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Abstract

Physiological and psychological stresses cause anxiety disorders such as depression and post-traumatic stress disorder
(PTSD) and induce drastic changes at a molecular level in the brain. To counteract this stress, the heat-shock protein (HSP)
network plays a vital role in restoring the homeostasis of the system. To study the stress-induced dynamics of heat-shock
network, we analyzed three modules of the HSP90 network—namely trimerization reactions, phosphorylation–
dephosphorylation reactions, and the conversion of HSP90 from an open to a closed conformation—and constructed a
corresponding nonlinear differential equation model based on mass action kinetics laws. The kinetic parameters of the
model were obtained through global optimization, and sensitivity analyses revealed that the most sensitive parameters are
the kinase and phosphatase that drive the phosphorylation–dephosphorylation reactions. Bifurcation analysis carried out
with the estimated kinetic parameters of the model with stress as bifurcation parameter revealed the occurrence of
‘‘mushroom’’, a type of complex dynamics in which S-shaped and Z-shaped hysteretic bistable forms are present together.
We mapped the molecular events responsible for generating the mushroom dynamics under stress and interpreted the
occurrence of the S-shaped hysteresis to a normal level of stress, and the Z-shaped hysteresis to the HSP90 variations under
acute and chronic stress in the fear conditioned system, and further, we hypothesized that this can be extended to stress-
related disorders such as depression and PTSD in humans. Finally, we studied the effect of parameter variations on the
mushroom dynamics to get insight about the role of phosphorylation–dephosphorylation parameters in HSP90 network in
bringing about complex dynamics such as isolas, where the stable steady states in a bistable system are isolated and
separated from each other and not connected by an unstable steady state.
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Introduction

Exposure to stress alters the homeostasis of a system, which then

adapts in an attempt to regain normalcy [1]. At a molecular level,

these changes are brought about by a cascade of slow and fast

reactions that are tightly regulated by feedforward and feedback

loops. For example, in the hypothalamus-pituitary-adrenal (HPA)

axis of the brain, the production of hormone cortisol during stress

is tightly regulated by the HPA’s autoregulatory negative feedback

mechanisms [2]. One of the molecular networks that is initiated

during stress involves protein chaperones [3]. Chaperones are

ATP-dependent heat-shock proteins (HSPs) that have molecular

weights ranging from 20 to 110 kDa, and take up multiple roles,

from the degradation of a misfolded protein to carrying ligand-

bound receptors to the nucleus for transcriptional regulation [4].

Among these heat-shock proteins, HSP90 plays a central role in

signaling various downstream regulators that include the transport

of cortisol to the nucleus. HSP90 protein is produced through a

series of reactions that start with the initiation of heat-shock factors

(HSFs) and the formation of HSF trimers. Active HSF1 trimers in

turn bind to the heat-shock response elements (HSE) to form

complexes that undergo hyper–phosphorylation-dephosphoryla-

tion (PdP) reactions. Finally, the hyper-phosphorylated complexes

lead to the generation of ATP-assisted closed conformation of

HSP90 protein with the help of other co-chaperones such as the

proteins p23, Huntingtin interacting protein (HIP) and HSP70/

HSP90-organizing protein (HOP). This closed HSP90 conforma-

tion is either activated to process the substrates, or is bound to the

client proteins for further regulation [5]. HSP90 also regulates its

own production by binding to both the HSF monomer and

oligomers to complete the negative feedback loop [6].

Mathematical modeling of the chaperone network in the

context of heat-shock response with temperature as the stress

parameter have been carried out by different groups to account for

various experimental observations [7–10]. However, the dynam-

ical effects of stress on the chaperone network in fear conditioned

animal models that have been used as a paradigm for psychiatric

disorders such as depression and post-traumatic stress disorder

(PTSD) in humans have not been studied. PTSD is an anxiety

disorder that results from prolonged exposure to traumatic events.
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According to the Diagnostic and Statistical Manual of Mental Disorders

(DSM-IV) criteria, the core symptoms are impaired concentration,

emotional numbing, recurrent flashes of traumatic memories,

social withdrawal, and hyperarousal [11].

In animals, the development of a fear conditioned model is an

important step towards the understanding of PTSD that aims to

model the DSM criterion A in humans; i.e., simulating extreme

stressful situations that create a sense of threat and helplessness

[11]. Fear conditioning is an associative learning paradigm in

which subjects associate neutral stimulus with an aversive stimulus

that provokes fear and induces a long-lasting behavior and

physiological responses like freezing and startle [12]. At a

molecular level, one study indicated that under trace fear

conditioning (TFC) protocol, many genes involved in protein

folding and quality control (transcription factors Hspa5, Hspb1,

Dnajb4) were upregulated, and these results validated with RT-

PCR, indicated protein folding as an important pathway in fear

conditioning paradigm [13].

In humans, at a molecular level, PTSD is strongly linked to the

hyperactive HPA axis, and specifically to a high glucocorticoid-

receptor (GR) sensitivity due to a low secretion of salivary and

blood glucocorticoids (cortisol in humans and corticosterone in

mice) during late night until early morning [14–19]. A low cortisol

level in the HPA axis at one particular time of the day is a

common indicator of PTSD that helps to distinguish the normal

function from other comorbid disorders such as depression. GR

sensitivity is also related to FK506-binding protein (FKBP), a co-

chaperone of HSP90 that helps to translocate the cortisol-bound

GR to the nucleus to regulate the expression of GR-sensitive genes

[20]. Recently, FKBP5 polymorphism was shown to correlate

strongly with PTSD, and presently, it is a strong candidate as a

biomarker gene responsible for HPA disturbances [21]. FKBP5

was also found to be at a much lower concentration in persons

with PTSD who were exposed to the World Trade Center attacks

than in persons without PTSD [22]. Therefore, modeling the

dynamics of the HSP90 network that regulates both the cortisol in

HPA axis and other co-chaperones such as FKBP5 is important to

understand the etiology of PTSD at the molecular level.

All these results from various experiments in animal and human

models indicate that the study of the heat shock protein pathways

is important in understanding psychiatric disorders under various

conditions of stress (acute and chronic). Therefore, in this work, we

modeled the effect of acute and chronic stress on the dynamics of

HSP90 network and extended this to the human model to make

predictions about the occurrence of depression, PTSD and the

comorbidity. To model the dynamics, we took time series data

from HeLa S3 cells to obtain the kinetic constants through

parameter estimation by global optimization. We used the

estimated parameter values to perform bifurcation analyses and

map the variations of HSP90 concentrations under acute and

chronic stress. Since the estimated parameter values vary for

different runs, we also performed bifurcation analyses for various

parameter sets to determine various possible dynamical scenarios

under acute and chronic stress.

