λt (δt) (1a)

δt = DAt − vt−1 (s, a) (1b)

where v(s,a) indicates the value (outcome prediction)
of a specific action a given a state s, and δ is the pre-
diction error, computed as the difference between DA
(the outcome, here interpreted as a dopamine signal
afferent from the VTA, Equation 6) and the latest
prediction. The step-size parameter λ, governing the
speed of the value update, is computed in Equation 5a
and is here interpreted as one of the effects of nore-
pinephrine modulation. Action a is probabilistically
selected based on the state/action values discounted
by state/action costs C:

p (a| s) = σ

(
v (s, a) − C (s, a)

NE
, τ

)
(2)

where σ is the softmax function with temperature = τ.
Matrix C assigns a cost to each state/action couple, for
example in correspondence to the energy depletion
consequent to climbing an obstacle or carrying out
a cognitive task. C is modulated by norepinephrine
afferents from LC (NE), which is itself controlled by
the dACCBoost module (Equation 4).

dACCBoost
The dACCBoost module controls the parameters for

cost and reward signals in equations 1–2 (dACCAct),
via the modulation of the VTA and LC activity
(boosting catecholamines). This is implemented by
selecting the modulatory signal b (boost signal), by
RL-based decision-making. In the model, different
discrete boosting levels b are treated as actions. The
dACCBoost updates the boost values vB(s, b), via the
equation:

�vB,t (s, b) = λB,t

(
DAB,t − vB,t−1 (s, b)

)
(3)

Equation 3 represents the value update of a specific
boosting level b in the state s. The ACCBoost submod-
ule probabilistically selects a boosting level based on
expected values vB and temperature τ:

p (b| s) = σ (vB (s, b) , τ) (4)

Control over learning rates: LC
The LC module also optimizes the learning rate

parameters in the two dACC modules, λ and λB. The
optimization of λ and λB solves the trade-off between

stability and plasticity, increasing the learning speed
when the environment changes and lowering it when
the environment is simply noisy. In particular, λ and
λB are computed as the ratio between the estimated
variance of the state/action-value, V̂art (v), over the
estimated squared prediction error, δ̂2 [27].

λt = V̂art (v)

δ̂2
t

(5a)

To ensure numerical stability, λ ranges in (β, 1)
where � is a free positive parameter. The variance is
computed as:

V̂art (v) = (vt − v̂t−1)2 (5b)

where v̂ is the estimate of v obtained with a low-pass
filter tuned by the hyper-parameter �:

v̂t = v̂t−1 + α (vt − v̂t−1) (5c)

The same low-pass filter is applied to the prediction
error signal (δ) to obtain a running estimation of total
variance δ̂2, which corresponds to the estimate of the
unsigned prediction error:

δ̂t = δ̂t−1 + α
(|δt| − δ̂t−1

)
(5d)

Equations 5a–d are implemented independently
for each of the two dACC modules, so that each mod-
ule interacts with the LC to modulate its own learning
rate parameter λ or λB.

VTA
The VTA module provides outcome-related signal

DA to both dACC modules, either for action selection
directed toward the environment (dACCAct) or for
catecholamine boosting-level selection (dACCBoost).
The DA signal afferent to the dACCAct is regulated
as follows:

DAt = rt (Rt + μb) + b (1 − μ) ρmaxa

(
vt

(
s′, a

))
(6a)

where r is a binary variable indicating the pres-
ence/absence of the reward, R is a real number
variable indicating reward magnitude, ρ is the tem-
poral discount factor, � is a scaling factor distributing
the modulation b between the primary (first term
of the equation) and the secondary (second term)
reward.

The DA signal afferent to the dACCBoost is
described by the following equation:

DAB,t = rtRt − ωb (6b)
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where ω is a parameter defining the cost of cate-
cholamine boosting.

Control over other brain areas

The RML uses the LC-based control signal (NE)
to optimize performance of other modules simu-
lating other brain regions. The dACCAct module
implements a decision-making function in a domain-
independent way, i.e., the activation of state/action
channels can encode any decision process in other
brain areas outside dACC. In addition, since opti-
mization of any brain region improves behavioral
performance, the dACCBoost can use LC signals to
modulate any cortical area to optimize its perfor-
mance. For example, we simulated a visuo-spatial
working memory (WM) task (Simulation 1, below)
by connecting the RML to an independently devel-
oped and published neural model that represents the
fronto-parietal network for visual space representa-
tion.

