
1 
 

The genomes of two bat species with long constant 

frequency echolocation calls 

 
Dong Dong1^*, Ming Lei1^, Panyu Hua1, Yi-Hsuan Pan1, Shuo Mu1, Guantao Zheng1, Erli Pang2, Kui 

Lin2 and Shuyi Zhang3 

 

1 Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life 

Sciences, East China Normal University, Shanghai 200241, China; 

2 School of Life Sciences, Beijing Normal University, Beijing 100875, China; 

3 Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary 

Medicine, Shenyang Agricultural University, Shenyang 110866, China. 

 
^ These authors contributed equally to this work 

*To whom correspondence should be addressed. Email: ddong.ecnu@gmail.com 

 

  

© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and 

Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 



2 
 

Abstract 

 Bats can perceive the world by using a wide range of sensory systems, and some 

of the systems have become highly specialized, such as auditory sensory perception. 

Among bat species, the Old World leaf-nosed bats and horseshoe bats (rhinolophoid 

bats) possess the most sophisticated echolocation systems. Here, we reported the 

whole-genome sequencing and de novo assembles of two rhinolophoid bats – the 

great leaf-nosed bat (Hipposideros armiger) and the Chinese rufous horseshoe bat 

(Rhinolophus sinicus). Comparative genomic analyses revealed the adaptation of 

auditory sensory perception in the rhinolophoid bat lineages, probably resulting from 

the extreme selectivity used in the auditory processing by these bats. 

Pseudogenization of some vision-related genes in rhinolophoid bats was observed, 

suggesting that these genes have undergone relaxed natural selection. An extensive 

contraction of olfactory receptor gene repertoires was observed in the lineage leading 

to the common ancestor of bats. Further extensive gene contractions can be observed 

in the branch leading to the rhinolophoid bats. Such concordance suggested that 

molecular changes at one sensory gene might have direct consequences for genes 

controlling for other sensory modalities. To characterize the population genetic 

structure and patterns of evolution, we re-sequenced the genome of 20 great 

leaf-nosed bats from four different geographical locations of China. The result 

showed similar sequence diversity values and little differentiation among populations. 

Moreover, evidence of genetic adaptations to high altitudes in the great leaf-nosed 

bats was observed. Taken together, our work provided a useful resource for future 

research on the evolution of bats. 
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Introduction 

Bats (order Chiroptera) are one of the largest monophyletic clades in mammals 

(order Chiroptera), and constitute nearly 20% of living mammalian species. They can 

perceive their surroundings using a wide range of sensory systems, and have long 

been regarded as the most unusual and specialized species of all mammals. Most bats 

are sophisticated echolocators and rely on their echolocation systems for navigation. 

However, Old World fruit bats have no laryngeal echolocating ability, and navigate 

largely by vision. Based on overwhelming molecular genetic evidence, it has been 

proposed that echolocating bats are paraphyletic (Teeling, et al. 2005). Old World fruit 

bats and some laryngeal echolocators (including Rhinolophidae, Hipposideridae, 

Craseonycteridae, Megadermatidae, and Rhinopomatidae families) are a natural group 

– the suborder Yinpterochiroptera, and the remaining laryngeal echolocating bats are 

grouped to another suborder Yangochiroptera .  

 

Two distinct navigation approaches can be employed by echolocating bats: low 

duty cycle (LDC) echolocation and high duty cycle (HDC) echolocation (Teeling 

2009). LDC echolocators can separate pulse and echo in time to avoid forward 

masking, whereas some species of HDC echolocators separate pulse and echo in 

frequency. It has been documented that rhinolophoid bats might possess the most 

sophisticated echolocation systems (Jones and Teeling 2006). Recently, results from 

some hearing-related genes suggested sequence convergence in laryngeal 

echolocating bats (Li, et al. 2008; Davies, et al. 2012). We attempted to investigate 

whether similar patterns can be detectable in other hearing-related genes. Furthermore, 

a sensory trade-off between investment in vision and echolocation has been identified 

(Dechmann and Safi 2009). Loss-of-function in short-wave sensitive opsin (Sws1 

gene) occurred in rhinolophoid bats, which use HDC echolocation and can emit long 

constant frequency calls (Zhao, et al. 2009). Although several bat genomes have been 

sequenced (Zhang, et al. 2013), the evolutionary mechanisms of the rhinolophoid bats 

remains unclear. Comparative genomics will provide us opportunities to investigate 
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whether similar patterns can be detectable in other sensory genes.  

 

The great leaf-nosed bat (Hipposideros armiger) and the Chinese rufous 

horseshoe bat (Rhinolophus sinicus) are two important species of rhinolophoid bats. 

First, these are model organisms with remarkable HDC echolocation ability and can 

emit continuous ultrasonic calls of long constant frequency with remarkable acoustic 

features (Doppler-shift compensation) (Schnitzler, et al. 2003). We can 

comprehensively explore how rhinolophoid bats evolved a specialized form of 

echolocation. Second, they are important reservoir hosts of emerging viruses, and the 

Chinese rufous horseshoe bat has been suggested to carry the direct ancestor of severe 

acute respiratory syndrome (SARS) coronavirus (Ge, et al. 2013). In this work, we 

presented the genomes of the great leaf-nosed bat and the Chinese rufous horseshoe 

bat using the next generation sequencing platform (Illumina Hiseq 2500). The result 

revealed the adaptation of auditory sensory perception in HDC echolocators, and 

showed an extensive contraction of olfactory receptor gene repertoires as well as 

pseudogenization of some vision-related genes. Furthermore, we performed genome 

re-sequencing to analyze the population genetic structure of the great leaf-nosed bats. 

The genomic data provide genetic evidence of adaptive evolution in rhinolophoid 

bats. 
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Materials and Methods 

Genome sequencing and de novo assembly 

A female great leaf-nosed bat (Hipposideros armiger) and a female Chinese 

rufous horseshoe bat (Rhinolophus sinicus) were captured from a cave (N 30°20.497′ 

E 117°50.104′) in Anhui Province, China on September 24, 2011. The bats were 

euthanized by respiratory hyperanesthesia with isoflurane, and then we performed a 

thoracotomy on anesthetized bats. The tissues were stored in liquid nitrogen and 

transported to the sequencing center. All procedures were performed in accordance 

with the guidelines of Regulations for the Administration of Laboratory Animals 

(Decree No. 2 State Science and Technology Commission of the People’s Republic of 

China). This study was approved by the Animal Ethics Committee of East China 

Normal University (ID no: 20090219 ). 