Methods

Assumptions
The HSP90 molecular network, depicted in Fig. 1, has three

important modules: (a) formation of HSF1 trimer, (b) phosphor-

ylation-dephosphorylation (PdP) reactions of the complex formed

between the active HSF1S trimer and HSE, and (c) conversion of

open to closed HSP90 conformation. In constructing these

networks, three important assumptions were made: (i) nuclear

and cytoplasmic compartments are not separately considered

therefore, homogeneity of the cell is assumed, (ii) sufficient

numbers of molecules are present for the reactions to take place

instantaneously so that stochastic fluctuations are eliminated (see

Mizera et al. [23] for stochastic modeling of eukaryotic heat-shock

response), (iii) for modules 1 and 2, the kinetic parameters were not

known, but experimental time course data from western blots of

HeLa cells (human cell lines) were available with temperature as

an externally modulated stress parameter [24,25]. We used this

data to find kinetic parameters so that qualitatively similar time

profiles were generated. Importantly, for psychiatric disorders such

as PTSD and depression, the temperature is constant. However,

irrespective of the type of stress involved, the mechanistic steps

involved in the production of HSP90 are assumed to be the same.

Therefore, the experimental data generated with temperature as a

stress parameter is chosen as a starting point to find the kinetic

parameters without providing any relationship between the model

parameter and temperature, unlike in certain specific heat-shock

models [7,10]. With these three assumptions, we started by

building the network in a modular fashion based on mass action

kinetic laws. The kinetic equations were either reversible first or

second order reactions of the form:

A
ki

k{i

C ð1Þ

AzB
ki

k{i

C ð2Þ

with ki and k{i being the forward and backward kinetic constants,

respectively. The degradation reactions were always assumed to be

first order of the form:

A
k1

w ð3Þ

where w is the degraded form of A that is not involved in any other

reactions. Because the concentrations of most of the proteins in the

HSP90 network were not known, the units of concentration were

arbitrarily taken as nM, and the time in seconds.

The PdP reactions were modeled as given in Markevich et al.

[26] in the following way. The dual phosphorylation is given by:

HHzMK3
k6

k{6

HHMK3 ð4Þ

HHMK3
k7

HHpzMK3 ð5Þ

HHpzMK3
k8

k{8

HHpMK3 ð6Þ

HHpMK3
k9

HHppzMK3 ð7Þ

and the dephosphorylation is given by:
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Figure 1. Modular construction of the heat-shock protein 90 (HSP90) network. Three modules form the whole network: HSF1 trimer
formation, phosphorylation-dephosphorylation reactions of the HSP90:HSF1 trimer complex, and the conversion of an open to a closed HSP90
protein conformation. Module 1, shown in red, is the trimer formation of HSF1. Inactive HSF1 monomer sequestered by the closed conformation of
HSP90 (HSP90CL) forms a complex, HSF1 : HSP90CL . Stress releases the inactive HSF1 monomer from the HSF1 : HSP90CL complex, and turns it
into an active form, HSF1S, to produce a dimer (HSF12S) slowly, but a trimer (HSF13S) rapidly. The trimer binds to the heat-shock element (HSE) to
form a complex, HH, but it is incompetent to transcribe the hsp90 gene, unless strongly phosphorylated. Module 2, shown in blue, consists of the PdP
reactions of the complex HH. The trimer HSF1S in the HH complex is hyper-phosphorylated by the kinase (MK3) and dephosphorylated by the
phosphatase PP5, a co-chaperone. Hyper-phosphorylated HH (HHpppp) is competent to transcribe the hsp90 gene to produce mRNA90, which in
turn translates into an open conformation of the HSP90 protein by series of steps. Module 3, shown in black, represents the formation of HSP90
closed conformation in which the open form of HSP90op binds to adenosine triphosphate (ATP), and converts it to conformation HSP90CL through
two step wise intermediate conformations (I1,2). The fate of the closed form, which is competent to bind the substrate or the client proteins is three-
fold: it (i) can shed the ATP to attain an open conformer, (ii) can bind to HSF1 monomer to negatively regulate its own production, finally (iii) can
degrade to form a dead product, w.
doi:10.1371/journal.pone.0042958.g001
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HHppzPP5
k20

k20

HHppPP5S ð8Þ

HHppPP5S
k21

HHpPP5 ð9Þ

HHpPP5
k22

k{22

HHpzPP5 ð10Þ

HHpzPP5
k23

k{23

HHpPP5S ð11Þ

HHpPP5S
k24

HHPP5 ð12Þ

HHPP5
k25

k{25

HHzPP5 ð13Þ

In the above equations, HH is the HSF13S:HSE complex,

HHp, HHpp, HHppp, and HHpppp are the mono, di, tri, and tetra-

phosphorylated complex, MK3 is the kinase, PP5 is a phosphatase,

and PP5S is the activated phosphatase formed during the

dephosphorylation. One of the underlying assumptions is that

the phosphatase PP5 has a strong binding affinity for HH. Further,

PP5 is the phosphatase that has been implicated in the negative

regulation of the heat shock factor by preventing its active or

hyperphosphorylated state [27] and therefore we assumed that the

unphophorylated HH can be bound by phosphatase more strongly

than in the phosphorylated state.

Because many reactions are involved in each of the modules, the

kinetic steps, kinetic equations, and differential equations are given

in the appendices. We used the software program XPPAUT to

generate all the bifurcation diagrams, and for numerical integra-

tion [28]. We transported the data from XPPAUT to MatlabH to

plot the figures. We provide the ordinary differential equation

(ODE) file of XPPAUT that we used to simulate the bifurcation

diagrams as a separate supplementary file (Model file S1).

Results

Construction of HSP90 molecular network modules
based on experimental evidence and experimental data

Module 1: Formation of the HSF1 trimer. Transcriptional

activities of the heat-shock genes are controlled by HSF1

transcription factors that are inert under normal conditions.

HSF1 exists as a monomer and sequesters with HSP90 in

unstressed cells. Stress dissociates the HSP90:HSF1 complex to

release ‘‘active’’ HSF1 monomer (HSF1S) that rapidly forms a

homo-dimer (HSF12S) and a homo-trimer (HSF13S) [29,30]. We

assumed that the trimer forms in a step wise manner. HSP90 also

sequesters with both the active monomer and oligomers, but this

sequestration is not considered in the network. The active trimer

then binds to the heat-shock gene promoter HSE to form a

complex, but this complex is incompetent to induce transcription

[31] until the hyper-phosphorylation reactions in the complex take

place.