Simulations

We administered to the RML both a visuo-spatial
WM task (Simulation 1, Fig. 2a), and a decision-
making task involving different levels of effort
engagement (Simulation 2, Fig. 2b), in both a condi-
tion simulating the VTA degeneration and a control
condition. We then compared the simulation results
at both the behavioral and the neural levels with those
deriving from human studies (see below). To mimic
standard experimental paradigms as closely as pos-
sible, we repeated each simulation only 20 times
(i.e., 20 simulated participants). This verified that
the model could generate results with a large effect
size (p-values, but not effect sizes, can be improved
arbitrarily by running more simulated participants).

Simulation 1: Working memory impairment
In this simulation, the RML was adminis-

tered a visuo-spatial delayed matching-to-sample
task (Fig. 2a), in both normal and VTA-damaged
conditions (DA levels reduced by 60%). In
order to simulate this task, we integrated the
RML with a recurrent neural network simulating
visuo-spatial WM functions: The FROntal-Striatal-
Thalamic model (FROST; Fig. 1b, c, [28]; see [25]
for a mathematical description of this model and how
it is connected to the RML). The FROST model is
a recurrent neural network with frontal neurons (F)
and parietal neurons (P), reciprocally interconnected
and simulating visuo-spatial WM. The RML model
is connected to the FROST model so that the dACC
module can select one of the items retained in the F
network, while the LC modulates F neurons activity
(Fig. 1b, c). During the delayed matching-to-sample
task (Fig. 2a), a pattern of visual items (stimuli) was
presented inside the receptive fields of P neurons then
a target item was presented after a delay. During the
delay, spatial information was retained in F neurons
thanks to the recurrent F-P activity. The RML read out
the representations in the F layer of the FROST model
and made a decision on whether the target matched
or not one of the previously presented stimuli. Impor-
tantly, the RML also played a role of optimizer of
the FROST performance as a function of memory
load. This optimization process was implemented by
gain modulation of F neurons by the NE signal affer-
ent from the LC module (orange circuit in Fig. 1b,
c), which increased the coding precision of spatial
locations retained in F neurons. This mechanism sim-
ulates the effect of NE on prefrontal neurons [29].
One of the main features of the FROST model is
that it can simulate the decrease of memory preci-
sion as a function of memory load, so that the higher
the number of items to be retained in memory, the

Fig. 2. a) Delayed matching-to-sample task (Simulation 1). This task was administered to the RML-FROST system (Fig. 1b, c). The task
difficulty (WM load) was simulated by varying from 1 to 30 s the delay between sample and target presentation (the figure only shows the
case with 10 s). b) Effort task (Simulation 2). The RML chooses between two options (blue and red squares), a high effort option (thick
black arrow moving the lever) leading to a large reward (HR option) and a low effort option (thin black arrow moving the lever) leading to
a small reward (LR option).
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lower is the precision of their representation in its
F cortical neurons (Fig. 1b). In this simulation, we
also implemented the detrimental effect of the time
delay on memory precision by decreasing the activ-
ity from the frontal cortex F as a function of time.
We implemented this by making the gating signal A
from Equation S20 in Silvetti et al. [25] decaying as a
function of time: Ȧ = −jA, where j = 10–4 is a decay
constant.

The delayed matching-to-sample task implied dif-
ferent memory loads, namely a template of 4 items
to be retained for 1, 10, or 30 s (Fig. 3a). We used
a block design where we administered three blocks
of 70 trials, each with one specific memory load. In
50% of trials, the probe matched with the template.

The statistical analysis of the results was conducted
by a repeated measure 3 × 2 ANOVA (memory load
by DA lesion). We estimated three design matrices
related to three dependent variables, the first related
to accuracy, the second related to reaction times
(RTs), and the third related to the LC boosting by
the dACCBoost module. The results were qualitatively
compared with experimental results from both human
controls and patients from [30]. Plot data from [30]
were extracted through WebPlotDigitizer from Fig. 5
of the original article.

