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Objectives: The relationship of body mass index (BMI) changes and variability

with amyloid-β (Aβ) deposition remained unclear, although there were

growing evidence that BMI is associated with the risk of developing cognitive

impairment or AD dementia. To determine whether BMI changes and BMI

variability affected Aβ positivity, we investigated the association of BMI

changes and BMI variability with Aβ positivity, as assessed by PET in a

non-demented population.

Methods: We retrospectively recruited 1,035 non-demented participants

≥50 years of age who underwent Aβ PET and had at least three BMI

measurements in the memory clinic at Samsung Medical Center. To

investigate the association between BMI change and variability with Aβ

deposition, we performed multivariable logistic regression. Further distinctive

underlying features of BMI subgroups were examined by employing a cluster

analysis model.

Results: Decreased (odds ratio [OR] = 1.68, 95% confidence interval [CI] 1.16–

2.42) or increased BMI (OR = 1.60, 95% CI 1.11–2.32) was associated with a

greater risk of Aβ positivity after controlling for age, sex, APOE e4 genotype,

years of education, hypertension, diabetes, baseline BMI, and BMI variability.

A greater BMI variability (OR = 1.73, 95% CI 1.07–2.80) was associated with a

greater risk of Aβ positivity after controlling for age, sex, APOE e4 genotype,

years of education, hypertension, diabetes, baseline BMI, and BMI change. We

also identified BMI subgroups showing a greater risk of Aβ positivity.
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Conclusion: Our findings suggest that participants with BMI change,

especially those with greater BMI variability, are more vulnerable to

Aβ deposition regardless of baseline BMI. Furthermore, our results may

contribute to the design of strategies to prevent Aβ deposition with respect

to weight control.

KEYWORDS

amyloid-β (Aβ), body mass index (BMI), BMI change, BMI variability, Alzheimer’s
disease

Introduction

A large amount of evidence suggests that body mass index
(BMI) is associated with the risk of developing cognitive
impairment. Specifically, mid-life obesity increases the risk of
cognitive impairment (Kivipelto et al., 2005; Fitzpatrick et al.,
2009; Tolppanen et al., 2014). Previous studies have also shown
that being underweight in later life may be associated with an
increased risk of dementia (Tolppanen et al., 2014; Bell et al.,
2017), and the acceleration of cortical atrophy (Kim H. et al.,
2015; Kim et al., 2019). Furthermore, larger BMI changes were
also associated with a higher risk of conversion to dementia
in patients with mild cognitive impairment (MCI), (Ye et al.,
2016) and these changes had deleterious effects on the cognitive
function in the non-demented elderly (Giudici et al., 2019).

Amyloid-β (Aβ) deposition in the brain is an important
pathological hallmark of Alzheimer’s disease (AD), which is
the most common cause of dementia. According to the Aβ

cascade hypothesis, Aβ deposition in the brain occurs at a very
early stage. In fact, Aβ deposition in the brain precedes the
development of AD dementia by 10–20 years. Furthermore,
non-demented participants with Aβ deposition were more
converted to dementia than those without Aβ deposition
(Villemagne et al., 2011; Rowe et al., 2013; Ye et al., 2018).
Therefore, Aβ positivity is a crucial predictor of AD prognosis
in non-demented individuals.

Recently, being underweight or obese in mid-life was found
to be associated with an increased risk of Aβ deposition
(Gottesman et al., 2017; Lee et al., 2020; Möllers et al.,
2021), and individuals who are underweight in later life
were also at an increased risk of Aβ deposition (Vidoni
et al., 2011; Ewers et al., 2012; Hsu et al., 2016; Thirunavu
et al., 2019). However, since previous studies investigated
the association of BMI with Aβ deposition at a single time
point, these studies could not evaluate the effects of BMI
variability on Aβ deposition. Considering that BMI changes
and variability is closely associated with a new onset of
diabetes, cardiovascular disease, atrial fibrillation, and higher
mortality Bangalore et al., 2017; Lim et al., 2019; Sponholtz
et al., 2019), it is reasonable to expect that BMI changes and

variability may be important risk factors for Aβ deposition.
Therefore, by studying the association of BMI changes and
variability with Aβ deposition, it could be identified whether
BMI changes and variability is specifically related to AD,
especially in the early stage of AD pathobiology. Furthermore,
this study may provide the importance of rigorous strategies
for weight maintenance to prevent Aβ deposition in non-
demented individuals.

Thus, the goal of our study was to investigate the influence
of BMI changes and BMI variability on Aβ positivity in a non-
demented population. Furthermore, to determine the complex
relationships among BMI changes, BMI variability, and Aβ

positivity, we evaluated the distinguishable BMI subgroups
classified by the cluster analysis model. We hypothesized
that decreased BMI and greater BMI variability would have
deleterious effects on Aβ deposition.