The continuous heat-shock experiments carried out by

Abravaya et al. [24] on HeLa S3 cells resulted in the generation

of an active HSF1 monomer followed by the rapid formation of a

trimer that binds to HSE. At 41oC, Abravaya et al. [24] observed

relatively no changes in HSF1 levels, whereas at 42oC, HSF1

increased rapidly, followed by a slow attenuation to reach a

normal physiological concentration. At 43oC, there was a rapid

Figure 2. Simulated and experimental time series of heat-shock factor 1 (HSF1) trimer. In the experiments [24], the time courses of HSF
levels were obtained for three different temperatures, namely, 41oC, 42oC, and 43oC, shown in red circles in (A), (B), and (C), respectively. For a very
high temperature (43oC), HSF levels reach a new steady state. Fitted time series of HSF13S levels (continuous line) are shown for three different kstress

that correspond to the stress values of (A) 0.4136, (B) 0.9859, and (C) 1.2066. The percent conversion of the time series is calculated as
Y

Ymax

|100, for

all the dynamical variables, and Y is both experimental and simulated time series.
doi:10.1371/journal.pone.0042958.g002
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rise in HSF1 level, but the attenuation was completely absent so

that it remained at a very high concentration (Fig. 2). The kinetic

equations corresponding to the kinetic steps are given in Text S1.

Module 2: Phosphorylation-dephosphorylation reactions

of the HSF13S:HSE complex. PdP reactions of the

HS13S:HSE complex are an important step in the network

construction that induces highly active transcription factors in

response to stress signals. The serine and threonine residues in

HSF1 have been implicated as plausible phosphorylated sites that

enhance transcriptional response [32], but exactly how many

stepwise phosphorylation reactions take place is not known. We

assumed that the complex is twice phosphorylated, at both serine

and threonine residues, by the kinase MK3 and dephosphorylated

by the protein phosphatase-5A (PP5), a co-chaperone of the HSP

molecular network [27]. Markevich et al. [26] have studied a

constellation of dual PdP reactions that are either processive or

distributive (see Burack et al. [33], and Ferrell et al. [34] for

detailed explanations), and one such stepwise processive kinetic

mechanism of dual PdP reactions was shown. These detailed PdP

mechanisms can exhibit ultrasensitivity, hysteresis, and bistability

for the choice of parameters. We adapted here two such

constellations of dual PdP reactions for which the kinetic steps,

and the corresponding equations are given in Text S2.

The experimental time course of the phosphorylation reactions

indicates that there is a rapid rise in the phosphorylation of the

complex followed by a very slow attenuation [25], but presently it

is not clear whether the complex is mono- or multi-phosphory-

lated. Because the bifurcation analysis of the PdP reactions

exhibited bistability, and the information regarding the number of

PdP reactions from the experiments is not exactly known, we took

the simulated time course of mono-phosphorylated complex

(HHp) for fitting the experimental data (Fig. 3).

Module 3: Formation of the protein HSP90 and its con-

version from the open to the closed conformation. HSP90

undergoes a stepwise conformational change either to bind to the

client proteins or to activate the substrates involved in the reaction.

HSP90 structure has three conserved domains; a C-domain, a

middle or M-domain and, a N-domain. HSP90 forms a closed

conformational dimer that results in the self-association of C, M,

and N domains that are highly dynamic and flexible [35,36]. C-C

binding forms rapidly, but N-N binding is a slow step process and

it is a subject of considerable study. Recently, Hessling et al. [37]

captured ATP-assisted step-wise transformation from an open to a

closed N-N lid conformation by Fluorescence Resonance Energy

Transfer (FRET) experiments, and the time course data obtained

were fitted to a model to extract the kinetic constants. Hessling et

al. [37] also found from the experiments that two intermediate

steps (HSP90I1,2
in the equations, Text S3) were involved in the

formation of closed HSP90 conformation to attain a stable form

that has a very high affinity for client proteins. In the present

circuit, the client protein is the HSF1, which is sequestered by the

closed conformation of the protein HSP90. HSP90 also requires

the assistance of co-chaperone p23, which stabilizes the ATP-

bound HSP90 to process the client protein, but this important step

will be incorporated in the future along with the other important

chaperones and co-chaperones.

The kinetic equations and the parameters that were used in

Hessling et al. [37] to fit the FRET experimental data for the

conversion of open to closed HSP90 conformation were retained

for the present work. The kinetic and rate equations from Hessling

et al. [37] are shown in Text S3, and the simulated time course is

shown in Fig. 4.

Parameter estimation
The kinetic parameters for modules 1 and 2 were unknown and

we estimated them from the experimental data. The correspond-

ing parameters for module 3 were taken from the literature [37].

For the sake of accuracy, the three modules were considered as a

coupled system and the entire set of 27 ODEs was used to fit the

53 parameters of modules 1 and 2 to four time dependent

experimental data series corresponding to HSF13S at three

different temperatures (41, 42, and 43oC) and to the mono-

phosphorylated HHp complex at 42oC. Temperature is the

externally modulated stress parameter for the HSF13S data

available in the literature [24] while in our model it corresponds to

a different physiological and psychological source of stress. In

order to be able to use this data, a different value for kstress

(representing the strength of the stress) was estimated for each of

the temperatures expecting it to be higher for higher temperatures.

Kline and Morimoto [25] studied the phosphorylation of HSF

trimer-HSE complex in HeLa S3 cells at 42oC. The type of cells

and the experimental protocol for the phosphorylation study were

the same those used in Abravaya’s [24] study for determining HSF

levels at three different temperatures. Since the protocols and cells

used in both experiments are the same, we have simultaneously

used the time series obtained from both experiments for fitting the

parameters.

Parameter estimation, is a key step in the development of

reliable dynamic models. Given a model structure and a set of

experimental data, the objective of parameter estimation is to

calibrate the model so as to reproduce the experimental results in

the best possible way. The parameter estimation problem is stated

as the optimization of a scalar cost function, J(p), which measures

the goodness of the fit with respect to the model parameters p.

This function consists of a weighted distance measure between the

experimental values and the predicted values for those variables.

Figure 3. Fitted and experimental time series of the phosphor-
ylated HH complex. Simulated mono-phosphorylated HHp (shown in
continuous line) for kstress value of 0.9557, and the experimental data
(shown in red circles) is taken from [25]. The percent conversion of the

time series is calculated as
Y

Ymax

|100, for all the dynamical variables,

and Y is the simulated time series.
doi:10.1371/journal.pone.0042958.g003

Heat-Shock Protein Dynamics under Stress

PLOS ONE | www.plosone.org 5 August 2012 | Volume 7 | Issue 8 | e42958



In this work, the cost function was defined as the least squares

function resulting from the sum of the squared distances between

the experimental and predicted values for HSF13S at each of the

sampling points for the three different stress levels and the HHp at

a single stress level:

J(p)~
X3

i~1

XNMi

j~1

gHSF13SHSF13Sij{HSF13Sij(p)
h i2

z

XNM4

j~1

gHHpHHpj{HHpj(p)
h i2

ð14Þ

where NMi is the number of measures for experiment i (i = 1,2, 3

for the HSF13S experiment at 41, 42, and 43oC, respectively, and

i = 4 for the experiment measuring HHp), gHSF13SHSF13Sij is the

experimental value of the cortisol for the experiment i at the

sampling point j, and HSF13Sij(p) is the model prediction and

analogously for HHp ( gHHpHHpj represents the experimental value

and HHpj(p) the model prediction). Since both HSP13S and

HHp are found in the literature in arbitrary scales, the percentage

with respect to the maximum value was considered for the fitting.