Simulation 2: Motivational impairment in effort
engagement tasks

In Simulation 2, we show how cortical-subcortical
interactions between the dACC, VTA, and LC can
drive optimal decision-making when effortful choices
leading to large rewards (HR choice) compete with
low effort choices leading to smaller rewards (LR
choice) [31, 32]. To this purpose, we tested the RML
with an experimental paradigm involving decision-
making in effortful tasks where cost/benefit trade off
must be optimized (Fig. 2b, see also Silvetti et al.
[25]). Although this task is represented in Fig. 2b
as involving physical effort (inspired from effort
tasks in rodents [31]), from the computational view-
point, it represents a class of tasks involving both
physical or cognitive effort, as the central neuro-
computational mechanisms subtending effort-based
decision-making are shared across such different
modalities. In Simulation 2a, we tested how a pro-
gressive VTA degeneration influences effort-based
decision making and the subtending neural processes.
We varied parametrically the entity of the VTA lesion
and recorded, as dependent variables, the percent-
age of times in which the RML selected the optimal
choice (HR), the percentage of times it refused to
engage in the task (“Stay” choice), and the boosting

Fig. 3. Neural and behavioural results from Simulation 1 (a–c), compared with experimental data from humans (d, e), related to the
performance of MCI and control participants in a delay memory test. Blue plots indicate human or simulated controls, while red plots
indicate human or simulated patients. a) LC module activation (arbitrary units, a.u.) as a function of task difficulty (delay duration). Error
bars indicate s.e.m. b) Response accuracy as a function of difficulty (±s.e.m). c) RTs as a function of task difficulty (±s.e.m). d) Response
accuracy in human participants (from [30]; number of recalled items ± s.e.m) in a similar WM task. e) RTs in human participants (±s.e.m)
from the same data set [30].
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signal generated by the dACCBoost module to modu-
late VTA and LC activity. The VTA degeneration was
simulated by multiplying the DA signal (red circuit
in Fig. 1a) by a real number within the interval 0.1
(90% of impairment) and 1 (no impairment). Costs
for motor action (C in Equation 2) in this simulation
were respectively 7 for the HR choice and 0.5 for
the LR choice. Results were qualitatively compared
with experimental results from both human controls
and patients from [30]. Plot data from [30] were
extracted by means of WebPlotDigitizer, respectively
from Figs. 2 and 3 of the original articles. In Simula-
tion 2b, we compared the LC activation as a function
of three effort levels for HR choice (C values in Equa-
tion 2 were respectively 2, 5, and 40) in three different
groups of simulated patients (Controls, mild cogni-
tive impairment, and early AD), modeled by three
levels of VTA impairment (respectively 0%, 50%,
90%). Also in this case, simulation results were qual-
itatively compared with experimental results from
[30]. Plot data from [30] were extracted by means of
WebPlotDigitizer software from Fig. 2 of the original
article.

Simulation of VTA lesion

The VTA lesion was implemented by multiply-
ing the output of the VTA module in the RML by
a number in the range of (0, 1), for example a 60%
VTA degeneration implied to multiply the VTA out-
put (DA and DAB signals) by 0.4. For Simulation 1
(WM impairment), we used the dynamical version of
the RML [25] and simulated the cortical-subcortical
activity with a time resolution of 10 ms. In Simula-
tion 2 (motivational impairment) we used the discrete
version of the RML.

RESULTS

The reinforcement meta-learner model: A
qualitative description

We investigated the consequences of dopaminergic
neurons loss on catecholamine release, and thence
on behavior, by using the Reinforcement Meta-
Learner (RML) computational model [25]. This
model describes the dynamical interactions between
the catecholamine brainstem nuclei (LC and VTA)
and the dorsal anterior cingulate cortex (dACC),
simulating the optimal regulation of catecholamines
release as a function of environmental conditions.
The architecture of the model pivots on the biolog-

ically grounded idea that behavioral adaptation can
be seen as a problem of optimization [33, 34] whose
objective is to maximize the long-term reward while
minimizing costs. In order to do so, animals need to
learn not only how to optimally control their behav-
ior but also how to control the internal variables
that influence brain processes. For example, a for-
aging rat makes decisions about its movements in the
environment and, at the same time, controls internal
variables linked to activity engagement, to how much
energy to spend in action performance (cost/benefit
trade-off), and whether to take into account or not
eventual changes in the surrounding environment
(plasticity/stability trade-off) [35]. Learning to opti-
mally control these internal variables is defined as
meta-learning [36, 37].