 

Genomic DNA was extracted from bat muscle using the Qiagen DNeasy Blood 

and Tissue Kit. Six paired-end libraries with insert size of 170 bp, 500 bp, 800 bp, 3k 

bp, 8k bp and 20k bp were constructed and sequenced for the great leaf-nosed bat and 

the Chinese rufous horseshoe bat, respectively. The libraries were sequenced using 

Illumina HiSeq2500 platform, which has a read length of 101 bp. Low quality 

sequencing reads were filtered out and potential sequencing errors were removed. The 

following filtering criteria were carried out: 1) Filter reads with >5% unidentified 

nucleotides; 2) Filter reads with >10 nucleotides aligned to the adapter sequence, 

allowing <3 mismatches; 3) remove putative PCR duplicates generated by PCR 

amplification in the library construction process. Finally, we generated 476.5 Gb and 

288.5 Gb of sequences for the great leaf-nosed bat and the Chinese rufous horseshoe 

bat, respectively.  

 

 The genome sequences were assembled using ALLPATHS software (Butler, et al. 

2008). Briefly, contigs were generated by constructing a de Bruijin graph with the 

sequencing reads from short-insert library data. The graph was simplified to generate 
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the contigs by removing tips, merging bubbles and solving repeats. The sequencing 

reads were mapped to the assembled contigs, and the scaffolds were constructed by 

weighting the rates of consistent and conflicting paired-end relationships. At last, we 

retrieved the read pairs with one end that uniquely mapped to the contigs and the 

other end located in the gap region, a local assembly for these collected reads was 

performed to fill the gaps. A more detailed genome assembly method is provided in 

Supplementary methods. 

 

Transcriptomic sequencing 

 Total RNAs of the two bats were extracted from brain, cerebellum, heart, liver, 

stomach, kidney, lung and muscle tissues for the generation of transcriptome data. 

Paired-end libraries for RNA sequencing were constructed using the Illumina 

mRNA-seq Prep Kit. The quality and integrity of the RNA samples were determined 

using the Agilent2100 Bioanalyzer. Poly(A) mRNAs were isolated using oligo(dT) 

beads, fragmented, and converted to cDNAs followed by end repair, adaptor ligation, 

and PCR amplification. The libraries thus generated were sequenced using the 

Illumina HiSeq2500 platform as described above.  

 

Genome annotation 

 We searched for tandem repeats across the genomes using Tandem Repeats Finder. 

Transposable elements were predicted in the genomes by homology search against the 

known transposable elements (TE) in RepBase (Jurka, et al. 2005) (version 20110920) 

using RepeatMasker version 3.3.0 (Tarailo-Graovac and Chen 2009). The 

protein-coding genes of the bat genomes were annotated by combining 

homology-based, ab initio and RNA-seq gene prediction methods. At first, RNA-seq 

data were assembled using the Trinity package (Trapnell, et al. 2013). PASA (version 

r2012-06-25) (Haas, et al. 2003) was then used to map the assembled transcripts. 

Based on the set of gene models, a training set was constructed for de novo predictors 

by selecting the genes with complete structures and at least 100% mapping rate for 

UniProt vertebrate proteins. For the ab initio prediction, Augustus (Stanke and Waack 
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2003) and GenScan (Burge and Karlin 1997) were used to predict protein-coding 

genes with the training set generated by PASA. For homology-based gene prediction, 

the protein sequences of human, mouse, dog, cow, little brown bat and large flying 

fox were downloaded from Ensembl Release 72 and mapped onto the repeat-masked 

genome using GenBlastA (She, et al. 2009). RNA-seq data were mapped to the 

genome using TopHat (Trapnell, et al. 2009), and the transcription-based gene 

structure were generated by Cufflinks (Trapnell, et al. 2013). The final gene set was 

generated by merging all genes predicted using GLEAN software 

(http://sourceforge.net/projects/glean-gene/). To infer gene function, it was based on 

the best match of the alignment to the Swissprot and translated EMBL nucleotide 

sequence data library databases using BLASTP. InterproScan (Mulder and Apweiler 

2007) was used to determine motifs and domains in the final gene set. To evaluate 

completeness of the genomes and annotations, CEGMA method (Parra, et al. 2007) 

was employed.  

 

Gene families 

 We used the TreeFam methodology (Li, et al. 2006) to define gene families in 14 

mammalian genomes (human, macaque, mouse, rat, dog, cat, horse, rhinoceros, cow, 

pig, little brown bat, large flying fox, great leaf-nosed bat and Chinese rufous 

horseshoe bat). The protein sequences of other 12 mammalian species were obtained 

from Ensembl database (Release 72). Gene family expansion and contraction analysis 

was performed by CAFÉ software (De Bie, et al. 2006). A random birth and death 

model was proposed to study gene gain and loss in the gene families across a 

user-specified phylogenetic tree. A global parameter λ (lambda), which described both 

gene birth (λ) and death (μ = -λ) rates across all branches of all gene families was 

estimated using the maximum likelihood method. A conditional p-value was 

calculated for each gene family, and families with conditional p-values less than 0.05 

were considered to have a significantly accelerated rate of expansion and contraction. 

 

Evolutionary analyses 
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 Protein sequences of the aforementioned 14 mammals were aligned using 

MUSCLE software (Edgar 2004). All orthologous genes were concatenated to one 

super gene for each species. RAxML (Stamatakis 2014) was applied to build 

phylogenetic trees. We partitioned the data by coding genes, and evaluated the model 

parameter independently for each partition. In all partitioned analyses, the empirical 

base frequencies and the evolutionary rates were estimated independently for every 

partition. Bootstrap support was obtained by repeating the original partitioned ML 

RAxML analysis on 100 bootstrap replicates for each dataset using different random 

number seeds in each repetition. Next, we inferred the species tree using coalescent 

method: maximum pseudo-likelihood estimation of species tree (MP-EST) (Liu, Yu, 

et al. 2010). Individual gene tree for each gene was estimated using the 

maximum-likelihood method and rooted by an outgroup (human). Species trees were 

estimated from the rooted gene trees in the program MP-EST with 100 bootstrap 

replicates. The results supported that bats are member of scrotifera (Chiroptera + 

Carnivores + Perissodactyla + Cetartiodactyla) with bat lineage diverging from 

Fereuungulata (Carnivores + Perissodactyla + Cetartiodactyla). 