Due to the nonlinearities of the model equations, the resulting

parameter estimation problem is multimodal; therefore, global

optimization methods are required to avoid convergence to local

solutions [38]. In this work we used the stochastic global solver

SSm [39], which has been shown to be a powerful metaheuristic

for parameter estimation in biological process. The parameter

estimation as well as the sensitivity and the correlation analyses

were performed with the help of SensSB [40], a MatlabH-based

software toolbox for the development and sensitivity analysis of

systems biology models.

Despite the use of a potent global optimization solver, fitting the

parameters of such a large model is not an easy task. Moreover,

due to the limited and noisy data available and the stochastic

nature of SSm, different runs of the solver led to different sets of

parameters with similar accuracy of the fitting. Nevertheless, the

set of parameters obtained presenting the smallest cost function

value was the one used for the later analysis and the one reported

in Table 1. Fig. 2 represents the HSF13S model prediction versus

the experimental data showing a fairly good agreement for two of

the experimental conditions (42 and 43oC), but for 41oC, the

fitting is poor. This is likely due to the fact that the data for 41oC is

highly noisy and variable in comparison to the other temperatures.

As we simultaneously fitted the data for all the three temperatures

for HSF1 as well as for the phosphorylation reactions, this is the

best time series that could be obtained. The estimated values of

kstress are 0.4136, 0.9859, and 1.2066, respectively, as expected

since a higher temperature implies a higher level of stress. The

model is able to qualitatively capture the dynamics as well as the

new steady state achieved after exposure to a very high

temperature (43oC). The trend of the HHp concentration was

also properly fitted as shown in Fig. 3. Importantly, the kstress value

estimated for fitting HHp at 42oC is 0.9557, which is very close to

the value of 0.9859 for the data fitted for HSF1 at 42oC, indicating

the goodness of the fit.

In order to gain further insight into the dynamics predicted by

the model, a local sensitivity analysis was performed for the

optimal set of parameters represented in Table 1. Parametric

sensitivity analysis aims to investigate how a change in the

parameters affects the model output. In this case, we are interested

on analyzing this influence on the measured states, namely

HSF13S and HHp. In this study we used relative sensitivity

indices, computed by multiplying the partial derivative (the

absolute sensitivity function) by the nominal value of the input

and dividing it by the output value. The relative sensitivity index

(SI) of the model outputs to variations in the parameter pk

evaluated for the optimal set of parameters p̂p is given by:

SI(pk)~
1

3

X3

i~1

1

NMi

XNMi

j~1

pk

HSF13Sij

LHSF13S

Lpk

� �
p~p̂p

z

1

NM4

XNM4

j~1

pk

HHpj

LHHp

Lpk

� �
p~p̂p

ð15Þ

Figure 4. Time course of the various forms of HSP90. Simulated time course of the open, closed, and the intermediate forms of the HSP90
concentrations using the equations described in module 3. The initial concentration chosen for all the dynamical variables was 1|10{3 nM and they
were allowed to evolve to the equilibrium point simulating a relaxation experiment.
doi:10.1371/journal.pone.0042958.g004
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Fig. 5 shows in blue the sensitivity due to the effect of the

parameters on HSF13S and in red the corresponding to HHp. As

expected, there are several parameters (*30%) having very little

influence on the measured states, therefore, the parameter values

obtained from the global optimization have to be taken with

caution. Most of these parameters that appear insensitive in this

analysis are sensitive to other species, thus experimental data of

these intermediate states would help to better estimate these

values. For example, the reaction rate of the backward reactions of

the PdP have a small influence in the measured states but more

information about the intermediate states should be needed in

order to asses the importance of these steps.

Moreover, the a posteriori identifiability or estimability of the

parameters has been studied by computing the correlation

between the dynamic sensitivities of the measured states at the

experimental sampling points as described in [41,42]. The

correlation matrix (see Fig. 6) shows a strong positive correlation

between several sets of parameters. These strong correlations,

together with the low sensitivities found for some of the

parameters, indicate that more experimental data of intermediate

species would be needed to uniquely identify the values of the

parameters. Moreover, we can see important correlations between

the parameters of module 1 (from 1–10) and the parameters of

module 2 (11–53), emphasizing the need for a joint estimation of

the whole set of parameters.

It is also interesting to note that, due to the identifiability

problems and the noise in the data and despite using a global

solver, different values for some of the parameters are obtained for

each run. As a consequence of this we expect the dynamics also to

Table 1. Kinetic parameters used in the bifurcation analysis and numerical integration.