The RML is built on the hypothesis that the mam-
malian brain performs meta-learning by optimizing
the release of neuromodulators [38] as a function
of task demands and expected rewards. Although
this idea could be extended to any neuromodulator,
for parsimony we decided to model the control of
catecholamines (DA, and NE), a class of neuromod-
ulators having strong and immediate influence on
cognition and behavior. In our model, the release of
catecholamines is regulated by a cortical-subcortical
macro-circuit including the brainstem catecholamine
nuclei (VTA and LC), the dACC, and their reciprocal
connections [39–41]. The RML architecture (Fig. 1a)
is based on two interacting loops connecting four
computational modules: dACCAct, dACCBoost, VTA,
and LC. An internal loop manages the interaction
between the brainstem nuclei VTA and LC and the
dACC modules (Fig. 1a, orange and red bidirectional
arrows), whereas an external loop manages the inter-
action between the cortical modules and the external
environment. The RML is aimed at minimizing both
the costs of neuromodulators release (internal loop),
and the costs of motor actions (external loop; e.g.,
the metabolic cost of climbing a stair) while optimiz-
ing performance (i.e., maximizing reward). In other
words, we can describe the RML as an optimizer
whose objective is to maximize the reward discounted
by costs.

Although dACCAct and dACCBoost work in paral-
lel and have the same objective of maximizing net
reward, they are responsible respectively for value-
based action selection (dACCAct part of the external
loop in Fig. 1, Equation 1,2) and the modulation of
LC and VTA activity (that is, the “boost”; dACCBoost
is part of the internal loop in Fig. 1a, Equation 3,
4). Catecholamines affect the dynamics of the dACC
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modules in real time, i.e., while the model is interact-
ing with the environment. In particular, they modulate
the amount of cognitive and physical effort (by LC
module, Equation 2) [42, 43] that the model exerts to
execute a task, its plasticity for knowledge updating
(learning rate, by the LC module, Equation 5a), and
the magnitude of reward signals (by VTA module,
Equation 6a,b). In agreement with recent experimen-
tal findings, the RML architecture assumes that, while
DA influences effort-based decision-making, NE is
directly involved in effort regulation [44]. The RML
can be integrated with other computational mod-
els, e.g., to a WM model (see Simulation 1 and
Fig. 1b, c), so that the efferent signal from the LC
can modulate the dynamics of other simulated brain
regions and optimize their performance [29] (Fig. 1a,
b, orange arrows). Importantly (Simulation 1), the
cortical-subcortical system modeled by the RML is
strongly involved in the management of the WM
functioning in primates. Indeed, neurophysiological
findings have shown that LC neuromodulatory signal
critically affects WM by improving coding preci-
sion in prefrontal neurons [45, 46], while a deficit in
NE transmission in prefrontal neurons leads to WM
impairment [47, 48]. Moreover, neuroimaging find-
ings demonstrated an increase of dACC activity as a
function of effort in WM tasks [49, 50]. Finally, it is
worth stressing that the RML implements WM opti-
mization as a form of cognitive effort, assuming that
the VTA influences WM performance indirectly, by
influencing the dACC function, which, in turn, mod-
ulates LC activity. For these reasons, and because LC
activation is a major biological marker of both cogni-
tive and physical effort [51, 52], the RML architecture
is well suited to simulate how VTA degeneration
interacts with LC-dependent effort in both physical
and cognitive tasks.

The equations regulating the RML functioning are
presented and discussed in the “Materials and Meth-
ods” section above (see [25]).

Simulation of two behavioral tasks

We disrupted the DA transmission in the RML to
simulate VTA degeneration during the early stages of
AD progression. While manipulating DA levels, we
investigated the RML performance and dynamics in
two domains that are particularly sensitive to the early
stages of AD progression, i.e., WM and motivation
to exert effort to get a reward. We investigated these
domains by administering to the RML both a visuo-
spatial WM task (Fig. 2a) and a decision-making

task involving different levels of effort engagement
(effort, Fig. 2b), while manipulating different levels
of VTA degeneration. All the parameters and the task
features used in these simulations are the same as
those used in Silvetti et al. [25]. Simulation results
were compared with data from human patients in
early stages of AD progression.

Simulation 1: Working memory impairment

WM impairment is one of the earliest signs of
AD. In this simulation we show how VTA degen-
eration can determine WM impairment by disrupting
the functioning of the dACC, LC and VTA system.
To reproduce WM dysfunctions the RML model was
connected to the FROST model, a recurrent neu-
ral network simulating the fronto-parietal circuits
involved in visuo-spatial WM [28] (Fig. 1b, c). As we
show in Fig. 3a, the LC output increased as a function
of delay duration (blue plot; main effect of mem-
ory load on LC output in controls: F(2,19) = 3,91,
p = 0.0286), keeping the accuracy high (Fig. 3b, blue
plot) and RTs low across different working memory
loads (Fig. 3c, blue plot), as it happens also in healthy
humans [30].

