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Abstract

Magnitude-based inference (MBI) is a controversial statistical method that has been used

in hundreds of papers in sports science despite criticism from statisticians. To better under-

stand how this method has been applied in practice, we systematically reviewed 232 papers

that used MBI. We extracted data on study design, sample size, and choice of MBI settings

and parameters. Median sample size was 10 per group (interquartile range, IQR: 8–15) for

multi-group studies and 14 (IQR: 10–24) for single-group studies; few studies reported a

priori sample size calculations (15%). Authors predominantly applied MBI’s default settings

and chose “mechanistic/non-clinical” rather than “clinical” MBI even when testing clinical

interventions (only 16 studies out of 232 used clinical MBI). Using these data, we can esti-

mate the Type I error rates for the typical MBI study. Authors frequently made dichotomous

claims about effects based on the MBI criterion of a “likely” effect and sometimes based on

the MBI criterion of a “possible” effect. When the sample size is n = 8 to 15 per group, these

inferences have Type I error rates of 12%-22% and 22%-45%, respectively. High Type I

error rates were compounded by multiple testing: Authors reported results from a median of

30 tests related to outcomes; and few studies specified a primary outcome (14%). We con-

clude that MBI has promoted small studies, promulgated a “black box” approach to statis-

tics, and led to numerous papers where the conclusions are not supported by the data.

Amidst debates over the role of p-values and significance testing in science, MBI also pro-

vides an important natural experiment: we find no evidence that moving researchers away

from p-values or null hypothesis significance testing makes them less prone to dichotomiza-

tion or over-interpretation of findings.
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1. Introduction

Magnitude-based inference (MBI) is a controversial statistical method that has been used

in hundreds of papers in the sports science and medicine literature. MBI has laudable goals.

The method arose out of a desire to address over-reliance on tests of statistical significance,

inattention to estimation, and distortion from unpublished null results [1]. MBI was also

developed specifically for use in sports science research, where it may be difficult to get large

enough sample sizes to achieve traditional statistical benchmarks such as a power of 80% at

an alpha of 0.05. It is indeed useful for researchers to recognize that other choices may be jus-

tifiable, and we appreciate that MBI may have helped researchers to move beyond a narrow

focus on p < .05.

However, the development and dissemination of MBI have been unusual for a statistical

method. MBI has never been published in a journal following peer review by statisticians, and

equations with formal notation have never been provided. In fact, since its introduction into

the peer-reviewed literature in 2006 [1], the method has been criticized by statisticians [2–8].

Specifically, critics have noted that MBI lacks a clear mathematical foundation, conflates fre-

quentist and Bayesian statistical methods; provides inappropriate sample size calculators that

may underestimate sample size needs; and provides inadequate control of Type I error rates

[2–8].

These critiques have led some sports science journals to caution against the use of MBI or

stop accepting MBI papers altogether [9,10]; and has also led to the method receiving unfa-

vorable media attention [11–13]. Yet, MBI continues to be defended [14–17] and used (e.g.,

as of May 7, 2020, a Google Scholar search returned 350 hits for “magnitude based infer-

ences” since January 1st, 2019), thus necessitating further scrutiny of the method. We note

that in late 2019, magnitude-based inference was renamed to magnitude-based decisions

(MBD) [18]. We use the method’s original name because the studies we examined were pub-

lished before the name change occurred; and we find that most published studies continue to

use the term MBI (e.g., as of May 7, 2020, a Google Scholar search returned 55 hits for “mag-

nitude based inferences” and only 17 hits for “magnitude based decisions” since January 1st,

2020).

To date, reviews of the method have focused on theoretical issues [2–8] and have not sys-

tematically evaluated how the method is being used in practice. This is a particularly important

gap as the Type I error rates associated with MBI are highly dependent on how the method is

applied [5]. Evaluating the practical application of MBI is also important in addressing propo-

nents’ claims about MBI [14–17], including that it represents an advancement over standard

null hypothesis significance testing and that it has better Type I and Type II error rates than

null hypothesis significance testing. Finally, an empirical investigation of MBI may have

broader lessons for the statistical community. Many commentators have suggested that mov-

ing applied researchers away from significance testing and p-values will help them to draw

more rational conclusions from their data. MBI provides a natural experiment to test this

hypothesis.

To evaluate MBI empirically, we undertook a systematic review of 232 sports science and

medicine studies that used MBI. We aimed to document the typical use case of MBI, including:

(1) study design; (2) sample size; (3) the number of dependent variables and statistical tests

related to the study’s main hypotheses; and (4) the choice of MBI-specific settings and parame-

ters. We used these data to estimate the Type I error rates associated with the typical MBI

study. We also made qualitative observations about the statistical content and conclusions of

these studies.
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2. Methods

2.1. Eligibility criteria

We included all Populations, Interventions, Control groups, or types of Outcomes in our

search so that our sample should be broadly representative of how magnitude-based inference

(MBI) is applied in practice [19].

2.2. Information sources and search strategy

A systematic search was undertaken on August 2nd, 2018 in the PubMed and SportDiscus

(EBSCO) databases. Searches combined the term “magnitude based inference” with “sport” or

“exercise” to narrow the focus to those articles most relevant to sport and exercise science. On

SportDiscus, e.g., [“magnitude based inference” AND (“sport�” OR “exercise”)]. A wild-card

symbol (�) was used with “sport” to capture variations on that word. Searches included August

2nd 2018 to the earliest available date.

2.3. Study selection

The resulting 491 results were combined with 84 results identified in a previous search [6], see

the PRISMA flow diagram [20] in Fig 1. Articles were screened by title and abstract, and then

full-text by KRL and a student assistant. Studies were included if they reported original empiri-

cal data (i.e., no meta-analyses, review articles) on human subjects. A total of 232 articles were

included in the review (Fig 1).

2.4. Data collection and data items

All authors assisted in the development of a data extraction tool that went through 4 rounds

of revision before being converted into a REDCap1 survey hosted at the University of Utah.

A re-creation of the data extraction tool is shown in S1 Appendix. Variables included journal,

study design, sample size, the number of dependent variables related to the main hypothesis,

the number of statistical tests run pertaining to the main hypothesis, the inclusion of an a pri-
ori power calculation, information related to bias, and the choice of MBI settings and parame-

ters (which are described in more detail below).