 

 The values of Ka, Ks, the Ka/Ks ratio were estimated for each gene using the 

Codeml programs nested in the PAML package (Yang 2007). In order to detect 

positively selected genes, optimized branch-site likelihood model (Zhang, et al. 2005) 

was used. We separately explored the positively selected genes in the great leaf-nosed 

bat and the Chinese rufous horseshoe bat. For each analysis, only one bat species was 

selected as foreground branches, and all other species were regarded as the 

background branches. The revised branch-site model A was employed, which attempts 

to identify positive selection acting on some sites on the “foreground branches”. 

Using an likelihood ratio test (LRT), the alternative hypothesis that positive selection 

occurs on the foreground branches (Ka/Ks > 1) is compared with the null hypothesis 

(Ka/Ks=1). Bayesian empirical Bayes values were used to identify sites under positive 

selection. Then, branch two-ratio model was applied to detect accelerated evolved 

genes in specific lineage. The one-ratio model assumed an equal Ka/Ks ratio for all 
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lineages in the phylogeny, and the two-ratio model assumed two Ka/Ks ratios: one 

branch for the background, one for the foreground branch leading to the specific 

species. Then, Clade model C was employed to test for positive selection along the 

rhinolophoid bats. The two clades were assumed to share sites under purifying 

selection and neutral evolution, but to differ at a third site partitions under divergent 

selection. The null model used for the Clade model C was M2a_rel (Weadick and 

Chang 2012), whose LRT has a relatively lower false-positive rate. GO annotations 

were downloaded from Ensembl databases and were assigned to these orthologous 

genes. The binomial test was used to identify GO categories with more than 20 gene 

that had an excess of non-synonymous changes in bat lineages. Next, we used the 

program MAPP (multivariate analysis of protein polymorphism) (Stone and Sidow 

2005) to evaluate the physicochemical impact of these convergent amino acid 

substitutions on bats. Physicochemical variations can be used to predict how these 

particular convergent amino acid substitutions might affect protein function. 

 

In this work, we performed a probabilistic analyses of the sequence convergence 

in echolocating bats. A maximum likelihood approach, implemented in the software 

package Codeml ancestral, was used. We compared the pair-wise branches of two 

echolocating bat in the phylogeny, and posterior probabilities of all possible amino 

acid substitutions were calculated. The probabilities of divergent and convergent 

substitutions were calculated as the sum of joint probabilities of substitutions between 

the two branches of echolocating bats. Convergence and divergence estimates were 

based on posterior distributions of ancestral states and substitutions. The same state 

(same amino acid) represents convergent substitutions, and the different state 

represents divergent substitutions. Finally, to further validate that the convergence 

between two branch pairs of echolocating bats was significant, we performed the 

simulation analysis to compare the observed probabilities against that of the null 

hypothesis. Simulated sequences were generated using Evolver, another package from 

PAML package (Yang 2007). The branch-wise convergence probabilities were 

calculated with 1,000 replicates.  
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Identification of olfactory receptor (OR) repertoires 

 We used the similar in silico method as previously reported in Dong et al. (Dong, 

et al. 2009). At first, we used previously published OR genes in vertebrates as query 

sequences (Niimura and Nei 2007) and conducted a TBlastN search against the 

genome sequences with a cutoff E value of 1e-10 to identify the OR gene repertoires. 

Here, we totally identified OR gene repertories from eight mammalian genomes (the 

great leaf-nosed bat, Chinese rufous horseshoe bat, little brown bat, large flying fox, 

human, mouse, dog and cow). The draft genome sequences of human (Homo sapiens, 

hg38; GCA_000001405.15), mouse (Mus musculus, Mouse Build 38, 

GCA_000001635.2), dog (Canis lupus familiaris, canFam3), cow (Bos taurus, 

bosTau8), large flying fox (Pteropus vampyrus, pteVam1) and little brown bat (Myotis 

lucifugous, Myoluc2.0) were downloaded from the UCSC Genome Bioinformatics 

Site (http://genome.ucsc.edu). Then, the non-redundant blast-hits were extended to the 

5’ and 3’ directions along the genome sequences, and the potential coding regions 

were extracted from these sequences. The chemosensory receptor genes in mammals 

have high sequence similarity. Here, we re-performed a TBlastN against the genome 

sequences using OR coding genes identified from each species, and the non-redundant 

blast-hits were used to identify the OR pseudogenes containing interrupting stop 

codons or frameshifts. To identify partial OR genes from these sequences, we 

extracted the sequences that did not have any nonsense or frameshift mutations. We 

then constructed a multiple alignment of these sequences together with functional OR 

genes by the program E-INS-i in MAFFT version 5.8 (Katoh, et al. 2002). From those 

alignments, we extracted partial OR sequences that meet the following criteria. When 

the C-terminal region of an OR gene is missing from the genome sequence, the 

N-terminal region should contain an initiation codon at a proper position and should 

not contain any nonsense mutations, frameshifts, or long gaps. When the N-terminal 

region is missing, the C-terminal portion should have a stop codon at a proper 

position and should not contain any nonsense mutations, frameshifts, or long gaps. We 

also identified 6 and 10 sequences with nonsense stop codon in the great leaf-nosed 
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bat and Chinese rufous horseshoe bats, which miss both a start and stop codons. 

However, These sequences were removed because they have relatively short sequence 

length (~400 bp) and have strong sequence similarity with bitter taste receptor genes. 

To assign identified OR genes into distinct OR gene families, a collection of protein 

sequences from HORDE database version 42 (Safran, et al. 2003) was used. 

 

 To detect the extensive gain and lose of OR gene repertories, we employed the 

reconciled tree method (Nam and Nei 2005), in which the topology of a gene tree is 

reconciled with that of a species tree. An in-house program was applied. Briefly, 

based on the phylogenetic tree of OR genes, we compared the condensed gene tree 

and the species tree under the parsimony principle. The number of ancestral genes can 

be estimated, and the information of the past occurrence of gene expansion and 

contraction. Here, we used a 70% condensed tree of OR genes for analyses. 

 

Visual perception pseudogene identification 

 A list of vision-related genes were obtained from GO category of visual 

perception (GO:0007601). We subjected human vision-related proteins to TblastN 

against the genomes with cutoff threshold of e-value 1e-5. We found that best-hits for 

each human protein by using the criteria that more than 30% of the aligned sequences 

showed an identity above 30%. GeneWise algorithm was employed to identify 

potential pseudogenes with parameters –genesf –for –quiet. Those genes with frame 

shifts or pre-mature stop codons were considered as candidates. We then filtered them 

as follows: 1) we aligned all human proteins to their corresponding genomic loci, and 

those genes with frameshifts or premature stop codons in human-to-human alignments 

were removed; 2) as for the human-to-human alignments, those genes with obvious 

splicing errors near their frameshifts or premature stop codons were removed; 3) 

candidate pseudogenes with a low number of sequencing reads covering their 

frameshift or premature stop codon sites were regarded assembly error. Those genes 

with a number of reads containing genotype variations at these sites were considered 

as heterozygous and were also removed. 
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Rapid evolution 

We used a method based on Ka/Ks to identify GO categories that significantly 

above average in the great leaf-nosed bat genome and Chinese horseshoe bat genome. 