Number Constants Values Number Constants Values

1 kstress (41oC) 2:88e-1 nM{1sec{1 32 k{14 1:09e-2 sec{1

2 kstress (42oC) 8:17e-1 nM{1sec{1 33 k15 6:26e-2 sec{1

3 kstress (43oC) 1:21e0 nM{1sec{1 34 k16 6:39e-2 sec{1

4 kstress (HHpp) 7:10e-1 nM{1sec{1 35 k{16 8:44e-3 nM{1sec{1

5 HSF1TOT 2.89e+2 nM 36 k17 8:29e-3 nM{1sec{1

6 HSETTOT 1.32e+3 nM 37 k{17 6:40e-3 sec{1

7 PP5TOT 9.20e+1 nM 38 k18 1:78e-2 sec{1

8 MK3TOT 3.91e+1 nM 39 k19 5:79e-2 sec{1

9 k1 8:74e0 nM{1sec{1 40 k{19 1:30e-2 nM{1sec{1

10 k{1 1:20e0 sec{1 41 k20 3:62e-1 nM{1sec{1

11 k2 1:09e-3 sec{1 42 k{20 2:58e-1 sec{1

12 k{2 5:43e-2 nM{1sec{1 43 k21 9:47e-1 sec{1

13 k3 1:30e-4 nM{1sec{1 44 k22 6:40e-2 sec{1

14 k{3 6:44e-5 sec{1 45 k{22 9:86e-4 sec{1

15 k4 8:07e-3 nM{1sec{1 46 k23 2:34e-2 nM{1sec{1

16 k{4 6:45e-3 sec{1 47 k{23 1:30e-2 sec{1

17 k5 4:02e-4 sec{1 48 k24 6:27e-2 sec{1

18 k{5 8:68e-6 nM{1sec{1 49 k25 5:34e-1 sec{1

19 k6 1:60e0 nM{1sec{1 50 k{25 1:28e-3 nM{1sec{1

20 k{6 1:05e0 sec{1 51 k26 6:06e-2 sec{1

21 k7 8:00e-2 sec{1 52 k27 5:43e-2 sec{1

22 k8 5:29e0 nM{1sec{1 53 k28 6:70e-1 sec{1

23 k{8 1:06e0 sec{1 54 k{28 1:45e-1 sec{1

24 k9 1:29e-1 sec{1 55 k29 6:70e-3 sec{1

25 k10 2:39e-2 nM{1sec{1 56 k{29 2:50e-2 sec{1

26 k{10 8:42e-4 sec{1 57 k30 1:67e-2 sec{1

27 k11 2:89e0 sec{1 58 k{30 1:30e-2 sec{1

28 k12 1:64e-2 nM{1sec{1 59 k31 1:00e-2 sec{1

29 k{12 8:79e-4 sec{1 60 k{31 5:00e-5 sec{1

30 k13 2:39e0 sec{1 61 k32 5:00e-4 sec{1

31 k14 6:35e-2 nM{1sec{1 62 k33 3:59e-1 sec{1

kstress is the bifurcation parameter used in the simulation of the full ordinary differential equation (ODE) model. All the parameter values estimated by global
optimization as described in the Parameter estimation section, except 53–61, which are taken from [37].
doi:10.1371/journal.pone.0042958.t001
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Figure 5. Local relative sensitivity analysis for the estimated parameters. The bars show in blue the sensitivity due to the effect of the
parameters on HSF13S and in red the corresponding to HHp. As expected, there are several parameters having very little influence on the measured
states, therefore, the parameter values obtained from the global optimization have to be taken with caution. Most of the parameters that appear
insensitive in this analysis are sensitive to other species, thus experimental data of these intermediate states would help to better estimate these
values. The numbers on the abscissa corresponds to the kinetic constants given in Table 1.
doi:10.1371/journal.pone.0042958.g005

Figure 6. Correlation matrix for the 53 estimated parameters. The correlation matrix shows a strong positive correlation (+1) or a strong
negative correlation (21) between several sets of parameters indicating that the effect of one parameter can be compensated by a change in the
strongly correlated parameter. This points to the same direction as that of the sensitivity analysis, emphasizing the need for more experimental data
of intermediate species to uniquely identify the values of the parameters.
doi:10.1371/journal.pone.0042958.g006
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be affected and this is studied through bifurcation analysis in the

following section.

Bifurcation analysis of the full HSP90 network with a
negative feedback loop: mushroom dynamics

We performed a bifurcation analysis of the full ODE model shown

in Text S4, with kstress as the bifurcation parameter. To describe the

dynamics that arise due to the effect of stress on the HSP90 network,

we chose HSP90CL as the dynamical variable. Mushroom, wherein

the S-shaped and Z-shaped forms of the bistable dynamics are

present together, was observed (Fig. 7). Mushroom dynamics were

extensively studied in many chemical reactions under continuous-

flow stirred-tank reactor (CFSTR) conditions [43,44], and other

researchers applied singularity theory to determine the presence of

mushrooms and isolas in nonlinear ODE models [45]. In neuro-

biological systems, Song et al. [46] applied singularity theory to the

ODE model of the serotonin network to explain the occurrence of

long-term memory in the mollusk Aplysia system, and observed a wide

variety of bistable dynamics that include hysteresis, irreversible

transitions, mushrooms, and isolas.

We identified three different regions in the bifurcation diagram

based on stress intensity, and related the three regions to normal,

acute and chronic stress. Under a normal stress level, HSP90CL

increases from a very low to a high concentration by crossing the

threshold I (Fig. 7), while during de-stress, HSP90CL decreases,

and returns to the normal level by crossing the threshold level II.

This sudden jump and fall of HSP90CL levels occur in the S-

shaped part of the mushroom bifurcation. At an extremely high

level of stress, HSP90CL crosses the threshold III, and drops to a

very low concentration. High stress with a low level of HSP90CL

indicates a complete breakdown of the network homeostasis.

These bistable dynamics occur in the Z-shaped part of the

mushroom dynamics. We attribute this high stress level to

‘‘chronic stress’’. For an intermediate level of stress, high

concentration of HSP90CL is attained through two different

routes: (i) by crossing the threshold I in the S-shaped form when

the stress is increased from a very low to a high intensity, or (ii) by

crossing the threshold IV in the Z-shaped form when the stress

level changes from a very high to a low intensity. We attribute this

intermediate stress level to ‘‘acute stress’’.

In Fig. 8, we also show two other possible dynamical scenarios

among various possibilities for two different parameter sets

obtained from fitting the time series data by global optimization.

It can be seen that the Z-shaped bistability is lost, but replaced by

ultrasensitive stable steady state for one choice of the parameter

set. In another case, an irreversible transition is observed in the S-

shaped bistability, and the Z-shaped bistability is replaced by a

Hopf bifurcation. This is biologically implausible as in many other

cases where negative steady state concentration was observed for

other dynamical variables, and we have discarded those scenarios.

To summarize, we have not completely explored all the dynamical

scenarios and its implications under acute and chronic stress, and

this is relegated to future work. For the present case, only

mushroom dynamics are considered.

Comparison with the earlier models of heat shock
network

It is pertinent to discuss here briefly the earlier models [7–10] of

heat shock network to compare them with the present model. All

the earlier models include three modules: (i) the HSF trimerization

Figure 7. Occurrence of mushroom dynamics in the full ordinary differential equation (ODE) model with kstress as the bifurcation
parameter. Two bistable forms, S-shaped (on the left, normal stress), and Z-shaped (on the right, chronic stress) are present together, giving rise to a
mushroom when the bifurcation parameter kstress is varied. During normal stress, HSP90CL increases and crosses the threshold I, to transit to another
stable steady state with a high concentration. When the stress level decreases, HSP90CL concentration also decreases gradually from a high to a low
concentration level by crossing the threshold II, and retaining the normal homeostatic conditions. This happens in the S-shaped bistable form. In
contrast, during acute stress, HSP90CL crosses the threshold I and correspondingly it increases; this is attributed to depression. Further increase in
acute stress results in the moderate increase of HSP90CL , wherein post-traumatic stress disorder (PTSD) develops along with depression. During
chronic stress, HSP90CL abruptly drops to a very low level by crossing the threshold III. This is attributed to PTSD, where high stress level results in a
very low concentration of HSP90CL. This event occurs in the Z-shaped bistable part of the mushroom dynamics. If the stress level decreases from a
very high value, i.e, kstress~1, HSP90CL slowly increases from a very low concentration, but once it crosses the threshold IV, there is an abrupt jump
in the concentration. The stable steady state is shown as a continuous blue line, whereas the unstable steady state is shown in dashed red lines.
doi:10.1371/journal.pone.0042958.g007
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reactions, (ii) the complexation of the trimer with HSE, and (iii) the

production of HSP from mRNA. However, the details in framing

the network and the corresponding mathematical models are

different. Mostly, the purpose of these models was to account for

the double heat shock response of the system obtained from the

experiments, and make predictions from the model. Rieger et al.