Articles were randomly assigned to random pairs of five of the authors (KRL, EJK, MLB,

JAT, KLS) and each author entered the relevant data into REDCap. When data extraction was

complete, the full dataset was downloaded and agreement between authors was calculated. Per-

centage agreement was moderate to high across items, median = 77%, IQR = [65%, 88%]. A

third reviewer (KRL) then conducted consensus coding for all entries on all items in which

there was disagreement. Remaining points of disagreement or areas of ambiguity where dis-

cussed with a fourth reviewer (KLS). Both the third and fourth reviewer were blind to the iden-

tities of the initial raters. See S1 Appendix for more details.

2.5. Risk of bias in individual studies

Selection, performance, and detection bias were assessed for individual studies. Details of this

assessment are presented in S1 Appendix.

2.6. MBI description, settings, and parameters

MBI is implemented in downloadable Excel spreadsheets available at the website sportsci.org

[18]. Though a detailed mathematical description has never been provided by the method’s

developers, the statisticians Alan Welsh and Emma Knight published a statistical critique of
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MBI in 2015 in which they reverse engineered the formulas from the spreadsheets for the

problem of comparing two means [3]. MBI involves several settings and parameters (defined

below). Defaults for the parameters are provided in the spreadsheets.

MBI practitioners define a trivial range of effects that they would consider clinically irrele-

vant. The thresholds for harm and benefit—which we will denote −δh and δb, respectively—

define this trivial range. The default setting for the trivial range is −δh = −0.20 to δb = +0.20

standard deviations [18].

MBI returns probabilities that an effect is negative (or harmful), trivial, or positive (or bene-

ficial). These probabilities are based on interpreting p-values from two one-sided hypothesis

tests as if they were Bayesian posterior probabilities [3,8]. For example, if p = .25 for the null

Fig 1. PRISMA flowchart. PRISMA flowchart showing the screening of articles through the systematic review process.

https://doi.org/10.1371/journal.pone.0235318.g001
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hypothesis that the intervention is not beneficial (H0: true effect� δb), MBI would conclude

that there is a 25% chance that the intervention is not beneficial and thus a 75% chance that

the intervention is beneficial. MBI practitioners choose parameters called the maximum

risk of harm and minimum chance of benefit—which we will denote η1h and η1b. An effect is

deemed “unclear” when the harm and benefit probabilities exceed η1h and η1b, respectively.

Otherwise, an effect is deemed “clear.”

When an effect is deemed clear, MBI returns a categorical inference such as “possibly posi-

tive,” “likely positive,” or “very likely positive.” These categories are determined by the MBI

probabilities:�0.5% is most unlikely; 0.5–5% is very unlikely; 5–25% is unlikely; 25–75% is

possible; 75–95% is likely; 95–99.5% is very likely;�99.5% is most likely or almost certainly

[1,18,21]. For example, a beneficial/positive probability of 75% to 95% corresponds to “likely

positive.” This is equivalent to rejecting the null hypothesis that the effect is not beneficial/pos-

itive (H0: true effect� δb) at a significance level of .25 but not .05. A “possibly positive” result

is equivalent to rejecting H0: true effect� δb at a significance level of .75 but not .25.

MBI is divided into two types of inferences—“clinical” and “non-clinical/mechanistic”; cor-

respondingly, the MBI spreadsheets return two sets of results, one for clinical MBI and one for

non-clinical MBI. There are two main differences: (1) clinical MBI allows different values for

η1b and η1h, whereas non-clinical MBI treats both directions equivalently, such that η1b = η1h,

and (2) clinical and non-clinical MBI have different default values—0.5% and 5%, respectively

—for η1h (the “maximum risk of harm”). The choice of when to use clinical MBI versus non-

clinical MBI is not clearly defined and a source of confusion in MBI [3]. As we will show later,

the vast majority of MBI practitioners report the non-clinical/mechanistic MBI results even

when reporting about interventions that affect human health or performance. We note that

the MBI spreadsheets also return a third set of results called the “odds ratio interpretation”

but this was only reported in nine papers that we reviewed, and the authors indicated that this

option gave similar results to standard clinical MBI.

Fig 2 gives several examples of how inferences are called in non-clinical MBI. In non-clini-

cal MBI, using the default values of η1h = η1b = 5%, an effect is deemed “unclear” if the harm

and benefit probabilities both exceed 5%; this is equivalent to the 90% confidence interval for

an effect overlapping both the positive (or beneficial) and negative (or harmful) ranges (Fig 2).

The default η1h for clinical MBI (0.5%) is much more stringent than for non-clinical MBI

(5%), which means that it is harder to find “clear” positive effects with clinical MBI than with

non-clinical MBI (at default values). When an observed effect is in the positive direction, it

will be declared “unclear” in clinical MBI but “clear” in non-clinical MBI if the 99% confidence

interval overlaps the negative range but the 90% confidence interval does not. We speculate

that this is why most users report the non-clinical MBI results.

2.7. Calculation of type I error rates

MBI inferences are based on one-sided hypothesis tests with significance levels of .005, .05,

.25, and .75. For example, a “very likely positive” result is achieved when one rejects the null

hypothesis of not beneficial/positive (H0: true effect� δb) at a significance level of .05; a “likely

positive” result is achieved when one rejects the null hypothesis of not positive at a significance

level of .25 (but not .05); and a “possibly positive” result is achieved when one rejects the null

hypothesis of not positive at a significance level of .75 (but not .25). Thus, one might expect

that the Type I error rates for these inferences would equal these significance levels. However,

the calculation of Type I errors is complicated because otherwise beneficial/positive results

may sometimes be deemed “unclear”, which can lower the Type I error rate. Whether

results are clear or unclear is affected by the standard error (which depends on the statistical
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comparison of interest, outcome variance, and sample size) and the choice of MBI parameters.

Therefore, unlike standard hypothesis testing, the Type I error rate for MBI depends on the

sample size, study design, outcome variance, and the choice of MBI parameters. Additionally,

the Type I error rates depend on the size of the true effect (which may be anywhere in the triv-

ial range), and must account for errors in both directions (for non-clinical MBI).