At first, the Ka and Ks rates are calculated by PAML package from all aligned bases 

with quality score larger than 20 in orthologs, using the F3x4 codon frequency model 

and the REV substitution matrix. In order to examine the evolution function catalog, 

we downloaded the GO annotation of human gene from the Ensembl biomart database 

(release-71). We estimated the average Ka and Ks values for those genes which have 

annotated GO as following equations (S1, S2). 
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Where T is the number of annotated genes within GO categories, ia and iA are the 
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Where Ca and Cs  are the total number of non-synonymous and synonymous 

substitutions in GO category C, respectively. 

 

We applied an approach to the binomial test described above to identify GO 

categories that have an excess of non-synonymous changes on one lineage. For 

lineages x and y, the average proportion of non-synonymous substitutions were 

calculated by the following formula (S5). 
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Where ,i ii i
x x y y  ¦ ¦ , x is the total number of non-synonymous substitutions in 

the x lineage, y is the total number of non-synonymous substitutions in the y lineage, 

and the divergence of the proportion of non-synonymous substitution numbers in 

different lineages between the observed and expected obeys binomial distribution, the 

formula is as in the following equation (S6). 
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As described for the absolute rate tests, we then computed this statistic for every GO 

category, as well as for every category in 10,000 randomly permuted data sets. 

 

Population-based re-sequencing and SNP calling 

 We sampled a total of 20 great leaf-nosed bats distributed in four different 

locations. Genomic DNA was extracted from wing membranes of each individual. 

Paired-end sequencing library with an insert size of 500 bp was constructed for each 

sample, and sequenced on the Illumina Hiseq 2500 platform with 2×101 bp mode. 

Duplicate sequencing reads were filtered out according to the following criteria: 1) 

any reads with >10% unidentified nucleotides; 2) reads with >10 nt aligned to the 

adapter sequence, allowing <10% mismatches; 3) reads with 50% bases having phred 

quality <5. The filtered reads were mapped to the genome using BWA, and SAMtools 

were used to call SNPs. Then, we filtered SNPs using VCFtools and GATK under the 
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following criteria: 1) coverage depth >4 and <10000; 2) root mean square mapping 

quality >10; 3) the distance of adjacent SNPs >10 bp; 4) the distance to a gap > 10; 5) 

read quality value >30. 

 

Phylogenetic and population genetic analyses 

 To estimate phylogenetic relationships, the genetic distances were calculated 

among all samples to generate a neighbor-joining (NJ) tree using PHYLIP. We 

performed a principal component analysis using the package GCTA. The population 

structure was inferred using frappe (v1.1) with a maximum likelihood method (Tang, 

et al. 2005).  

 

Identification of selected regions 

 Sliding-window approach (10 kb window sliding in 10 kb step) was employed to 

quantify polymorphism levels (θπ, pairwise nucleotide variation as a measure of 

diversity) and genetic differentiation (Fst) between the high altitude region (DQ) and 

low altitude regions (TW, JX and GZ). To detect significant signatures of selective 

sweep, Z-transformed Fst values was calculated. 

 

Results 

Genome sequencing and assembly 

Next-generation genome sequencing was carried out, generating 476.5 Gb and 

288.5 Gb of sequences for the great leaf-nosed bat and the Chinese rufous horseshoe 

bat (Supplementary Table S1), respectively. The genome size was estimated to be 2.18 

Gb and 2.07 Gb for the great leaf-nosed bat and the Chinese rufous horseshoe bat 

(Supplementary Fig.1), which suggests the genome coverage of 218.6 × for the great 

leaf-nosed bat and 146.4 × for the Chinese rufous horseshoe bat. Genome assembly 

resulted in the contig and scaffold N50 values of 34 kb and 2.3 Mb for the great 

leaf-nosed bat and 17.5 kb and 3.75 Mb for the Chinese rufous horseshoe bat (Table 1, 

Supplementary Table S2,3 Supplementary Fig.2), respectively. A total of 827,722 and 
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8,110,439 heterozygous single nucleotide polymorphisms (SNPs) were identified in 

the great leaf-nosed bat and the Chinese rufous horseshoe bat genomes, respectively. 

The great leaf-nosed bat has a relatively lower number of heterozygous SNP rate at 

0.037% than that of the Chinese rufous horseshoe bat (0.355%, Supplementary Table 

S4, Supplementary Fig.3). 

 

Genome annotation 

Known transposon-derived repeats account for 25.8% and 28.5% of the genomes 

in the great leaf-nosed bat and the Chinese rufous horseshoe bat, respectively, which 

are lower than other non-bat mammalian species (Supplementary Table S5). To 

facilitate the genome annotation, we generated a high-depth transcriptome data from 

these two rhinolophoid bats. With repeats masked, the genome was annotated by 

integrating the homologous prediction, ab initio prediction and transcription-based 

prediction methods. As a result, a non-redundant reference gene set of 22,009 and 

23,152 protein-coding genes were generated for the great leaf-nosed bat and the 

Chinese rufous horseshoe bat (Supplementary Fig.4), respectively. We employed 

CEGMA method to evaluate the completeness of genome annotation. The result 

showed that the vast majority of the core genes were present in our predicted gene 

sets (97.08% for the great leaf-nosed bat and 96.14% for the Chinese rufous 

horseshoe bat), indicating the completeness of gene sets identification. Next, we 

aligned the transcriptome sequencing reads to the predicted genes, and the result 

showed that approximately 96% of exons are accurately covered (96.8% for the great 

leaf-nosed bat and 97.1% for the Chinese rufous horseshoe bat). Comparative analysis 

showed a high gene sequence similarity between them (91%, Supplementary Fig.5). 

We next examined the level of homology between our predicted genes and sequences 

in the Uniprot database. The result showed that >92% of the genes were functionally 

annotated (94% for the great leaf-nosed bat and 92.2% for the Chinese rufous 

horseshoe bat). 

 

Compared with the gene families in other three mammalian species – the little 
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brown bat, large flying fox and human, we identified 8,792 homologous gene families 

shared by five species. A total of 975 gene families were specific to the rhinolophoid 

bats (Fig. 1). Further functional annotation indicated that the rhinolophoid bats 

specific gene families were significantly over-represented in two major functional 

categories: ATP binding (43 genes, F.D.R.= 0.0002) and immunity and host defense 

(25 genes, F.D.R.= 0.0051; Supplementary Table S6). 