Materials and methods

Participants

Our study was designed as a retrospective cohort study.
We recruited 1,546 non-demented participants ≥50 years
of age [611 with normal cognition and 935 with mild
cognitive impairment (MCI)] from the memory clinic in
the Department of Neurology at Samsung Medical Center
(SMC) in Seoul, Korea. The participants had undergone Aβ

PET between August 2015 and August 2020. All participants
underwent a comprehensive dementia work-up including the
standardized cognitive assessment battery (Kang et al., 2019),
APOE genotyping, and brain MRI. We excluded participants
who had any of the following conditions: severe white
matter hyperintensities based on the Fazekas scale; structural
lesions such as brain tumor, large territorial infarct, and
intracranial hemorrhage; other causes of neurodegenerative
diseases including Lewy body dementia, Parkinson’s disease,
cortico-basal syndrome, progressive supranuclear palsy, and
frontotemporal dementia.
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All participants with normal cognition fulfilled the following
conditions: (1) no medical history that is likely to affect
cognitive function based on Christensen’s criteria (Christensen
et al., 1991); (2) no objective cognitive impairment from a
comprehensive neuropsychological test battery on any cognitive
domain (at least −1.0 SD above age-adjusted norms on
any cognitive tests); and (3) independence in activities of
daily living. All participants with MCI fulfilled Petersen’s
criteria with the following modifications (Petersen, 2011;
Jeong et al., 2020): (1) subjective cognitive complaints by the
participants or caregiver; (2) objective memory impairment
below −1.0 SD on verbal or visual memory tests; (3) no
significant impairment in activities of daily living; (4) non-
demented.

The institutional review board of the SMC approved
this study. Written informed consent was obtained from
all participants.

Amyloid-β PET acquisition
All participants underwent Aβ PET (18F-florbetaben [FBB]

PET and 18F-flutemetamol [FMM] PET) scans at SMC using
a Discovery STe PET/CT scanner (GE Medical Systems,
Milwaukee, WI, United States). For FBB or FMM PET, a
20-min emission PET scan in dynamic mode (consisting of
4 min× 5 min frames) was performed 90 min after an injection
of a mean dose of 311.5 MBq FBB and 197.7 MBq FMM,
respectively. Three-dimensional PET images were reconstructed
in a 128 × 128 × 48 matrix with a 2 mm × 2 mm × 3.27 mm
voxel size using the ordered-subsets expectation maximization
algorithm (FBB, iteration = 4 and subset = 20; FMM,
iteration = 4 and subset = 20).

Amyloid-β PET assessment
Aβ positivity on PET scans was determined using visual

reads in the primary analyses. Specifically, Aβ PET images
were rated by two experienced doctors (one nuclear medicine
physician and one neurologist) who were blinded to the
clinical information, and the images were dichotomized as
either Aβ-positive (Aβ+) or Aβ-negative (Aβ−) using visual
reads. They discussed any discordant results regarding Aβ

positivity to achieve consensus. The FBB PET scan was
regarded as positive if the Aβ plaque load was visually
rated as 2 or 3 on the brain amyloid plaque load scoring
system, and the FMM PET scan was considered positive
if one of five brain regions (frontal, parietal, posterior
cingulate and precuneus, striatum, and lateral temporal lobes)
systematically reviewed using FMM PET was positive in
either hemisphere (Kang et al., 2021). Representative PET
images in participants with Aβ+ and Aβ− were shown
in Supplementary Figure 1. Inter-rater agreement of PET
interpretation was excellent for Aβ positivity at the subject
level (kappa score = 0.84). In addition, visual rating was highly
concordant with a standardized uptake value ratio (SUVR)

cutoff categorization for Aβ positivity (93.5% for FBB and
91.6% for FMM).

Amyloid-β PET quantification using Centiloid
values

For the sensitivity analyses, Aβ positivity on PET scans was
determined using Centiloid (CL) cutoff-based categorization.
We used a CL method previously developed by our group (Cho
et al., 2020) to standardize the quantification of Aβ PET images
obtained using different ligands. The CL method for FBB and
FMM PET enables the transformation of the SUVR of FBB
and FMM PET to CL values directly without conversion to the
11C-labeled Pittsburgh compound SUVR.