We simulated the Type I error rates for MBI for both a between-group comparison and a

within-group comparison assuming a range of sample sizes. For the between-group compari-

son, we generated 200,000 simulated trials with n per group from two normally distributed

populations with the same variance and zero or a trivial difference between the groups. For the

within-group comparison, we generated 200,000 simulated trials with a sample size of n from

a normally distributed population with a true effect size of 0 or a trivial effect size. Type I error

rates were then calculated as the percentage of studies in which MBI returned a positive or

negative inference that met a given minimum evidence threshold (e.g., “likely”) or the percent-

age of studies where p< .05 (for standard hypothesis testing). Simulations were conducted in

SAS 9.4. See S2 Appendix for the simulation code, which is given in both SAS and R.

We also calculated the Type I error rates mathematically, using previously derived mathe-

matical equations for the Type I error rate [5]. These equations were written for clinical MBI;

we adapted these to encompass non-clinical MBI and also provided an exact rather than

approximate solution. See S1 Appendix for more details. See S2 Appendix for SAS and R code

that implements the math equations. Simulated and math-predicted results matched exactly,

as shown in S3 Fig of S1 Appendix.

We calculated Type I error rates for a range of scenarios. All reported values were con-

firmed by both simulation and math. For the base-case, we assumed η1h = 5%; thresholds of

Fig 2. Example MBI inferences. Ten hypothetical results and corresponding MBI inferences, assuming: a trivial range

of -0.2 to 0.2 standard deviations, maximum risk of harm of 5%, and equivalent treatment of positive and negative

directions (non-clinical MBI). MBI inferences correspond to the locations of the 50% and 90% confidence intervals

relative to the negative (or harmful), positive (or beneficial), and trivial ranges. The result is deemed “unclear” if the

90% confidence interval spans the trivial range. Of note, minimal effect testing with α = 0.05, two-sided, would not

arrive at conclusions of negative or positive for any of the examples shown. Equivalence testing with α = 0.05 would

also fail to conclude equivalent (i.e., trivial difference) for any of the examples shown.

https://doi.org/10.1371/journal.pone.0235318.g002
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harm/benefit of 0.2 standard deviations; and a true effect size of 0, to facilitate comparison

with standard hypothesis testing. We assumed variances of either 1.0 (as in a cross-sectional

study) or 0.364 (as might arise in a pre-post parallel trial design in which the within-person

variance is lower than the between-person variance). We then varied these parameters.

3. Results

Our systematic review identified 232 studies that used MBI. The topics covered in these articles

spanned the range of sport and exercise science and were published in highly cited journals in

these fields, see Table 1.

The studies covered a range of experimental designs, including randomized controlled tri-

als, crossover trials, and observational studies, see Table 2. Sample sizes were extremely small:

The median sample size was 10 per group (interquartile range: 8 to 15 per group) for multi-

group studies and 14 (interquartile range: 10 to 24) for single-group studies. Only 15% of stud-

ies reported any a priori power analysis. In cases where authors reported sample size calcula-

tions based on the MBI calculators, they often reported very low sample size requirements,

such as 5, 6, or 7 total participants [22–24]. We also note that many authors seemed to errone-

ously believe that use of MBI circumvents the need for an adequate sample size [25–29]. For

example, Stanley et al. [25] wrote of MBI: “With this statistical approach, our sample size is not

limiting.”

Focusing solely on analyses related to the main hypotheses (excluding baseline and other

ancillary comparisons), the median number of dependent variables was 7 and the median

number of statistical tests run was 30. Despite this multiplicity of outcomes, few studies (14%)

defined one or more variables as “primary.”

The vast majority of studies used non-clinical MBI with the same values: trivial thresholds

between -0.20 and +0.20 SD with η1h = 5%. Authors explicitly noted the use of clinical MBI

(3.4%), non-clinical MBI (16%) or both (1.3%) in a minority of papers. Given descriptions

in the texts, we identified five additional papers where we believe clinical MBI was used, for a

total of 16 papers (7%) that used clinical MBI. We believe that non-clinical MBI was used in

almost all other cases (164 additional papers). In these cases, authors wrote a version of the

following statements: “When the positive and negative values were both >5%, the inference

was classified as unclear” or, equivalently, “If the 90% confidence interval overlapped the

thresholds for the smallest worthwhile positive and negative effects, effects were classified

as unclear”; this means they used η1h = 5% and treated both directions equivalently, consis-

tent with non-clinical MBI. We cannot rule out that authors used clinical MBI with both

η1h = 5% and η1b = 5%, but this is less likely given that these are not the usual default choices

for clinical MBI.

Table 1. The top five most frequent venues for MBI publications identified in our review.

Journal Title Journal Impact

Factor

Number of MBI

Publications

The Journal of Strength and Conditioning Research 2.325 35

The International Journal of Sports Physiology and

Performance

3.384 24

Journal of Sports Sciences 2.733 17

PLoS One 2.766 11

Frontiers in Physiology 3.394 10

Journal impact factors were extracted from the Journal Citation Reports database on 2019-3-20.

https://doi.org/10.1371/journal.pone.0235318.t001
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Table 2. Descriptive statistics of the 232 articles identified in the systematic review, median [IQR] or N (%). MBI

settings were not discernible from all studies, as indicated.

Measure Median [IQR] or N(%)

N per group for studies with >1 group (n = 111)a 10 [8, 15]

Total N for single group studies (n = 121) 14 [10, 24]

Number of dependent variables 7 [5, 12]

Number of Statistical Tests pertaining to the main hypotheses 30 [15, 56]

MBI Parametersb

Harm/negative Threshold = -0.2 182 (79%)

Benefit/positive Threshold = +0.2 181 (78%)

maximum risk of harm (η1h) = 5% 183 (79%)

Statement of a Priori Power Calculation 34 (15%)

‘Primary’ Variable Explicitly Defined 33 (14%)

Attrition or Exclusions Stated 55 (24%)

Described as Bayesian 0 (0%)

NHST also Performed 108 (47%)

Minimum MBI evidence threshold appliedc

“Possible” (�25%) 88 (38%)

�50% 19 (8%)

“Likely” (�75%) 100 (43%)

“Very likely” (�95%) 0 (0%)