 

Phylogenetic reconstruction and evolutionary analysis 

 Until now, the relationship of bats to other members of superorder Laurasiatheria 

has proven difficult to resolve. Some studies insisted that bats belong to the clade of 

Pegasoferae which comprises chiroptera, carnivores and odd-toed ungulates 

(Lindblad-Toh, et al. 2011; Meredith, et al. 2011; McCormack, et al. 2012), whereas 

others proposed that bats are a sister group to the clade comprising carnivores and 

euungulata (Pumo, et al. 1998; Murphy, et al. 2001; Murphy, et al. 2007; Song, et al. 

2012; Zhang, et al. 2013). To determine the phylogenetic position of bats within the 

superorder Laurasiatheria, a total of 4,569 single-copy 1:1 orthologous genes were 

used from 14 genomes (see Materials and Methods) to estimate the phylogenetic 

relationship. At first, phylogenetic reconstruction was based on concatenated data. 

The data were partitioned by coding genes, and estimated model parameters 

independently for each partition. In the bat subordinal relationship analysis, all 

phylogenetic evidence vigorously support the reciprocal monophyly of the proposed 

suborders Yinpterochiroptera and Yangochiroptera (bootstrap value = 100%, 

Supplementary Fig.6), with two rhinolophoid bats being more closely related to the 

non-echolocating large flying fox. Considering the position of bats in the phylogenetic 

tree, conflicting results were obtained using concatenated nucleotides and amino acids  

(Supplementary Fig.6). The result based on nucleotide data was in line with previous 

analysis that bats are a sister group to odd-toed ungulates, whereas the result based on 

amino acid data supported that bat bats are sister group to the Fereuungulata 

(Carnivores + Perissodactyla + Cetartiodactyla). To account for the tree discordance 

among loci, coalescent method was applied. Coalescent trees were highly consistent 
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with the result inferred from amino acid data using partitioned method 

(Supplementary Fig.7). To dissect the phylogenetic signal, previously published eight 

different phylogenetic hypotheses (Supplementary Fig.8) were proposed (Waddell, et 

al. 1999; Madsen, et al. 2001; Murphy, et al. 2001; Nishihara, et al. 2006; Prasad, et al. 

2008; Lindblad-Toh, et al. 2011; Meredith, et al. 2011; McCormack, et al. 2012). We 

calculated the log-likelihood support for the nucleotides and amino acids datasets 

under the different proposed species tree topologies, and computed the approximately 

unbiased (AU) test statistic to compare the alternative topologies using CONSEL 

(Shimodaira and Hasegawa 2001). Only the hypotheses that bats are member of 

scrotifera (Chiroptera + Carnivores + Perissodactyla + Cetartiodactyla) with bat 

lineage diverging from Fereuungulata (Carnivores + Perissodactyla + Cetartiodactyla) 

are statistically supported by both nucleotide and amino acid evidence 

(Supplementary Table S7, Supplementary Fig.9). The result is consistent after 

incorporating the data from Eulipotyphyla group (Supplementary Fig.10). We 

subsequently estimated the divergence time among these 14 mammalian species. The 

bat lineage seems to be diverged from Fereuungulata around 81 million years ago, and 

the rhinolophoid bats seem to be diverged from the Old World fruit bats around 68 

million years ago. 

 

Gene evolution 

 Comparative genome analyses were carried out to assess the evolution and 

innovation within the rhinolophoid bats. We next determined the expansion and 

contraction of gene orthologous clusters during evolution. The result identified 48 

significantly expanded and 65 significantly contracted gene families in the great 

leaf-nosed bat, 46 significantly expanded and 54 significantly contracted gene 

families in the Chinese rufous horseshoe bat (Fig. 2). Functional annotation showed 

that gene family contraction mainly included many olfactory receptor gene families in 

both rhinolophoid bat lineages (Supplementary Table S8), which is consistent with the 

result that the olfactory system is aberrant in some echolocating bats. Many of the 

expanded gene families in both rhinolophoid bats are significantly enriched in 
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immune-related functional categories (Supplementary Table S9). Moreover, we 

identified 577, 453 and 182 positively selected genes in the great leaf-nosed bat, the 

Chinese rufous horseshoe bat and the large flying fox, (Supplementary Tables S10, 11, 

12), respectively. 

 

Evolution of olfactory receptor (OR) genes 

Olfaction is of great importance in the lives of bats. Many bats can use olfaction 

for mother-pup recognition, find food and avoid danger. In Old World fruit bats, 

olfaction appears to be of particular importance, and fruit bats can find food from 

scent cues. Animals that rely heavily on the sense of smell tend to have large numbers 

of OR genes, while species that always use other senses have fewer functional OR 

genes (Niimura and Nei 2007). It has been suggested that bats displayed a diverse 

olfaction abilities. In order to describe the diversity of bat OR gene repertoires, we 

identified the entire set of OR genes of four bat species (Supplementary methods, 

Supplementary Table S13). In line with previous work (Hayden, et al. 2014), we 

observed that echolocating bats have less fraction of OR pseudogenes (18% for the 

great leaf-nosed bat, 16% for the Chinese rufous horseshoe bat and 14% for the little 

brown bat) than non-echolocating bats (26% for the large flying fox). However, 

further analysis showed that the large flying fox and little brown bat have more than 

400 intact OR genes while these two rhinolophoid bats only have <300 intact OR 

genes. This finding is consistent with the result that rhinolophoid bats have a 

relatively small olfactory epithelium than the frugivorous Pteropodidae (Neuweiler 

2000). Next, we reconstructed a protein neighbor-joining tree of all newly identified 

intact OR genes in bats (Fig. 3a). It is obvious that OR genes can be classified into 

two distinct classes based on sequence similarity: Class I, postulated to bind to 

water-borne molecules, and Class II, hypothesized to bind to airborne molecules. The 

exact number of OR genes in each class/OR family are shown (Supplementary Table 

S14, Table S15). It seems that four bat species contain similar number of OR genes in 

Class I, while OR gene contraction occurred in two rhinolophoid bats in Class II . 
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Previous works have documented that the number of OR genes varies extensively 

among mammalian species, and extensive gains and losses of OR genes have been 

observed (Niimura and Nei 2007). To further understand the evolutionary changes of 

OR gene repertoires, we estimated the gains and losses of the OR genes in a diverse 

range of mammals (Supplementary methods). Evolutionary changes in the number of 

OR genes in mammals have been shown in Fig. 3b. We can clearly identify an 

extensive OR gene contraction events occurred to the branch leading to the common 

ancestor of bats. Further extensive gene contractions can be observed in the branch 

leading to the rhinolophoid bats. This finding also suggests massive “birth-and-death” 

of OR genes in the bat species. 