In case of VTA degeneration, both the RML-
FROST behavior and its neural dynamics are
impaired. At the behavioral level, this causes poor
accuracy due to the necessity of high NE levels
for this task (Fig. 3b, red plot; lesion main effect:
F(1,19) = 22.15, p < 0.0001). Also the RTs wors-
ened with VTA degeneration (Fig. 3c, red plot;
lesion main effect: F(1,19) = 15.76, p < 0.0001). This
was due to the consequent disruption of VTA-
dACC-LC interaction, with the effect, at the neural
level, of downregulating LC activity (Fig. 3a, red
plot; main effect of DA lesion on LC output:
F(1,19) = 19.37, p < 0.0001). This happened espe-
cially for high memory loads (lesion x memory-load
interaction: F(2,38) = 4.93, p = 0.0125). In Fig. 3d and
3e, we show also that the simulated behavioral results
are in agreement with those from human patients with
mild cognitive impairment due to AD exhibiting a
significant group effect and delay effect [30].

Simulation 2: Motivational impairment in effort
engagement tasks

In this task, the RML could choose between high
effort-high reward and low effort-low reward options.
Although this experimental paradigm takes inspira-
tion from rodent studies [31, 32, 44], where effort
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levels were manipulated in terms of physical effort,
here it must be interpreted as a task involving indif-
ferently either physical or cognitive effort, because,
in the RML, the central neuro-computational mech-
anisms basing effort-based decision-making are
shared across different effort modalities. Both human
and nonhuman animal studies indicate that cate-
cholamines are crucial to energize behavior and
choose effortful actions when a large reward is
available [31, 32]. Simulation results from this exper-
imental paradigm are compared with those from
patients performing a verbal short-term memory task
(digit span).

Simulation 2a
Figure 4 shows both behavioral and neural results

from the RML, as a function of progressive VTA
degeneration, and compares them with those from
human volunteers executing a task involving cogni-
tive effort (digit span). At the behavioral level, when
the VTA was intact, the RML exhibited an optimal
behavior, preferring to exert an effort to get a large
reward (Fig. 4a, 0% VTA degeneration). With the
progression of the VTA degeneration, behavioral per-
formance remained at first stable and then, when
degeneration approached 50%, it dropped quickly.
The percentage of trials where the RML refused to
execute the task had similar dynamics. During the
early VTA degeneration, the model kept a good level
of commitment, followed by a rapid emergence of
apathetic behavior (many refusals to engage) when
the degeneration progressed (Fig. 4a, inner plot).
The same performance pattern has been found in
AD patients tested with a digit span task [53] every
six months: here performance remained stable dur-
ing the very early stages of the disease (first two
assessments, at 0 and 6 months) and became signif-
icantly poorer from the third assessment (from 12
months) (Fig. 4b). At the neural level, this behavioral
pattern emerges from the MPFC-brainstem adapta-
tion to the VTA degeneration. Figure 4c shows an
increase of LC activity, peaking at about 40% of VTA
lesion, and dropping with further VTA degeneration
(inverted U dynamics). This LC response was due to
a compensatory mechanism where, during the initial
stages of VTA degeneration, the dACCBoost compen-
sated the drop of reward signal from the VTA by
increasing the boosting signal promoting the release
of both NE and DA. This compensatory mechanism
can be interpreted in terms of the classic physiol-
ogy concept of functional reserve. Afterwards, LC
activity decreased, as the residual VTA output (con-

veying reward signal) was not enough to overcome
the intrinsic cost of catecholamine boosting anymore.
It is worth noting that with a severe VTA degen-
eration the LC output dropped below the baseline
corresponding to an intact VTA, leading to a chronic
downregulation of NE release, despite the LC was
not lesioned. This result closely reproduces the LC
activation (measured by pupil dilation [44, 54]) dur-
ing a digit span task in human participants affected
by different disease severities, showing a significant
group effect of different cognitive impairments [55]
(Fig. 4d).