Not able to be determined 25 (11%)

Study Design

RCT 53 (23%)

Cross-Over 58 (25%)

Observational 95 (41%)

Other 26 (11%)

Clinical or Non-Clinical MBI

Clinical, explicitly stated 8 (3.4%)

Non-clinical, explicitly stated 37 (16%)

Both, explicitly stated 3 (1.3%)

Determined to be clinical though not explicitly statedd 5 (2.2%)

Determined to be non-clinical though not explicitly statede 164 (71%)

Not able to be determined 15 (6.1%)

aOf these, 72 were two-group studies. The median [IQR] of sample size for two-group studies was: 10 [8,14].
bOur counts may represent an underestimate of the number of times the default MBI parameters were used, as some

papers provided insufficient information to determine these values. We were unable to discern a value for the harm/

negative threshold in 35 papers, the benefit/positive threshold in 32 papers, and the maximum risk of harm in 20

papers.
cSome authors explicitly set a minimum evidence threshold above which effects were declared “implementable”,

“substantial”, or “practically meaningful.” Others implicitly set this threshold by only choosing to highlight and draw

conclusions based on effects that met a given evidentiary threshold, such as “likely” or “possible.”
dClinical MBI was inferred from statements such as: “a clinically clear beneficial effect was at least possibly beneficial

(>25% chance) and almost certainly not harmful (<0.5% risk).” Our count includes one paper that was explicitly

labeled as non-clinical MBI but we believe to have run clinical MBI.
eNon-clinical MBI was inferred from the statement: “When the positive and negative values were both >5%, the

inference was classified as unclear” or, equivalently, “If the 90% confidence interval overlapped the thresholds for the

smallest worthwhile positive and negative effects, effects were classified as unclear.” In a few other cases, non-clinical

MBI was determined mathematically based on how “unclear” results were called. Our count includes two papers that

were explicitly labeled as clinical MBI but we believe to have run non-clinical MBI.

https://doi.org/10.1371/journal.pone.0235318.t002
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MBI provides categories of evidence, such as “possible”, “likely”, and “very likely” benefi-

cial. We found that researchers employed MBI’s evidence thresholds much like significance

thresholds: They highlighted results that met the bars of “possible”, “likely”, or higher in tables

and figures with symbols to distinguish the achieved thresholds much like the use of symbols

for p<0.05 or p<0.01; for examples, see: [30–32]. They then made claims about effects based

on meeting a minimum MBI evidence threshold, usually either “possible” or “likely.” For

example, Cruz et al. [33] explicitly define this bar, declaring: “A likely difference (>75%) was

considered as the minimum threshold to detect meaningful differences,” as do Weaving et al.

[34]: “The magnitude of difference was considered practically meaningful when the likelihood

was� 75%.” Others implicitly set a minimum threshold by only highlighting and drawing

conclusions based on effects above a certain bar. For example, Lahart et al. [24] write in their

abstract: “Magnitude-based inference analyses revealed likely at least small beneficial effects

(effect sizes�.20) on absolute and relative VO2max (d = .44 and .40, respectively), and total

and moderate PA (d = .73 and .59, respectively) in the intervention compared to the usual care

group. We found no likely beneficial improvements in any other outcome” (emphasis added).

One can infer from their description and ensuing positive recommendation (“This interven-

tion has the potential for widespread implementation and adoption, which could considerably

impact on post-treatment recovery in this population.”) that they used “likely” as their mini-

mum evidence threshold, though this was never explicitly stated.

We found that most authors used a minimum evidence threshold of “possible” (38%) or

“likely” (43%) (Table 2). We found no cases where authors either explicitly or implicitly set

this bar higher than “likely” (Table 2). In fact, authors appeared to view the “likely” threshold

as a high level of evidence. For example, Barrett et al. [35] state: “We adopted a conservative

approach to inference whereby substantial effects were only declared clear when the probabil-

ity likelihood for the effect was�75% (i.e., likely)” (emphasis added).

Almost half (47%) of studies performed null hypothesis testing alongside MBI. Most

authors reported using the Excel spreadsheets to run their MBI analyses, but a few authors

reported running frequentist statistical models in other programs, such as SAS, but then inter-

preted the resulting frequentist confidence intervals in MBI terms. We found no studies out of

232 that described their statistical approach as Bayesian.

S1 Appendix documents additional concerns about bias in the design and reporting of

these studies. However, we note that these concerns are common in sports science studies and

are not unique to studies using MBI.

In our review, we found that most MBI studies employed a narrow range of sample sizes,

used non-clinical MBI, and used the same default MBI settings: thresholds for harm/benefit of

0.2 and maximum risk of harm of 0.05. Thus, we were able to estimate the Type I error rates

that apply to the vast majority of the MBI literature. We estimated the Type I error rates associ-

ated with the “possible” and “likely” evidence thresholds since, in the studies we reviewed,

authors consistently highlighted and made claims based on “possible” or “likely” positive/ben-

eficial or negative/harmful inferences. Note that our estimates of Type I error would also apply

to clinical MBI with η1b = η1h = 5%. In fact, clinical MBI with η1b = η1h = 5% (rather than η1b =

25% and η1h = 0.5%) was given as the default choice in at least one version of the MBI spread-

sheets that we found online in August of 2019 (see S3 Appendix; [18]).

Fig 3A and 3B show the Type I error rates as a function of sample size for a two-group com-

parison of means when the outcome variance is smaller (3A) or larger (3B); patterns are simi-

lar for other statistical comparisons (see S1 Appendix). MBI creates pockets of high Type I

error that—particularly for the “likely” threshold—coincide with the sample sizes that predom-

inate in the MBI literature. Fig 3C and 3D demonstrate how easy it is for spurious “likely”

effects to arise in small samples due to high chance fluctuation.
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For multi-group studies, the interquartile range of sample size was 8 to 15 per group. At

these sample sizes, the Type I error rate for the “possible” threshold is 22% to 45% and for

the “likely” threshold is 12% to 22% (Fig 3A and 3B). Consistent with these calculations, we

noticed numerous studies in which effects associated with large p-values (for Ho = 0)—often

in the 0.2 to 0.3 range—were declared “likely” or higher by MBI [36–52]. See Fig 4 for an

example from the literature.