 

Evolution of hearing-related genes 

Comparative analysis of the auditory perception can help to elucidate the 

molecular basis that underpin different auditory capabilities. Accelerated gene 

evolution between lineages could reflect an association between genetic changes and 

the evolution of specific traits. Compared with the large flying fox, analysis of 

non-synonymous to synonymous substitution (Ka/Ks) ratios of orthologous for 

different GO categories revealed an enrichment of elevated Ka/Ks values in the inner 

ear development (GO:0048839, P = 8.97E-10 for the great leaf-nosed bat and P = 

1.16E-03 for the Chinese rufous horseshoe bat) and sensory perception of sound 

(GO:0007605, P = 1.11E-16 for the great leaf-nosed bat and P = 2.41E-08 for the 

Chinese rufous horseshoe bat) categories (Supplementary Table S16, 17). Of the 53 

genes examined in the category of sensory perception of sound, 14 (P = 1.5E-5, the 

great leaf-nosed bat), 13 (P = 6.7E-4, the Chinese rufous horseshoe bat) and 12 (P = 

6.6E-4, the little brown bat) genes showed evidence of positive selection in the 

echolocating bats. Meanwhile, only 2 genes were positively selected in the large 

flying fox (Supplementary Table S18). Since high omega may be due to stochastic 

effect caused by extremely small sample size, we removed these genes with omega 

value of 999. The result is also stable that more positively selected genes were 

detected in the branches leading to echolocating bats (12 genes, great leaf-nosed bat, 
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P = 9.1E-5; 10 genes, Chinese rufous horseshoe bat, P = 8.8E-3; 10 genes, little 

brown bat, P = 0.011). Next, branch model (two-ratio model) was carried out with the 

attempt to detect genes with accelerated evolution in the bat species. The result further 

indicated that more hearing-related genes have higher ɷ values on the branches 

leading to echolocating bats than all other lineages (Supplementary Table S19). Clade 

model C implemented in PAML was employed (Weadick and Chang 2012), and the 

result also persisted that more positively selected genes were detected in the branches 

leading to echolocating bats (Supplementary Table S20). Moreover, a significant 

association between the average number of non-synonymous substitutions for all the 

hearing-related genes leading to each mammalian species and the estimated frequency 

of best hearing sensitivity for that species (r = 0.84, P = 0.00032, Fig. 4) was 

observed. No significant correlation between such hearing frequencies and number of 

synonymous changes was observed (P = 0.132). A significant association between the 

number of non-synonymous changes between sister taxa was observed (r = 0.67, P = 

0.006). It is obvious that echolocating bats have typically undergone many more 

non-synonymous changes in the hearing-related genes than non-echolocating 

mammals. These results indicated the evolution of ultrasonic hearing in the 

rhinolophoid bats has involved in adaptive amino acid replacements in the 

hearing-related genes, which provided evidence conferring greater auditory sensitivity 

to ultrasonic frequency.  

 

Previous works have documented that seven hearing-related genes underwent 

convergent evolution in echolocators (Li, et al. 2008; Li, et al. 2010; Liu, Cotton, et al. 

2010; Davies, et al. 2012; Liu, et al. 2012; Shen, et al. 2012). Here, genome-wide 

signatures of convergent evolution were examined in laryngeal echolocating bats. 

Except for the previously reported seven hearing-related genes, we totally identified 

10 genes examined in the sound of perception category containing potential sequence 

convergent loci (site-wise convergence posterior probabilities > 0.5). To confirm our 

result, we amplified and sequenced these 10 hearing-related genes from another two 

echolocating bats (Eptesicus fuscus and Miniopterus natalensis). The result also 
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showed that these 10 genes have higher convergence probabilities occurred in 

echolocating bats from a wider range of taxa, and the convergence probabilities 

between branches were significant based on simulations (Supplementary Table S21). 

However, maximum likelihood trees recovered the topology that all laryngeal 

echolocating bats formed a monophyletic clade for only four genes (COL1A1, ICAM1, 

BSND and STRC, Supplementary Fig.11). Further analyses showed that echolocating 

bats are paraphyletic based on synonymous substitutions, whereas the 

non-synonymous trees revealed monophyly of laryngeal echolocators for only one 

hearing-related genes (STRC gene, Supplementary Fig.12). Next, multivariate 

analyses of protein polymorphism (MAPP) was employed to detect the 

physicochemical impact of convergent substitutions in echolocating bats. MAPP 

scores were estimated for the amino acid variants nested in the STRC gene, and the 

result showed that these replacements had important functional effects (MAPP score = 

18.61, P = 1.44E-4 for H28Q; MAPP score = 10.33, P = 3.98E-3 for A39T; MAPP 

score = 7.37, P = 2.27E-2 for V169I). We further measured the number of sites with 

convergent amino acid substitutions along the branches as a direct measurement of 

sequence convergence, and found that the number of convergent sites in the branch 

pairs is proportional to the number of divergent sites (Supplementary Fig.13). The 

number of convergent sites in the laryngeal echolocating bats does not significantly 

exceed that between the branch pair of the little brown bat and large flying fox, given 

their numbers of divergent sites (Supplementary Table S22). No significant 

differences was observed in the total number of sites that have experienced 

convergent substitutions from hearing-related genes. This result indicated that there is 

no exceptional genomic signature indicative of adaptive convergence between 

laryngeal echolocating bats, and genes with adaptive convergent substitutions might 

confine to few specific genes. 

 

Evolution of visual perception genes 

Bats are nocturnal mammals. The eyes of most echolocating bats are relatively 

small and poorly developed, whereas Old world fruit bats often have excellent 
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eyesight (Shen, et al. 2010). Rhinolophoid bats have the most sophisticated 

echolocation ability, and have been proposed that some genes involved in visual 

perception may have undergone relaxed selection (Zhao, et al. 2009). We next 

examined the molecular basis for the poor visual perception in the echolocating bats. 