Simulation 2b
In Fig. 4e, we show how simulated mild cognitive

impairment patients compensated VTA degenera-
tion by increasing LC activation, while, in case of
severe VTA damage (Early-AD), the LC activation
dropped below the controls’ level (main effect of
VTA degeneration: F(2,38) = 128.04, p < 0.00001).
In case of severe VTA degeneration, the LC acti-
vation became no more responsive to effort (green
plot in Fig. 4e; effort x VTA damage interaction:
F(4,66) = 61.02, p < 0.00001). The same results have
been documented in patients (Fig. 4f), showing both a
main effect of group and an interaction group x mem-
ory load [30]. In both RML and humans, when the
task demand became overwhelming the LC activation
decreased (third effort level in Fig. 4e, f), regardless
of the presence of pathology. In the RML, this is due
to catecholamines release optimization, which leads
to a neuromodulatory downregulation once the task
becomes too hard.

DISCUSSION

Influence of VTA degeneration on LC modulation

Simulations 1 and 2 show how VTA degeneration
disrupts the cortical-subcortical processes regulating
catecholamine release as a function of environmental
demand. In particular, the model suggests that VTA
degeneration alters the control of LC in a nonlinear
way. In the early stages of VTA degeneration, the
dACC promotes catecholamine release, resulting in
a partial VTA compensation and a higher (than nor-
mal) level of NE. LC temporary compensation defers
performance drop (as described above, Fig. 4a, b)
and it also counteracts the tendency of refusing to
engage in the task (Fig. 4a), which can be interpreted
as a resilience to apathy. With the progression of the
VTA degeneration, NE level undergoes an “inverted
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Fig. 4. Model behaviour and neural dynamics (±s.e.m.) in the execution of the Effort Task as a function of a progressive VTA lesion (left
column), and comparison with human data (right column). a) At the behavioral level, the percentage of simulated optimal choices (HR)
first decreased slowly and then dropped abruptly with the VTA damage progression. The inner plot shows the percentage of “Stay” choices
(refusal to engage in the task): this remained low during the early stages of VTA degeneration, and increased quickly afterwards. b) Behavioral
performance of AD patients at different assessment time points. This is in agreement with the simulation in panel ‘a’ (data from [53]) where
performance remains good during the early disease stages and then it drops quickly. c) At the neural level, simulated LC response (arbitrary
units, a.u.) followed an inverted U shape when VTA was progressively lesioned. With low VTA damage, the dACCBoost module compensated
by promoting catecholamine release. As LC was not lesioned, this resulted in an over-activation that compensated VTA degeneration and
kept behavioral performance stable (a, b); with a more severe VTA lesion, the LC under-activated, leading to abrupt performance drop (a,
b). d) The same pattern was found in patients with progressive cognitive impairment [55] (data averaged over the effort dimension from
panel f; MCI, mild cognitive impairment). Pupil dilation is used as a proxy for LC activation, see main text). e) LC simulated activation as
a function of task difficulty (number of digits), in three different simulated populations: controls, MCI, and Early-AD. f) Pupil dilation (a
proxy of LC activity) as a function of task difficulty (number of digits), in human control and patient groups (data from [55]).
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Fig. 5. Schema summarizing the interaction between dACC modules and catecholamine modules in the RML, during the progressive
degeneration of VTA. Coronal brain sections indicating the possible presence of diffusive degeneration. a) In normal conditions, dACC
modules make decisions and optimize catecholamines release to maximize performance (i.e., reward). b) In case of mild VTA degeneration,
the dACC can compensate the VTA loss (DA: dopamine), by upregulating the boosting signal (functional reserve, ticker blue downward
arrows). This compensates only partially the VTA degeneration (due to neural cells loss), but increases strongly the LC (NE: norepinephrine)
output as the LC is not impaired, at least during early stages of the disease. This keeps behavioural performance close to normal, at least
for easy tasks, but with a higher recruitment of catecholamines. c) When the VTA degeneration is severe the cost for compensation is too
high, and therefore the dACC decreases the boosting signal (thinner downward arrows), causing a downregulation of both LC and an even
stronger VTA output decrease. This causes the behavioural deficits described in Figs. 2 and 3, including the WM impairment due to the loss
of LC function. d) Chronic catecholamines down-regulation leads to severe cognitive impairments and possibly to a lower clearance of A�
peptide in LC target areas, thus contributing to the disease progression toward the plaque stage.