In some examples, high p-values were reported alongside the MBI results. When p-values

were reported alongside MBI results, we found that MBI descriptors were frequently priori-

tized above p-values in the interpretation of results. Indeed, the results were often used to jus-

tify the superiority of MBI over conventional approaches. Examples include:

Fig 3. MBI’s Type I error rates. A and B: Type I error rates for MBI’s “possible” (purple) and “likely” (red) thresholds, as well as standard

hypothesis testing at α = 0.05 (blue) as a function of sample size. The statistical comparison is a two-group comparison of means. True effect

size = 0, meaning there is no difference between the groups. (A) assumes variance of 0.364, as might arise in a pre-post study, whereas (B) assumes

a variance of 1.0, as in a cross-sectional study. Shaded area shows the interquartile range of sample sizes of the reviewed studies; vertical reference

line is the median sample size. Type I error rates were identical whether calculated mathematically or by simulation with 200,000 repeats (see S1

Appendix). C: MBI results from 5000 simulated trials where variance = 0.364 and n = 10 per group. D: MBI results from 5000 simulated trials

where variance = 1.0 and n = 10 per group. Simulations and calculations use the MBI settings that predominate in the literature: trivial range of

-0.2 to 0.2; maximum risk of harm of 5%; and equivalent treatment of positive and negative directions.

https://doi.org/10.1371/journal.pone.0235318.g003
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“Although parametric analysis was unable to demonstrate significant differences, magni-

tude-based inferences indicated that the change in 1-RM squat showed a likely benefit from

PA on increasing lower body strength and a very likely benefit for increasing lean body

mass (LBM).”

(Hoffman et al. [43])

“Because a repeated measures ANOVA could not detect any significant difference in the

variables between the fastest and slowest trials (P = .136 –>.999), magnitude-based infer-

ence approach was adopted to analyse the differences at each step.”

(Nagahara et al. [44])

“There were no statistically significant differences between the non-runners and runners

groups in the CRP values for any of the coupling pairs analysed, however, the magnitude-

based inferences enabled more precise tracking of differences between groups and some of

the differences were substantially clear.”

(Lockie et al. [45])

“There were no statistical differences in NB between groups (P = 0.23); however, magni-

tude-based inferential statistics revealed likely small (mean effect±90% CI; 0.59±0.87)

and moderate (0.80 ± 0.91) increases in NB for PULSE and INT compared to BOLUS and

possible small increase (0.42 ± 1.00) for INT vs. PULSE. Conclusion: We conclude that the

pattern of ingested protein, and not only the total daily amount, can impact whole-body

protein metabolism.”

(Moore et al. [46])

Fig 4. An example of MBI inferences in practice. Left Panel (Reproduced from Parfey et al. [50], Fig 2C): Literature example

where effects deemed “likely” by MBI are associated with large p-values. Confidence intervals are 95% CIs. Starred values are

effects meeting MBI’s “likely” threshold. These results were interpreted as evidence of a difference between groups; the authors

concluded: “Individuals with CLBP and PR manifested altered activation patterns during the hollowing maneuver compared

to healthy controls.” Right panel: Simulation that shows the MBI inferences that are expected for a study of this type (n = 10

per group, cross-sectional) when the true effect is 0. Note that in both the real example and the simulation, most observed

effects larger than 0.5 are deemed “likely”.

https://doi.org/10.1371/journal.pone.0235318.g004
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In these instances, and others, the authors emphasized the more favorable MBI results in

their conclusions, ignoring that the observed effects could easily have arisen due to sampling

variability.

In many other examples, authors did not report p-values, but we back-calculated high p-

values from confidence intervals [52]. For example, one study reported an improvement of

0.46 standard deviations in countermovement jumps with a 90% confidence interval of -0.10

to 0.91 standard deviations [52]; we calculated the two-sided p-value associated with Ho = 0

as: P(T21>(.46/(.5/1.72)))+P(T21<-(.46/(.5/1.72))) = .13. Notably, this paper reported that the

intervention “almost certainly” improves countermovement jumps with a 100% probability of

benefit [52].

Until now, our discussion has focused on a single test with default MBI parameters. Table 3

shows how changing the study design, variance, and MBI parameters affects the Type I error

rates. We found that across most realistic scenarios, researchers have between a 20% to 52%

chance of getting a “possible” or higher positive or negative inference when the true effect is

zero or trivial. Increasing sample size or decreasing variance (relative to the base case) results

in lower Type I error rates for the “likely” threshold, but higher rates for the “possible” thresh-

old. Changing η1h from 5.0% to 0.5% lowers the Type I error rates for these small sample sizes,

but as previously noted, researchers rarely chose this value (n = 19, 8% of studies).

MBI’s high Type I error rates are further compounded by multiple testing (Table 3).

Though multiple testing is also an issue for standard hypothesis testing, the higher per-test

Table 3. Type I error rates for MBI vary as a function of sample size, statistical comparison, variance, maximum risk of harm, and thresholds for harm/benefit.

Row 1 represents the typical MBI study; subsequent rows demonstrate how changing specific parameters alters the rates; parameters that remain unchanged from the base

case are grayed out whereas altered parameters are bolded. Rates were calculated mathematically and also confirmed by simulation with 200,000 repeats (See S1 Appendix

for description and S2 Appendix for code).