Of the 200 genes examined in the categories of visual perception (GO:0007601), a 

total of 12 genes have degenerated into pseudogenes in both great leaf-nosed bat and 

Chinese rufous horseshoe bat. Meanwhile, only three genes have degenerated into 

pseudogenes in the little brown bat, and none loss-of-function of visual perception 

genes through pseudogenization has been found in the large flying fox (P-value = 

1.6e-4, Chi-square test, Fig. 5). These genes participate in phototransduction in the 

retina, dim-light adaptation, or color vision, etc. We next incorporated genes 

belonging to more visual-related GO categories, and identified more genes (15 genes, 

Supplementary Table S23, S24) that might have lost their functions due to a 

frameshift mutation or premature stop codons in rhinolophoid bats. The poor visual 

function of rhinolophoid bats might be explainable by deterioration of visual 

perception genes.  

 

Evolution of immune-related genes 

Bats have long been regarded as important reservoir hosts of emerging viruses 

(Calisher, et al. 2006). The coexistence of bats and virus might impose strong 

selective pressure on the bat genome. Compared with the large flying fox, categories 

associated with DNA repair (GO:0006281, P < 0.01), innate immune response 

(GO:0045087, P < 0.01) exhibited accelerated evolution in both rhinolophoid bats 

(Supplementary Table S15, 16). Furthermore, positively selected genes in the 

rhinolophoid bats are highly enriched in some immune related functional categories 

(Supplementary Table S25, 26), for example, regulation of innate immune response 

(GO:0045088, P = 0.0053, 5 genes), regulation of T cell differentiation (GO:0045580, 

P = 0.033, 6 genes), regulation of T cell activation (GO:0050863, P = 0.044, 8 genes) 

in the Chinese rufous horseshoe bat; regulation of innate immune response 

(GO:0045088, P = 0.02, 7 genes), T cell differentiation (GO:0030217, P = 0.009, 7 
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genes) in the great leaf-nosed bat. Additionally, we found that DNA repair pathway is 

over-represented among the positively selected genes in both rhinolophoid bats. DNA 

repair machinery of host cells can recognize viral genetic material as abnormal and 

damaged DNA. So, DNA repair apparatus becomes part of the innate intracellular 

defense against foreign invaders. Overall, these lines of evidence indicate a 

well-developed immune defense system against virus and microbial infection in 

rhinolophoid bats. 

 

Genome re-sequencing analyses of the great leaf-nosed bats 

 To examine population dynamics and understand evolutionary processes, we 

sampled 20 great leaf-nosed bats from 4 major distributed locations in China, 

including one group from high-altitude region (Fig. 6a, Table 2, Supplementary Table 

S27). Whole-genome re-sequencing has been performed for each individual. It 

accomplished an average depth of 11.2×, and average genome coverage of 88% 

(Supplementary Table S27). We totally identified 27,064,431 high-quality single 

nucleotide polymorphisms (SNPs), most of which (78%, Supplementary Table S28) 

are located at the intergenic regions.  

 

In order to resolve their phylogenetic relationships, we constructed a 

neighbor-joining (NJ) tree based on pairwise genetic distances (Fig. 6b). This result 

showed that the great leaf-nosed bats formed separate groups according to the 

different locations. Principal component analysis clearly divided these samples into 

four groups (DQ, GZ, JX and TW, Fig. 6c). These results suggested that there were 

significant population structures among the great leaf-nosed bat populations. 

Furthermore, we performed population structure analysis. When K=4, all these four 

populations were clearly separated (Fig. 6d). 

 

 Next, we measured the genetic diversity values (θπ) of four populations, and 

found similar sequence diversity values (DQ: 0.0012, GZ:0.0009, JX:0.0009 and 

TW:0.0011, Supplementary Fig. S14). We further observed that the population 
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differentiation statistic (Fst) between populations, and the result showed little 

differentiation among populations (Fst ranging from 0.013 between JX and TW to 

0.057 between TW and DQ, Supplementary Table S29), which suggests universal 

inter-region gene flows.   

 

 Since the method of population differentiation has been widely used to detect 

selective sweeps (Akey, et al. 2010; Axelsson, et al. 2013; Gou, et al. 2014), we 

focused on the regions with extremely high Z-transformed Fst values (Z(Fst)>5) to 

detect genetic adaptations in the great leaf-nosed bats that are associated with high 

altitudes (DQ vs. other locations). A total of 50 unique genome regions containing 80 

candidate genes were identified (Supplementary Table S30). After performing GO 

enrichment analysis, a total of 16 GO categories were over-represented in these 

selected regions relative to the rest of the other genome regions (Supplementary Table 

S31). The result showed that genes related to catabolic process are likely to have been 

targets of recent positive selection. Interestingly, we found that five genes (EPAS1, 

PLXND1, GJA1, SELL and CHDH) belong to hypoxia response related GO categories 

(Pugh and Ratcliffe 2003; Storz and Moriyama 2008), including ‘angiogenesis’, 

‘blood coagulation’, ‘blood vessel morphogenesis’ and ‘oxidoreductase activity’. 

EPAS1 can respond to the changes in available oxygen in the cellular environment 

under the high-altitude conditions. Our work suggested that EPAS1 is involved in a 

selective sweep during the move of bats from low to high altitude. Although hypoxia 

GO categories are not over-represented, these highlighted hypoxia-related genes gave 

us a clue that genetic adaptations might be associated with high altitude. 
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Discussion 

Using deep sequencing and de novo assembly, we generated two genomes of 

rhinolophoid bats. Rhinolophoid bats can perceive the world by using a wide range of 

sensory mechanisms, some of which have become highly specialized. These genome 

data provided useful resources to decipher the molecular adaptations of phenotypic 

traits.  

 

Rhinolophoid bats arguably possess the most sophisticated echolocation systems, 

and can emit relatively long calls adapted to detect and classify the wing beats of 

insects. They are heavily reliant on hearing for a variety of ecologically important 

roles. Previous works have documented that hearing-related genes are predominantly 

evolutionarily conserved in mammals (Kirwan, et al. 2013). Here, we found evidence 

that some hearing-related genes have undergone Darwinian selection associated with 

the evolution of specialized constant frequency echolocation. Positive selection acting 

on hearing-related genes in rhinolophoid bats might result from the extreme 

selectivity used in auditory processing by these bats. Many previous works have 

reported the sequence convergence of some hearing-related genes reuniting 

echolocating bats (Li, et al. 2008; Li, et al. 2010; Liu, et al. 2011; Davies, et al. 2012; 

Liu, et al. 2012). We found no genome-wide sequence convergence for echolocation, 

indicating erroneous phylogenetic grouping are still rare 

 

It has been suggested that the enlargement of one area of brain might be 

associated with the reduction in size of other brain area (Harvey and Krebs 1990). The 

auditory cortex and the inferior colliculus are extremely enlarged in the volume in 

laryngeal echolocating bats (especially in rhinolophoid bats), while visual brain areas 

are relatively enlarged in Old World fruit bats (Dechmann and Safi 2009). The 

trade-off has been proposed in investment in brain tissues because of the extreme 

energetic demands imposed by neural processing. Our result showed more visual 

perception genes have become pseudogenes in rhinolophoid bats, and it is reasonable 
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to speculate that some visual perception gene may have undergone relaxed natural 

selection in echolocating bats. Meanwhile, positive selection acting on some 

hearing-related genes was identified. Such concordance suggests that some genes are 

impacted by natural selection, which raised the possibility that changes at the sensory 

genes will have direct consequences for those genes controlling for other sensory 

modalities, perhaps via trade-offs. This finding supports the longstanding but weakly 

supported assumption that bats are experiencing trade-off between vision and 

audition .  