U shape” dynamics leading to an initial increase of
the LC activation followed by a chronic depression
(Fig. 4c). The RML model allows an interpretation
of this phenomenon as due to the continuous updat-
ing of the optimal point in the tradeoff between
catecholamine upregulation (directed to preserve
behavioral performance) and catecholamine down-
regulation (directed to save the cost of catecholamine
release); however, in humans also the progressive
degeneration of the LC itself may play a role, as
proved in patients and AD mouse models [56–58].
The initial upregulation of catecholamines was found
in patients at initial stages of AD, when the neu-
ropsychological deficit emerges from clinical testing
but is still not evident in everyday life, as patients
can maintain a normal performance at the cost of a
higher effort [55]. Moreover, the “inverted U shape”
LC compensation, together with the progressive LC
neurodegeneration, could explain why experimental
data show either an increase or a decrease of NE levels
in AD patients [59]. Indeed, based on our simulations,

the LC output could augment or decrease depend-
ing on the disease progression [60]. These results are
also in line with recent evidence from middle-aged
cognitive normal adults indicating that task-evoked
pupillary responses, revealing an LC-noradrenaline
involvement, could be associated with AD polygenic
risk scores (AD-PRSs) providing information for
early screening of genetically at-risk individuals. In
particular, in a digit span task, individuals with nor-
mal cognitive functions but high AD-PRSs exhibited
a greater pupil dilation (effort) in a high (9-digit) cog-
nitive load condition [61]. Figure 5 summarizes these
processes [60].

The simulations also show how the downregulation
of both DA and NE following severe VTA degenera-
tion causes the emergence of apathy, with a decreased
willingness to perform a task (Fig. 4a). The model
explains the emergence of apathy as related not only
to the loss of the VTA function but also to the disrup-
tion of catecholamine control including NE and due
to a primary VTA deficit (Fig. 5c, d).
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The progressive catecholaminergic dysfunction
associated with the degeneration of VTA and LC, and
the resulting behavioral effects, agree with the exper-
imental observations in rodent models [62–64]. Here
experimental lesions in VTA produce altered loco-
motor activity, deficits in passive avoidance learning,
and aggressive behavior, with all these effects often
related to the size of the VTA lesion [62–64]. How-
ever, it should be considered that the behavioral
alterations resulting from a focused damage of the
VTA might differ from those resulting from a progres-
sive degeneration involving a subset of dopaminergic
VTA neurons as in AD. Moreover, a progressive
degeneration of VTA neurons could gradually spread
to other vulnerable brain areas such as LC, as demon-
strated in the Tg2576 AD mouse model [20, 56].

Chronic LC downregulation as a risk factor of
neurodegeneration

The simulations described above show how VTA
degeneration might affect the modulation of cate-
cholamine nuclei by the midfrontal cortex, up to
a chronic downregulation of both DA and NE. In
the long term, catecholamine downregulation might
trigger a cascade of events leading to a stronger mani-
festation of the disease features. In particular, chronic
depression of LC neurons activity contributes to pro-
ducing abnormal (hyperphosphorylated) tau proteins
in LC neurons [18] themselves, which can aggregate
into neurofibrillary tangles [14, 17] and lead to per-
manent LC degeneration. The persistent lower NE
produced by the loss of LC neurons has been associ-
ated with a lower clearance of A� peptide in LC target
areas [65, 66], including amygdala (Amg) [67], hip-
pocampus (Hip) [68], and PFC [69, 70]. This leads
to an accumulation of A� plaques, leading to the
AD-typical diffuse cortical atrophy [71] and a wors-
ening of clinical symptoms (Fig. 5d). Aside from
contributing to tauopathy and A� plaque formation,
the decreased level of DA and NE might directly
cause dysfunctions in the VTA and LC target areas
[72–74], like Amg, Hip, and PFC, which are critically
involved in AD development.

In the long run, the chronic malfunctioning of the
VTA-LC system might also affect the functioning of
NbM which receives dopaminergic input from VTA
and noradrenergic input from LC, and provides the
principal source of acetylcholine for PFC, Amg, and
Hip [75–77]. At the early stages of pathology, most
NbM neurons are unaffected by tauopathy and many
of the affected neurons remain alive [78]. In this case,

the AD symptoms might be mainly due to the pro-
cesses discussed above, related to the effects of the
VTA-LC malfunctioning on the cortical and limbic
areas where they project. The prolonged malfunc-
tioning of the VTA-LC system might increase the
vulnerability to tauopathy and neurofibrillary degen-
eration of the cholinergic component of the NbM.
Once developed, the tauopathy in these components
might lead to the degeneration of the cholinergic
axons, leading to the worsening of symptoms [79].