Statistical

comparison

Parameters Type I error rates

Sample size

per group

Variancea Maximum risk

of harm

Threshold for

harm/benefit

True trivial

effect sizeb
Number of

statistical tests

runc

MBI “possible”

threshold

MBI “likely”

threshold

p <

.05

p <

.01

Two-group pre-

post

10 0.36 0.05 0.2 0 1 35% 16% 5% 1%

Two-group pre-

post

20 0.36 0.05 0.2 0 1 52% 9% 5% 1%

Two-group

cross-sectional

10 1.0 0.05 0.2 0 1 22% 21% 5% 1%

Within-group 14 0.36 0.05 0.2 0 1 48% 6% 5% 1%

Within-group 14 0.36 0.05 0.1d 0 1 29% 19% 5% 1%

Within-group 14 0.80 0.05 0.2 0 1 39% 13% 5% 1%

Two-group pre-

post

10 0.36 0.005 0.2 0 1 6% 6% 5% 1%

Two-group pre-

post

10 0.36 0.05 0.1 0 1 20% 20% 5% 1%

Two-group pre-

post

10 0.36 0.05 0.2 +0.1 or -0.1 1 38% 19% 6% 1.5%

Two-group pre-

post

10 0.36 0.05 0.2 0 10 99% 82% 40% 10%

aCalculations use standardized effect sizes, so variance = 1. But for statistical comparisons that involve change scores, the within-person variance may be lower than 1.
bType I error rates can also be calculated for non-zero, trivial effects.
cWhen number of statistical tests>1, the Type I error rates represent the chance of at least one false positive, calculated assuming independent tests.
dSome within-person studies use a threshold for harm/benefit of 0.3 of the within-subject coefficient of variation; this typically translates to a smaller trivial range than

0.2 baseline standard deviations.

https://doi.org/10.1371/journal.pone.0235318.t003
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Type I error rates of MBI serve to exacerbate the issue. The studies we reviewed reported a

median of 7 dependent variables and 30 statistical tests related to the main hypothesis. With so

many tests, users are virtually guaranteed to find some “possible” or higher effects by random

chance when the intervention is ineffective (Table 3). MBI provides few tools for addressing

multiple testing; in fact, the proponents of MBI have advised against controlling for multiple

tests [21]. MBI also provides no means for handling repeated-measures data; thus, in papers

with more than two time points, authors invariably presented MBI analyses for each time

point separately, creating an obvious multiple testing issue. For example, in a parallel-group

randomized trial, Townsend and colleagues [53] measured muscle biomarkers in an exercise

and control group at 3 follow-up time points: 1 hour, 5 hours, and 48 hours. Using repeated-

measures ANOVA, they found no significant time-by-group interactions for any outcome

at the 0.05 level; however, the MBI analysis found two positive effects out of 15 tested (5 out-

comes by 3 timepoints): a “likely” increase for exercise versus control in IkBα phosphorylation

at 5 hours and a “very likely” increase for exercise versus control in total c-Myc content at 5

hours. They then concluded: “The main findings of this investigation indicated that phosphor-

ylation of IkBα and total c-Myc content was increased in skeletal muscle following resistance

exercise in novice lifters.”

4. Discussion

Through our systematic review, we have documented that studies using MBI are typically

small in size and often make strong claims based on weak evidence. MBI authors routinely

made claims based on achieving MBI inferences of “likely” and sometimes “possible” effects.

These inferences carry high Type I error rates—12%-22% and 22%-45%, respectively, for the

way that MBI is typically applied in the literature. MBI users predominantly applied MBI’s

default settings, used a maximum risk of harm of 5%, and chose “non-clinical” rather than

“clinical” MBI even when testing interventions in humans. This is likely related to “non-clini-

cal” MBI providing stronger inferences for a given set of data as well as to a lack of precise

guidelines about when to use non-clinical versus clinical MBI. Few studies reported a priori
power calculations (15%) or specified a primary outcome (14%). Multiple testing was common

with a median of 7 dependent variables and 30 tests related to the main hypotheses of interest;

this exacerbates the Type I error issue.

The median sample size was 10 per group for multi-group studies and 14 total for single-

group studies. As a benchmark, it is worth noting that a sample size of 10 per group has a mere

40% power to detect an effect size of 0.8, which is commonly described as a large effect (given

α = 5%). Inadequate sample sizes and poor sample size planning are certainly not unique to

MBI. However, we believe that the way that MBI has been advertised to the sports science

community has encouraged the use of small studies. A central justification for MBI has been

its ability to generate more “publication-worthy” results from under-powered studies. For

example, proponents of the method state that MBI, “provides an avenue for publishing previ-

ously unpublishable effects from small samples” [14] and that, “With small studies, you get

nonsignificant effects a lot, but these nonsignificant effects are often clear so the researcher can

often make useful publishable conclusions for such a thing with MBI. You can get your stuff

into press” [54]. Thus, it’s not surprising that MBI users predominantly employed small sam-

ples; rarely performed a priori sample size calculations, and even made statements suggesting

that MBI circumvents the need for an adequate sample size [25–29].

Overinterpretation of statistical results is also not unique to MBI, but features of the method

and its portrayal may exacerbate the problem. MBI has been described as a Bayesian procedure

[14] and “definitely not” a form of hypothesis testing [15]. MBI’s developers state: “. . .we wish
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to avoid hypothesis tests of any kind, involving either the nil (zero) hypotheses or non-zero

hypotheses, as in equivalence testing” [55]. Thus, it’s not surprising that users appear unaware

that, underneath the hood, MBI is in fact running non-zero hypothesis tests (with liberal sig-

nificance levels). MBI also misrepresents p-values as Bayesian posterior probabilities and

affixes overly optimistic descriptors such as “likely” or “almost certainly” beneficial. Corre-

spondingly, users routinely attribute higher levels of evidence to MBI inferences than the data

warrant.

MBI’s proponents have repeatedly denied that MBI has elevated Type I error rates [14–17].

We have shown this to be false. MBI does not necessarily carry a high Type I error rate, because

MBI’s error rates depend on the choice of MBI parameters and settings as well as study design

and sample size. However, we found that MBI is predominantly applied in a way that results

in high Type I error. For example, use of a maximum risk of harm of 0.5% keeps Type I error

rates low for samples of 8 to 15 per groups, but only 8% of users chose this value. Despite

conducting clinical research in human populations, authors primarily used non-clinical MBI

rather than clinical MBI, likely because it has a default maximum risk of harm of 5% and thus

makes it easier to find “clear” beneficial/positive effects.

There has been disagreement about what constitutes a Type I error in MBI. The developers

of MBI sometimes refer to “clinical Type I error,” which they define as claiming benefit when

the true effect is harmful; however, this ignores the larger source of Type I error, which is

claiming benefit when the true effect is trivial [5]. The developers of MBI have also claimed

that clinical MBI incurs a Type I error for a “possibly” or “likely” inference but that non-

clinical MBI does not [17]. This would only be true if non-clinical MBI required a minimum

actionable evidence threshold of “very likely.” It does not. Users routinely made claims about

clinical interventions based on “possibly” and “likely” inferences regardless of the choice of

clinical or non-clinical MBI. In fact, only 21% of users even specified whether they were using

non-clinical or clinical MBI, suggesting that this distinction holds little meaning in practice.