[8], developed a minimal model of HSP70 network to understand

its dynamics under stress, to evaluate the role of critical steps in the

network that affects the expression of molecular chaperones, and

to evaluate the predictive abilities of the model. However, they

have not addressed the role of the trimerization reactions, multiple

PdP reactions, the timing of trancriptional/translational machin-

ery etc., but only indicated that their model offered a framework to

introduce all details. Their model was either based on the laws of

mass action kinetics or the variant of Michaelis-Menten equation,

namely the Goldbeter-Koshland function, and the kinetic param-

eters were determined based on the experimental observations.

The present model is detailed and differs from the earlier

models in many ways. All the three modules are considered, but

are elaborately constructed and analyzed in detail. The trimer-

ization reactions are assumed to take place in a stepwise fashion.

Detailed PdP reactions of the trimer-HSE complex are considered,

and are shown to give rise to bistability. This is a new and

important step in comparison to the earlier models. The PdP

reactions are built based on the work of Kholodenko et al. [26],

and though the kinetic steps and equations are complex in nature,

this is taken to capture the rapid phosphorylation-dephosphory-

lation that takes place in the serine and threonine residues in the

HH complex. The hidden positive feedback loop in the PdP

reactions plays a vital role in decision making processes in our

model. The kinetic parameters of the modules 1 and 2 are

estimated through global optimization. The model fits the data of

HSF1 trimer at three different temperatures well, and this is due to

the occurrence of a saddle-node bifurcation in the model.

Therefore, one of the predictions from our model is that at

temperatures 41 and 42oC, the system is present in the lower

stable steady state, while at 43oC, the system transits to the upper

stable steady state. The model fits the phosphorylated HH

complex well. However, we fit the experimental data to simulated

mono-phosphorylation, since we do not know from the experi-

mental time series whether HH complex is mono or multi-

phosphorylated. However, the experiments also point out that HH

complex is multi-phosphorylated for which experimental time

series are not available. This is the classic case of identifiability

problem when fitting the data, and as a consequence, most of the

parameters of PdP reactions appear to be insensitive. Therefore,

with the present data, minimal model of Rieger et al. [8] or any

other model may be sufficient to explain the dynamics of the

network. However, our detailed model fits the data well in

comparison to other models. The post translational modification

of HSP90, that involves changing the conformation from open to

closed form through intermediate steps is considered, and the

kinetic parameters used in modeling this module are based on

FRET experiments. The new aspect from the dynamics point of

view is that, it is shown for the first time that the model can exhibit

exotic complex dynamics, namely a mushroom, where S and Z

shaped bistable dynamics are present together. Importantly,

mushroom dynamics are mapped onto normal and pathological

systems, and speculative molecular mechanisms (see section 2.5)

are advanced to explain the importance of negative feedback loop

in the HSP90 network. This is the novel aspect of the model that is

used to make sensible predictions about various neuro-psychiatric

disorders, which has hitherto not been considered.

Speculative molecular mechanisms on the occurrence of
mushroom dynamics

We propose a molecular mechanism to explain the molecular

events that give rise to S-shaped and Z-shaped bistable parts of the

mushroom dynamics when stress intensity is varied. We describe

this using the bifurcation diagram shown in Fig. 9 by taking three

important dynamical variables into consideration, namely

HSP90CL, HSF1S, and the HSF1 : HSP90CL complex which

Figure 8. Observation of different dynamical scenario for the parameter set obtained from fitting the time series data by global
optimization. Loss of mushroom-like dynamics in the full ordinary differential equation (ODE) model with kstress as the bifurcation parameter. (A)
The Z-shaped bistability is lost, but ultrasensitivity is retained. A mushroom-like dynamics is possible without any memory effect at high chronic
stress due to loss of Z-shaped bistability. (B) Irreversible transition in the S-shaped bistability is observed. Z-shaped bistability is lost and it is replaced
by Hopf bifurcation with a very low period. The parameters used to simulate the dynamics for each of the cases are given in a separate file (Model file
S2).
doi:10.1371/journal.pone.0042958.g008
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form a core negative feedback loop in the network. HSP90CL and

the HSF1 : HSP90CL complex form a mushroom, whereas

HSF1S forms an inverted mushroom. Again, we studied the

dynamics for three different stress intensities: low, moderate, and

high. In the absence of any stress, HSF1 sequesters HSP90CL to

form the complex HSF1 : HSP90CL, and therefore the active

form of HSF1, namely HSF1S, cannot initiate any reaction in the

network. All three species, HSP90CL, HSF1S, and

HSF1 : HSP90CL, remain at very low concentrations. At a low

level of stress, HSF1S increases, because stress breaks down the

HSF1 : HSP90CL complex, and converts the inactive oligomer

HSF1 into the active form, HSF1S. As oligomeric HSF1S

increases rapidly, mRNA90 and HSP90CL also increase, but with

a delay due to the time taken for the PdP reactions, transcrip-

tional-translational processes, and the conversion of an open to a

closed conformation of HSP90CL. This occurs in the S-shaped

bistable part of the mushroom dynamics, and the bistability is due

to the PdP reactions of the trimer. At intermediate, or ‘‘acute’’

stress levels, HSP90CL sequesters the inactive HSF1 to form more

of the complex HSF1 : HSP90CL, which reaches a very high

concentration. This event occurs between S-shaped and Z-shaped

parts of the mushroom dynamics. At a high or ‘‘chronic’’ stress

level, more HSP90CL is produced, and the negative feedback loop,

due to the formation of the complex between HSP90CL and

HSF1, becomes stronger. Simultaneously, the HSF1 : HSP90CL

complex breaks down rapidly due to high stress, which results in

the generation of more HSF1S. This event occurs at the Z-shaped

part of the mushroom. We speculate that the silencing of the

negative feedback loop in the HSP90 network leads to a selective

loss of the Z-shaped bistable part of the mushroom dynamics that

may result in a very low concentration of HSP90CL, whereas the

S-shaped part of the mushroom dynamics remains intact. To

support this speculation, we constructed a bifurcation diagram in

the absence of the negative feedback loop; as predicted, the Z-

shaped part of the mushroom dynamics was absent, and the

concentration of HSP90CL dropped down to a very low value

(Fig. 10) for a very high level of stress. This result clearly shows that

the strong negative feedback loop formed due to sequestration of

HSP90CL with inactive HSF1 is responsible for the occurrence of

the Z-shaped bistable part of the mushroom dynamics.