There are three steps to obtain CL values (Cho et al.,
2020): (1) preprocessing of PET images, (2) determination of
CL global cortical target volume of interest (CTX VOI), and (3)
conversion of SUVR to CL values. First, to preprocess the Aβ

PET images, PET images were co-registered to each participant’s
MR image and then normalized to a T1-weighted MNI-
152 template using the SPM8 unified segmentation method
(Klunk et al., 2015). We used T1-weighted MRI correction
with the N3 algorithm only for intensity non-uniformities
(Sled et al., 1998), without applying corrections to the PET
images for brain atrophy or partial volume effects. Second,
we used the FBB-FMM CTX VOI defined as areas of AD-
specific brain Aβ deposition in our previous study (Cho
et al., 2020). Briefly, to exclude areas of aging-related brain
Aβ deposition, the FBB-FMM CTX VOI was generated by
comparing SUVR parametric images (with the whole cerebellum
as a reference area) between 20 typical patients with AD-
related cognitive impairment (AD-CTX) and 16 healthy elderly
participants (EH-CTX) who underwent both FBB and FMM
PET scans. To generate the FBB-FMM CTX VOI, the average
EH-CTX image was subtracted from the average AD-CTX
image. We then defined the FBB-FMM CTX VOI as areas
of AD-related brain Aβ accumulation common to both FBB
and FMM PET. Finally, the SUVR values of the FBB-FMM
CTX VOI were converted to CL units using the CL conversion
equation. The CL equation was derived from the FBB-FMM
CTX VOI separately for FBB and FMM PET and applied to
FBB and FMM SUVR.

To determine the participants’ CL cutoff-based Aβ

positivity, we applied the optimal cutoff value derived using
a k-means cluster analysis in 527 independent samples of
participants with normal cognition. The cutoff value was set
at 27.08, representing the 95th percentile of the lower cluster
(Villeneuve et al., 2015), and the whole cerebellum was used as
a reference region (Kim et al., 2021).

Body mass index acquisition
For each participant, BMI data were obtained by

backtracking their weight and height records in clinical
data warehouse of SMC, which were measured at all visits
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within 3 years after inspecting Aβ PET until March 2000
(Supplementary Figure 2). We excluded 511 participants who
did not have at least three BMI measurements. A total of 1,035
non-demented participants (409 with normal cognition and 626
with MCI) were included in the present study.

Body mass index assessment
Baseline BMIs was defined as the farthest past measurement

from the Aβ PET scan (Supplementary Figure 3). Participants
were then categorized into three subgroups according to their
baseline BMI values based on the World Health Organization’s
recommendations for Asian populations: underweight
(BMI < 18.5 kg/m2), normal weight (18.5–24.9 kg/m2),
obesity (BMI ≥ 25 kg/m2) (WHO Expert Consultation, 2004).

Follow-up BMI was defined as the closest measurement to
the Aβ PET scan (Supplementary Figure 3). We calculated
BMI change as the change rate by taking the difference between
baseline and follow-up BMIs and dividing it by duration.
Using the 1st and 3rd quantiles (Q1 and Q3) of BMI changes,
we characterized participants as increased (≥Q3), stable, and
decreased (≤Q1).

BMI change =
BMIf − BMIb
Duration

Bb: baseline BMI, Bf : follow-up BMI, Duration: period between
Bb and Bf .

BMI values at three or more time points were used
to obtain BMI variability (Supplementary Figure 3). Six
measures of variability were considered: standard deviation
(SD), coefficient of variation (CV), variability independent of
the mean (VIM), residual standard deviation (RSD), average
real variability (ARV), and successive variability (SV). These
variability measures have different characteristics, and their
formulae are shown in Supplementary Table 1. While SD was
known to suffer from the bias due to the correlation with
the mean value, CV and VIM were developed to avoid this
bias. RSD was designed to take the time effect into account
when assessing variability among longitudinal measurements.
ARV and SV were calculated based on the differences between
the consecutive measurements. BMI variability values were
obtained based on each of six variability measures. While
we used VIM-based variability for the primary association
analysis, we considered all six measures to identify underlying
patterns in longitudinal BMI values via the cluster analysis.
In the association analysis, participants were classified into
subgroups with non-high variability versus with high variability
according to the upper 15-percentile of BMI variability values as
a threshold.

Statistical analyses
We used independent t-tests and chi-square tests to

compare the demographic and clinical characteristics of Aβ+

and Aβ− groups. To investigate the association between BMI

change and variability with Aβ deposition, we performed
multivariable logistic regression using BMI change and
variability as predictors after controlling for age, sex, APOE
e4 genotype, years of education, hypertension, diabetes, and
baseline BMI. To further validate the association between
BMI change and variability with Aβ deposition, we performed
multivariable logistic regression using CL cutoff-based Aβ

positivity as an outcome rather than visually rated Aβ positivity.
Further distinctive underlying patterns in longitudinal BMI

values were recognized by employing clustering algorithms
including Gaussian mixture model (GMM), k-means clustering,
and self-organizing map (Bilmes, 1998; Yang et al., 2012). First,
we examined the correlations among BMI features, such as
baseline BMI, BMI change and six BMI variability measures,
to select features that would play complementary roles in
clustering (Supplementary Figure 4). Second, the similarity
between participants was assessed via the Euclidean distance
after each selected feature was scaled through standardization.
Finally, we used GMM to identify clusters, each of which
consisted of participants with similar BMI patterns, because it
can be used when more fine-grained workload characterization
and analysis are required (Patel and Kushwaha, 2020). The
optimal number of clusters was determined by validating
clustering results with clinical interpretability as well as the
silhouette index, Akaike information criterion (AIC) and
Bayesian information criterion (BIC) measures. The identified
clusters were further validated by examining the consistency
with clustering results from the other algorithms. To investigate
the association between the identified clusters (called as BMI
subgroups) and Aβ deposition, we used multivariable logistic
regression after controlling for age, sex, APOE e4 genotype,
years of education, hypertension, and diabetes.