We acknowledge that the appropriate tradeoff between Type I and Type II error may be dif-

ferent in sports science than in other biomedical fields, such as cancer research. Thus, there

may be cases where a Type I error rate higher than 0.05 may be justified. However, we empha-

size that: (1) 0.05 is itself considered a weak level of evidence [56] (2) 0.05 has undoubtedly

been given undue importance in the medical literature, but this problem is not solved by set-

ting a more liberal default threshold; (3) the Type I error rates that we have documented for

MBI would be considered unusually weak levels of evidence in biomedicine. As a benchmark,

p = .25 corresponds to a Shannon-information, or S-value, of 2, meaning the data provide just

2 bits of information against the null hypothesis of no effect—no more surprising than getting

two heads in two coin tosses [57]; (4) high rates of multiple testing in sports science compound

the issue; and (5) if researchers are going to allow a higher Type I error rate, they must be

transparent about this choice and justify it a priori. In the MBI literature, we found no cases

where MBI practitioners acknowledged higher Type I error rates, let alone justified them.

We found that the MBI spreadsheets encourage a black box approach to statistics [8]. For

example, users predominantly employed the default thresholds for harm/benefit of 0.2 stan-

dard deviations presented in the MBI spreadsheets. This suggests that this choice was not

based on any biological or clinical rationale and was likely not specified a priori. Of course,

MBI is not unique in encouraging a black box approach to statistics. Many statistical programs

allow users to implement statistical methods that they do not understand. However, MBI’s

lack of rigorous review and documentation may exacerbate the problem [8].

The MBI spreadsheets are also not designed to handle many common statistical situations:

repeated-measures or clustered data, interactions, count data, and adjustment for more

than a single covariate [8]. The inability to appropriately handle repeated-measures data is
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particularly problematic given that repeated-measures were common in MBI studies. For

instance, in a study on foam rolling [30], group differences were assessed at three different

time points for 13 outcomes measures. With a more conventional ANOVA, these post-hoc

tests might only be conducted following a statistically significant Group x Time interaction, or

not at all. Multiple testing is also a problem for null hypothesis significance testing, but MBI’s

higher per-test Type I error rates and inability to handle repeated measures compound the

problem.

We acknowledge that Type I error rates for null hypothesis significance testing can also be

greatly inflated due to “p-hacking,” the practice of manipulating data and analyses to produce

p-values under 0.05 [58]. Though MBI does allow other researcher degrees of freedom (e.g.,

choice of MBI parameters and settings), MBI may be less prone to p-hacking because it does

not have the same narrow focus on p< .05. Indeed, a positive outcome of MBI is that it has

helped moved sports scientists away from overreliance on p< .05.

Proponents of MBI argue that small studies are unavoidable in sports science and thus that

MBI is needed to ensure a path to publication for otherwise “unpublishable” null results [14].

We disagree that small studies are inevitable, and believe that we should encourage researchers

to engage in sample size planning and to design better [59] and larger studies [60,61]. We also

encourage the adoption of registered reports, which prevent reliance on statistical significance

as a criterion for publication [62,63]. In the absence of preregistration, when researchers do

run severely under-powered studies (e.g., due to logistical constraints), we do not believe that

the appropriate path to publication is choosing an inferential method that misrepresents weak

evidence as strong evidence. Rather, researchers can publish the results as a pilot or feasibility

study [64] or report the results descriptively, avoiding inferential language [65]. Small studies

—provided that are properly reported, without overstating evidence—can be useful for the

design of larger trials as well as in meta-analyses. Additionally, we believe that many sports sci-

ence researchers may be interested in making decisions about individual athletes rather than

making inferences to wider populations, in which case the most appropriate study design may

be an N-of-1 trial [66]. If practitioners are interested in seeing if an intervention is reliably ben-

eficial for a specific athlete, it is more meaningful and more valid to adopt an N-of-1 trial than

generalize from an underpowered study using a low standard of evidence for an effect. Finally,

we note that when studying elite athletes, it’s possible that a relatively small sample will give

adequate power due to the low variability in the population.

Proponents of MBI have additionally argued that MBI is necessary because it provides

the only alternative to null hypothesis significance testing, for example writing: “Generations

of statisticians before us have also criticized the null-hypothesis test, but magnitude-based

inference appears to be the first practical alternative that properly takes into account the

uncertainty arising from sampling variation” [15]. This argument is false; scientists are not

limited to these two approaches and MBI is certainly not the first alternative to a monolithic

statistical approach. Multiple other statistically sound alternatives are available. For example,

MBI uses the same underlying hypothesis tests as minimal effect testing and equivalence test-

ing/non-inferiority testing [67]. Thus, MBI practitioners could use these procedures instead

[68]. Furthermore, sports scientists should understand that—when used correctly—p-values

are valid tools of inference [69]. For example, Amrhein and colleague’s [70] recent headline-

making call for the abandonment of significance testing did not advocate a ban on p-values,

but instead encouraged scientists to use p-values correctly—by recognizing them as a contin-

uous (rather than dichotomous) measure and as just one piece of evidence among many.

Finally, many of the stated goals of MBI—such as giving a plain language interpretation

of statistics that is understandable by coaches and athletes—can be validly achieved with a

Bayesian analysis [4] or by careful incorporation of p-values with data on effect sizes, as well

PLOS ONE Review of magnitude-based inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0235318 June 26, 2020 15 / 22

https://doi.org/10.1371/journal.pone.0235318


as consideration of strengths and weaknesses of the experiment and evaluation of the current

literature.

The conclusions of past studies that have used MBI should be treated with skepticism. How-

ever, these papers do still contain valid information—such as means, standard deviations, and

confidence intervals—that can be used to re-evaluate the studies’ conclusions. For example,

one study reporting that an intervention “almost certainly” improved countermovement

jumps also reported a 90% confidence interval for this improvement of -0.10 to 0.91 standard

deviations [52]. It is clear from the confidence interval that the evidence of improvement is

much weaker than the study’s conclusions imply. However, the standard error is calculable

allowing the data from this study to be entered into a meta-analysis.