Acute and chronic stress, depression, and post-traumatic
stress disorder: a dynamical system hypothesis on the
role of HSP90

In animal models, acute and chronic stress induces different

behaviorial, physiological, and molecular expressions in compar-

ison to normal levels of stress, and importantly, it has been shown

that gene expression under fear conditioning was strongly

dependent on the brain regions, namely hippocampus, amygdala,

Figure 9. Dynamics of stress-initiated molecular events in heat-shock protein 90 (HSP90) production. Three different levels of stress,
low, moderate, and high, are considered in mapping the molecular events that drives the mushroom dynamics of the HSP90 network using the
bifurcation diagram. An illustration of the molecular events corresponding to the occurrence of mushroom dynamics in terms of heat-shock factor 1
monomer (HSF1S, blue filled circle), the closed conformation of heat-shock protein 90 (HSP90CL , in yellow-filled red semicircle) and
HSF1S : HSP90CL complex (in yellow-filled red semi-circle bound to blue filled circle) are shown in the lower panel. A low level of stress
increases the inactive HSF1, and converts it rapidly into an active form, HSF1S. HSP90CL is present at a low level due to the time taken for its
production. An increase in stress to a moderate level results in further production of active HSF1S. This in turn oligomerizes, and through a sequence
of PdP reactions, produces more HSP90CL . This negatively regulates its own production by rapidly forming a complex with the inactive HSF1
monomer, and results in a drastic reduction of its own concentration. For a very high stress level, HSF1 : HSP90CL complex breaks down rapidly, and
the inactive HSF1 is again converted into a more active form, HSF1S.
doi:10.1371/journal.pone.0042958.g009
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and the pre-frontal cortex (PFC) [47]. The genomic responses in

different brain regions were also shown to be strongly dependent

on the type of fear conditioning protocols employed. Recently,

Zhang et al. [48] performed inescapable tail shock experiments

that suggested that stress increases the HSP90 concentration in the

PFC area of rat brains more than in that of unstressed rats, but the

exact mechanism has not been elucidated. Sirri et al. [13]. carried

out the gene expression profiling of the C57Bl/6N mice

hippocampus after performing a trace fear conditioning experi-

ment, and found that many of the protein folding and protein

quality control transcription factors were elevated. In humans,

based on SNP experiments, FKBP5, the co-chaperone of HSP90 is

strongly implicated in PTSD.

Based on the results of the fear conditioning experiments, a

plausible explanation on the role of HSP90 in fear conditioning

can be provided. Fear conditioning induces fear memory through

the promotion of synaptic plasticity. For synaptic plasticity, the

delivery of neurotransmitters through the receptors from pre-to-

post synaptic terminals is absolutely necessary for long-term

memory of fear in different brain regions for efficient communi-

cation among various neurons. HSP90 is an abundant and

constitutively expressed molecular chaperone in neurons [49]

along with other complementary co-chaperones like HSP70 in the

rat brain. Evidences from experiments indicate that the HSP90 is a

classical molecular chaperone necessary for efficient neurotrans-

mitter release at the pre-synaptic terminal, and is known to

catalyze and promote the assembling and dissembling processes

required for AMPA receptor recycling [50]. AMPAR itself is

known to play a strong role in synaptic plasticity under fear

conditioning [51]. Therefore, HSP90 is necessary for efficient

recycling of receptors in the hippocampus and amygdala for strong

fear memory. Another compelling evidence is that the co-

chaperone FKBP5 that is strongly correlated with PTSD, along

with HSP90 helps GR bound cortisol in the HPA axis to

translocate to the nucleus for further downstream regulation [21]

for autonomic responses. Consolidating these evidences, HSP90

plays a strong role in fear memory by not only translocating

receptors from pre to post synaptic terminals in the hippocampus

or the amygdala, but also chaperoning the glucocorticoid receptor

bound cortisol to facilitate the fear learning process, which when

unregulated under stress results in pathological conditions like

depression.

Based on these observations from gene expression profiling, we

hypothesize that the mushroom dynamics obtained from the

bifurcation analysis of HSP90 network can be used to predict the

occurrence of both depression and PTSD that may be true for

both the animal and human models. Specifically, we hypothesize

that the S-shaped bistable dynamics in the mushroom can be

related to the normal system while the Z-shaped dynamics can be

related to the occurrence of both depression and PTSD in

humans. Specifically, for the animal model, we relate three regions

of stress, namely normal, acute, and chronic stress and its

corresponding HSP90 concentrations, which are high, higher

and low respectively in the bifurcation diagram. In the human

model, we identify the same three regions of stress of the animal

model, but the concentration of HSP90 is related to normalcy,

depression and PTSD. To elaborate on this in terms of the HSP90

network, stress increases HSP90CL but de-stress decreases

HSP90CL slowly to a very low concentration, as captured by the

S-shaped bistable dynamics. However, if stress recurs frequently

but at a moderate level, HSP90CL remains at a high concentration

and lies between the S-shaped and Z-shaped parts of the bistable

dynamics, which we predict is the region of transition from a

normal condition to a comorbid disorder such as depression. This

is the region of acute stress. This pathological condition can be

reversed to a normal condition when the stress levels are reduced.

In the presence of an extremely high and constant stress level,

PTSD may also begin to develop along with depression. In such a

case, there is a complete breakdown of homeostasis due to the

strong action of the negative feedback loop in the HSP90 network

that fails to release the active HSF1S to initiate the reactions to

counteract the strong stress. This pathological event is related to

the Z-shaped part of the mushroom dynamics, wherein there is an

abrupt drop in the HSP90CL at very high stress levels, and the

network fails to respond to any changes of the stress. We relate this

scenario to the chronic stress. It remains to be confirmed whether,

as predicted by this bifurcation analysis, the application of high-

intensity stress in mammalian systems over a prolonged period

results in HSP90 reaching a very low concentration.

Discussion

The understanding of stress-induced molecular events in fear

conditioned animals and its relation to various types of psychiatric

disorders such as depression and PTSD in humans is still in its

infancy. Systems-level understanding may provide better insight

into the cause of these disorders that may lead to a precise

diagnosis and intervention of disease. One network that alters

significantly in any psychiatric disorder is the HSP90-chaperone

network; the co-chaperones FKBP51 and FKBP52, changed

significantly in patients with PTSD who were treated for

childhood abuse [52]. There are few dynamical molecular models

constructed to understand these disorders.