 

Olfaction is of great importance in the lives of bat species. Previous works have 

identified olfactory receptor (OR) gene repertoire in the little brown bat and the large 

flying fox using the profile hidden Markov model (Hayden, et al. 2010; Hayden, et al. 

2014). A profile hidden Markov model (HMM) is a probabilistic model of a multiple 

alignment of related proteins. The result of HMM is not considerable when 

identifying remote homologous. Some of the OR sequences, especially 

non-transmembrane regions, are extensively diverged. Here, we used the pairwise 

homologous search method to identify OR genes based on previously annotated OR 

sequences, and more intact OR genes have been detected. Our result showed dramatic 

changes of OR gene repertories in bats, and an extremely contraction occurred in the 

branches leading to rhinolophoid bats. Although the number of OR gene expanded in 

the lineage leading to the little brown bat, the expanded OR genes are mainly grouped 

in specific gene family. A possible explanation is that the little brown bat has no 

well-developed olfaction ability, but tends to recognize specific odorants after recent 

OR gene duplication. These comparative analyses have provided great insights into 

adaptation to their specialized sensory mechanisms. 

 

In this work, we re-sequenced the genome of 20 great leaf-nosed bats from four 

distributed locations. The genome re-sequencing analysis has been performed based 

generally on the following considerations: 1) to characterize the genetic diversity and 

patterns of evolution; 2) to understand the genetic bases of adaptation to high altitude 
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in the great leaf-nosed bats. Efforts for the conservation measures will benefit from 

the knowledge of population genetic structure of the great leaf-nosed bats. Here, we 

found very little differentiation among populations, which suggests universal 

inter-region gene flows or incomplete lineage sorting. A broader geographical scale 

analysis is needed in the future. Furthermore, we provided evidence of genetic 

adaptation in the great leaf-nosed bat that are associated with high altitude. Selective 

sweep mapping was conducted for populations from different altitudes, and identified 

several hypoxia-related genes with a high extent of differentiation on the genome 

scale. EPAS1 is transcription factor that respond to the changes in the available 

oxygen in the cellular environment under high-altitude conditions, and mutations at 

EPAS1 are tightly associated with hematologic phenotypes (van Patot and Gassmann 

2011). Previous works have documented that EPAS1 polymorphisms are associated 

with Tibetan people with lower hemoglobin concentrations (Beall, et al. 2010). A 

loss-of-function role of EPAS1 might exist in high-altitude adaptation. So, our result 

indicated potential high-altitude hypoxia adaptation mechanisms of the great 

leaf-nosed bat. Our work is based on a limited genome re-sequencing resource, and 

data from more samples are necessary for future work. However, false positives 

notwithstanding, the results provided valuable staring points for experimental 

follow-up, and suggested an initial evolutionary scenario of bats in adaptation to 

high-altitude hypoxia. 

 

To the best of our knowledge, it is the first time to report the de novo assembled 

genome and genome re-sequencing of bats with long constant frequency echolocation 

calls. These data are essential for us to understand the evolution of bats. 
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Figure legends 

Figure 1 Unique and homologous gene families. The number of unique and shared 

gene families is shown in each of the diagram components. 

 

Figure 2 Phylogenetic analysis. Phylogenetic tree shows the relationship among 14 

mammalian species. The estimated divergent time for all nodes was shown. The 

number of expanded (red) and contracted (green) gene families is shown in each 

branch. 

 

Figure 3 Evolution of olfactory receptor gene repertories. A) Phylogenetic tree of 

functional OR genes in four bat species. B) Evolutionary changes of the number of 

OR genes in mammals. The numbers in rectangular boxes are those of functional OR 

genes for the extant or ancestral species. A plus sign and a minus sign for a branch 

represent OR gene gains and losses. We used a 70% bootstrap condensed tree of OR 

genes. 

 

Figure 4 Association between evolution of hearing-related genes and the 

evolution of high-frequency hearing in mammalian species. Plot of estimated 

frequency of best hearing sensitivity vs. the number of non-synonymous substitutions 

shows a significant relationship. 

 

Figure 5 Visual perception genes that have been become psuedogenes in 

rhinolophoid bats.  

 

Figure 6 Phylogenetic and population analyses of great leaf-nosed bats. A) the 

geographic distribution of the sampling locations; B) A neighbor-joining phylogenetic 

tree constructed using whole-genome SNPs data; C) Principal component analyses 

plots of the first two components. D) Population structure plots with K=2-4. The 

y-axis quantifies the proportion of the individual’s genome from inferred ancestral 
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populations, and x axis represents different populations. 

 

 

Tables 

Table 1 Global statistics of the great leaf-nosed bat and the Chinese rufous horseshoe 

bat genomes. 

Genomic features great leaf-nosed bat Chinese rufous horseshoe bat 
Assembled genome size (Gb) 2.18 2.07 

Genome coverage 218.6× 146.4× 
Contig N50 (Kb) 34 17.5 

Scaffold N50 (Mb) 2.3 3.75 
GC content (%) 41.2 41.7 
Repeat rate (%) 25.8 28.4 

Protein-coding genes 22,009 23,152 

 

Table 2 Sampling information for four population of the great leaf-nosed bat 

Populations Location 
Sample 

size 
Altitude 

Total reads 
(Gb) 

DQ Diqing, Yunnan, China (N 27°83′ E 99°72′) 6 3300 m 215.26 
GZ Guiyang, Guizhou, China (N 26°63′ E106°75′) 5 900 m 146.64 
JX Fuzhou, Jiangxi, China (N 28°01′ E116°35′) 5 500 m 181.52 
JX Xinzhu, Taiwan, China (N 24°81′ E120°96′) 4 200 m 143.45 
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