Furthermore, some MBI papers report the exact harm and benefit probabilities given by the

MBI spreadsheets, which are useful because they reveal the p-values associated with specific

one-sided hypothesis tests. The harm/negative probability is the p-value associated with the

null hypothesis of harm (Ho: effect size�-δh); and subtracting this value from 1 gives the p-

value associated with the null hypothesis of no harm (Ho: effect size�-δh). Similarly, the bene-

fit/positive probability is the p-value associated with the null hypothesis of benefit (Ho: effect

size�δb); and subtracting this value from 1 gives the p-value associated with the null hypothe-

sis of no benefit (Ho: effect size�δb). One may use these p-values to perform equivalence test-

ing and/or minimal effects testing [67,68]. We give a specific example of how this would be

done in Table 4 using a study on foam rolling [30]. Our re-examination of these data suggest

Table 4. Example of how MBI results can be re-interpreted by one-sided minimal effects testing and noninferiority testing with α = .05a.

Dependent

variable

MBI benefit

probability

95% CI for

the effect

MBI

interpretation

P-value for the null hypothesis of

no increase (H0: effect� δb)b
P-value for the null hypothesis of

decrease (H0: effect� -δh)c
Re-Interpretation

Vertical jump height (cm)

24 hours 74% -2.14, 6.9 Possible increase 0.26 < .05 No substantial

decrease

48 hours 92% -0.22, 5.82 Substantial

increased
0.08 < .05 No substantial

decrease

72 hours “Unclear” -2.82, 2.62 Unclear 0.62e 0.33 Inconclusive

Quadriceps passive range of motion (degrees)

24 hours “Unclear” -6.18, 8.78 Unclear 0.52 0.22 Inconclusive

48 hours 90% -0.96, 14.16 Substantial

increase

0.10 < .05 No substantial

decrease

72 hours 79% -3.24, 13.14 Substantial

increase

0.21 < .05 No substantial

decrease

aThis example study (MacDonald et al. [30]) was a randomized trial comparing n = 10 in the intervention group (foam rolling) to n = 10 controls. The study examined

13 outcome variables at 3 time points, but did not designate a primary outcome or timepoint and made no corrections for multiple testing. Using data from their Tables

1 and 2 [30], we have re-analyzed and re-interpreted the data for two variables: vertical jump height and quadriceps passive range of motion. Column 5 shows the p-

values for the null hypothesis of no increase (H0: true effect�0.2 SD), which corresponds to a one-sided minimal effects test. Using α = .05, we would fail to reject this

null hypothesis for any outcome. Column 6 shows the p-values for the null hypothesis of decrease (H0: true effect�-0.2 SD), which corresponds to a noninferiority test.

Using α = .05, we would reject the null hypothesis for 4 of 6 outcomes. Though the paper concluded that foam rolling improved vertical jump height and passive range

of motion, this re-analysis suggests that these conclusions were overly optimistic. At best the study could conclude that foam rolling was not detrimental to jump height

or passive range of motion for some time points. Note that this re-analysis fails to account for the multiplicity of tests (39 total tests were run; only 6 are shown here).
bThe p-values for the null hypothesis of no increase are obtained by subtracting the MBI benefit/positive probabilities from 1. For example, 1-.74 = .26.
cEffects were only deemed “clear” if the one-sided p-value for the null hypothesis of decrease was significant at p < .05 (the study used non-clinical MBI with η1b = η1h =

5%).
dThis paper used a minimal evidence cutoff of “likely” for declaring substantial effects, specifying: “Results with a >75% likelihood were considered to be substantial.”

[30]
eMBI probabilities were not given for “unclear” results, but we were able to back-calculate these p-values from the effect size estimate and 95% confidence intervals

available in the paper.

https://doi.org/10.1371/journal.pone.0235318.t004
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that the study’s conclusions were overly optimistic. Notably, this paper has been cited 258

times in Google Scholar (as of 2020-01-05); the first 10 citing papers that we checked all cited

MacDonald and colleagues [30] as providing evidence of the benefits of foam rolling, demon-

strating how overly optimistic conclusions are easily propagated through the literature and

how correcting such errors is difficult once they are published.

In cases where papers do not report the exact MBI harm and benefit probabilities, it is pos-

sible to back-calculate the relevant p-values from confidence intervals. We include SAS and R

code for doing this, specifically for between-group comparisons, in S2 Appendix. For ease of

use, we have also created an online results converter (https://rehabinformatics.shinyapps.io/

MBI_Converter/).

As a case-study, MBI has larger lessons for the statistical community. Some academics have

suggested that moving researchers away from p-values and/or significance testing will improve

applied statistical practice. MBI provides a natural experiment for testing this hypothesis. We

found that MBI papers were no less prone to dichotomization or over-interpretation of find-

ings; in fact, use of MBI generally led to greater exaggeration of results than standard signifi-

cance testing. Other empirical investigations have drawn similar conclusions: A review of 31

papers published in Basic and Applied Social Psychology after the journal banned p-values

found that many authors over-interpreted their results far beyond what the data supported

[71]. Misuse of frequentist tools therefore appears to be a symptom of a deeper problem rather

than the cause of bad statistics. To improve statistical practice in applied disciplines, we will

have to address more fundamental problems such as poor statistical knowledge among applied

researchers; an unsophisticated view of statistics as a black box set of recipes that provides sim-

ple answers; and endogenous and exogenous incentives to report “positive” findings.

5. Conclusions

We have conducted a systematic review of the MBI literature and undertaken mathematical

analyses of MBI methods. We found that MBI has done direct harm to the sports science and

medicine literature by causing authors to draw overly optimistic conclusions from their data.

MBI has also promoted small studies, promulgated a simplistic “black box” approach to statis-

tics, and reinforced the harmful view that the purpose of research is to get publishable results

for the researcher. Sports scientists should stop using MBI. Past empirical studies that have

used MBI may well include useful descriptive statistics, but their conclusions should be treated

with skepticism. As a case-study, MBI has larger lessons for the statistical community: Our

findings suggest that moving researchers away from significance testing and p-values does not

improve applied statistical practice.
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