In our work, a small, yet detailed molecular network of HSP90,

and the corresponding mathematical model were formulated not

only to study the dynamics that occur due to acute and chronic

stress in animal models, but also to relate them to psychiatric

Figure 10. Bifurcation diagram in the absence of the negative
feedback loop. One-parameter bifurcation diagram is constructed in
the absence of negative feedback loop by silencing the kinetic
constants k1 and and k{1 to zero. Only the S-shaped part of the
mushroom is seen, and the Z-shaped part is absent. This indicates that
to generate Z-shaped bistable part, a strong negative feedback loop is
important, and this strong feedback loop may be responsible for the
occurrence of depression and post-traumatic stress disorder (PTSD) (see
also Fig. 7).
doi:10.1371/journal.pone.0042958.g010
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disorders such as PTSD, and its comorbid disorders such as

depression. Importantly, we took into consideration the detailed

phosphorylation-dephosphorylation reactions of the HSF13S:HSE

complex that play a significant role in the generation of bistable

dynamics. Oscillatory dynamics were also observed due to the

presence of a negative feedback loop, but this was not probed, and

was instead relegated to future work. The significance of the present

dynamical analysis is the occurrence of a type of bistable dynamics,

mushroom dynamics. A wide variety of bistable dynamics have been

observed in many bio-chemical systems [53], and the mushroom is a

type of bistable systems where both the S-shaped and Z-shaped

hysteretic forms are present together. Here, we specifically interpret

the presence of mushroom dynamics in the context of normal

function and psychiatric disorders; i.e. the S-shaped hysteretic form to

the normal conditions, and the Z-shaped hysteretic form to acute and

chronic stress, and extended this model to psychiatric disorder such as

depression and PTSD in humans. This is entirely different from the

usual interpretation of bistable dynamics in the contest of psychiatric

disorder; for example, Gupta et al. [54], in their bistable model for

chronic fatigue syndrome due to stress, related one stable steady state

to the normal conditions, and the other stable steady state to

pathological conditions. Therefore, mushroom dynamics are a much

more convenient way to capture the variations of HSP90 under three

different conditions, namely, normal, acute and chronic stress.

A significant prediction made from our model is that, for a very

high ‘‘chronic’’ level of stress, the drop of the HSP90CL

concentration to a very low level was attributed to PTSD in

humans. We showed that this occurs in the Z-shaped bistable part

of the mushroom due to the strong negative feedback loop in the

network. In the fear tracing studies, elevated level of heat shock

protein was observed immediately after exposure, but a reduction

in concentration occurred after a considerable delay, and this was

interpreted due to degradation. However, we can interpret the

reduction in concentration due to two other possible mechanisms;

fear extinction, or due to some feedback mechanisms operating in the

network that reduce the concentration. For example, in the HPA

axis, Yehuda et al. [55,56] observed that the cortisol concentration

drops to a low level between late night and early morning in persons

with PTSD in comparison with normal or depressed persons [14].

This difference in the cortisol levels was predicted due to an enhanced

negative feedback loop generated by cortisol in the HPA axis [57],

and this was recently captured by mathematical modeling [58]. But

cortisol, its corresponding type-I and type-II receptors (mineralocor-

ticoid receptors and glucocorticoid receptors, respectively), and the

co-chaperone FKBP5 are themselves regulated by the protein

HSP90. Therefore, we studied here, as a first step, the dynamics of

the HSP90 network and predicted a very low concentration of

HSP90 for a very high stress level and related it to persons with

PTSD. At present, there are no experimental data to account for our

predictions, but the hypothesis is easily testable.

It is well documented that PdP reactions are capable of

exhibiting multistability [59–61] and chaos [62]. In the present

work, the PdP-reaction network plays an important role in

generating the S-shaped bistable part of the mushroom dynamics.

With no PdP reactions in the network, mushroom dynamics are

not possible because this is the only reaction that has an implicit

positive feedback loop. Positive feedback loops are a necessary and

sufficient condition to generate bistable dynamics for the choice of

parameters [63,64]. Sensitivity analysis also indicated that the

kinetic parameters in the PdP reactions are highly sensitive, and

therefore, we analyzed the effect of PdP kinetic parameters on the

mushroom kinetics. When the rates of the phosphorylation

reactions are changed in the model, the mushroom dynamics

are also changed. This is shown by varying the kinetic constant k2,

the rate of mono-phosphorylation reaction, which causes the

dynamics to change from the mushroom to an isola (Fig. 11). To

elaborate, as k2 is reduced, the lower limit points in the S-shaped

and Z-shaped parts of the mushroom come closer together

(Fig. 11A), and when k2 is reduced further, both the lower-limit

points merge and touch the lower branch of the stable steady state

solution (Fig. 11B). Further, in this sequence, when k2 is reduced,

we observe an isola in which two stable steady states are isolated

from each other (Fig. 11C). If the system is in the lower stable

steady state of the isola, the variation in the stress intensity will not

Figure 11. Transition from mushroom dynamics to an isola due to the variation in the phosphorylation-dephosphorylation (PdP)
kinetic parameter. (A) Slowing down of the phosphorylation reaction is modulated by varying the kinetic constant k7 from 0.08 to 0.038, which
results in the S-shaped, and Z-shaped forms coming closer to each other. (B) Further decrease of k7 (0.0383) results in the mushroom touching the
lower steady state and the lower limit points of S-shaped and Z-shaped forms of bistablity are merged together. (C) Isolated stable steady state along
with unstable steady state is formed when the mushroom is pinched off from the lower stable steady state (k7~0:038). This is termed an ‘‘Isola’’. The
blue color denotes the stable steady state, whereas the unstable steady state is denoted by the red dotted lines.
doi:10.1371/journal.pone.0042958.g011
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have any impact on the network because HSP90CL concentration

level will always remain at a very low level. This is a pathological

event that arises due to the variations in the production of

phosphorylated complex. At present, there are no experimental

data to account for this aspect of our model predictions.

To conclude, chaperones and co-chaperones play a vital role in

many psychiatric disorders. Elucidating the pathway mechanisms

along with understanding of the network dynamics can help to predict

the variations of particular species in the network under acute and

chronic stress in animal models, as well as distinguish comorbid

disorders such as depression and PTSD. Depending on the stress

intensity and the concentrations of HSP90 and HSF1S monomeric or

oligomeric proteins, depression and PTSD can easily be distinguished.

The protein HSP90 may also serve as a good candidate bio-marker for

PTSD, but presently, the problem lies in the detection of this protein

due to its differential expression in various subregions of the brain such

as hippocampus and prefrontal cortex. In future work, the inclusion of

co-chaperones like FKBP51 and FKBP52 along with the glucocorti-

coid receptors and cortisol in the network will provide further insight

about the etiology of these disorders at the systems level.
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