This discussion about the long-term effects of
the catecholamine-frontal dysfunctions on a wider
cortical-subcortical network is important for two
reasons. Firstly, it provides a system-level perspec-
tive linking early catecholamine dysfunction to the
typical histological findings in AD, together with
the mechanistic description of cognitive impairment
progression. This system-level perspective could be
critical to develop better diagnostic approaches lead-
ing to address the challenges in AD research related to
the lack of effective preventive strategies and reliable
biomarkers for early diagnosis of the disease [80–82].
Secondly, it is critical to devise new therapies. AD is
currently incurable and existing treatments produce
only a modest and transient amelioration of symp-
toms [83]. To date, acetylcholinesterase inhibitors
and memantine are the only drugs approved for its
management. These drugs provide a symptomatic
improvement but have a minor impact on the dis-
ease progression. The extensive investigation of the
molecular and cellular pathogenesis in AD over the
past few decades has provided significant progress
in the understanding of the disease, stimulating
the development of a number of novel strategies
that seek to modify the disease progression. The
major developments in this direction are the amy-
loid and tau-based therapeutics [84]. Aside from these
approaches, the increased understanding of the mech-
anisms underlying AD pathogenesis and progression
could also lead to the development of complemen-
tary therapeutic strategies. In this line, the results
obtained in this article suggest that therapies involv-
ing also drugs enhancing DA transmission in early
stages of the disease could provide better results
with respect, for example, to drugs acting on nore-
pinephrine alone that have been shown to give mixed
results [17]. This proposal agrees with data support-
ing a role of dopaminergic drugs in AD therapy
[85]. In particular, electrophysiological studies per-
formed on AD patients showed positive effects of
dopaminergic drugs on cortical synaptic plasticity
mechanisms and on cognitive performances, suggest-
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ing the use of these drugs in the treatment of the
disease [86–88].

In addition, the results of the simulations run with
the model also suggest the investigation of the possi-
ble benefits of employing psychological interventions
alongside drug-based treatments. In this respect, we
have seen that the model introduces a subjective fac-
tor weighting the objective relevance of both rewards
and costs received by the patient in daily life activ-
ities. This suggests the possibility of psychological
interventions directed to lower the perceived subjec-
tive estimation of costs and increase the subjective
estimation of gains to increase the probability of deci-
sions in favor of coping and engagement. In turn this
would lead to harvest the physiological benefits dis-
cussed above produced by enhanced catecholamine
release. This view agrees with recent proposals to
employ psychological interventions to treat depres-
sion and apathy symptoms as a way to contribute to
prevent and treat AD [89, 90]

The hypothesis proposed in this paper agrees with
the system-level perspective to the study of the brain
according to which different behaviors are produced
by the interplay of different parts of the brain rather
than by specific areas working in isolation [91–94].
This view is in line with recent works proposing
to study AD as a system-level disorder where var-
ious protective, age-related, and disease-promoting
factors interact to produce the core mechanisms
underlying the disease [80, 95, 96]. Recently, we
have shown how this system-level approach could be
critically used to explain in new ways the origin of dif-
ferent cortical-cerebellar-basal ganglia dysfunctions
related to Tourette’s syndrome [97], ADHD [98], and
Parkinson’s disease [99]. Similarly, in this article we
have argued that a system-level approach could lead
to view the AD early pathogenesis and development
under a different perspective.

Concluding remarks

Both behavioral and neural data simulated by
the model were consistent with recent experimental
observations in patients and, thanks to the anatomo-
functional plausibility of the RML, it was possible
to formulate specific hypotheses on the neural mech-
anisms linking the VTA impairment to the disease
progression and to the altered behavior. In this way
it was possible to associate the neural-scale to the
behavioral-scale features making the model suit-
able for: 1) quantify system-level dynamics through
computer simulations, and bind them to the neural

processes underlying AD pathogenesis at pre-plaques
stage; 2) contribute to formulate a novel, integrated,
view of the pathogenesis of AD, which might help
to devise new computer simulation-based early diag-
nostics, for example by means of computational
phenotyping techniques [100], and then new thera-
peutic interventions targeting the very early stages of
the disease.
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