All reported p-values were two-sided, and the significance
level was set at 0.05. All analyses were performed using SPSS
version 25.0 and R version 4.3.0 (Institute for Statistics and
Mathematics, Vienna, Austria1).

Data availability

Anonymized data for our analyses presented in
the present report are available upon request from the
corresponding authors.

Results

Clinical characteristics of participants

Among the 1,035 participants, 579 individuals were Aβ−

and 456 were Aβ+ (Table 1). Participants who were Aβ+ were

1 www.R-project.org
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TABLE 1 Demographic and clinical characteristics of study
participants.

Aβ (−) (n = 579) Aβ (+) (n = 456) P-value

Demographics

Gender, females 306 (52.8%) 261 (57.2%) 0.179

Age, years 68.5± 8.6 70.5± 7.4 0.001

Education, years 12.1± 4.8 12.0± 4.5 0.843

Clinical characteristics

APOE e4 carrier 127 (21.9%) 286 (62.7%) <0.001

Hypertension 281 (48.5%) 178 (39.0%) 0.003

Diabetes 141 (24.4%) 60 (13.2%) <0.001

Follow-up years 6.1± 4.8 4.8± 4.2 <0.001

Baseline BMI <0.001

Normal 334 (57.7%) 317 (69.5%)

Obese 238 (41.1%) 121 (26.5%)

Underweight 7 (1.2%) 18 (3.9%)

Aβ, amyloid-β; BMI, body mass index. Values are presented as mean± SD or n (%).

more likely to be older (age, 70.6 ± 7.4 years) than those who
were Aβ− (age, 68.5 ± 8.6 years, p < 0.001). Participants who
were Aβ+ had a higher frequency of APOE e4 genotype (62.7%
vs. 48.5%, p < 0.001) but a lower frequency of hypertension
(39.0% vs. 48.5%, p = 0.003) and diabetes (13.2% vs. 24.4%,
p < 0.001) than those who were Aβ−.

Association of amyloid-β positivity with
body mass index change and variability

Decreased BMI (odds ratio [OR] = 1.68, 95% confidence
interval [CI] 1.16–2.42) was associated with a greater risk of
Aβ positivity after controlling for age, sex, APOE e4 genotype,
years of education, hypertension, diabetes, baseline BMI, and
BMI variability (Table 2). Increased BMI (OR = 1.60, 95%
CI 1.11–2.32) was also associated with a greater risk of Aβ

positivity (Table 2).
A greater BMI variability (OR = 1.73, 95% CI 1.07–

2.80) was associated with a greater risk of Aβ positivity after
controlling for age, sex, APOE e4 genotype, years of education,
hypertension, diabetes, baseline BMI, and BMI change (Table 2).

Body mass index subgroups using
Gaussian mixture model cluster
analysis

Based on BMI baseline, change, and variability measures,
four subgroups were created by GMM and validated with the
Silhouette index, AIC and BIC (Supplementary Figure 5).
The BMI characteristics for each subgroup were summarized
in Supplementary Table 2. While the BMI baselines were

very similar across all subgroups, BMI change and variability
measures were different between subgroups. Because the mean
change and variability measures were relatively small in
subgroup 1 compared to other subgroups, we characterized
subgroup 1 as the stable subgroup. Likewise, subgroups 2,
3, and 4 were characterized, respectively, as the subgroup
having stable change with some variability; the subgroup having
slightly increased BMI with some variability; the subgroup
having decreased BMI with more variability. Longitudinal BMI
patterns of representative patients in each subgroup are shown
in Figure 1.

Compared to the stable subgroup 1, the subgroups showing
greater BMI variability had a greater risk of Aβ positivity,
especially when BMI was decreasing: subgroup 2 (OR = 1.49,
95% CI 1.05–2.13), subgroup 3 (OR = 1.49, 95% CI 1.01–2.20),
and subgroup 4 (OR = 2.39, 95% CI 1.37–4.16) (Table 3).

Association of Centiloid cutoff-based
amyloid-β positivity with body mass
index change and variability

For CL cutoff-based Aβ positivity, decreased BMI
(OR = 1.56, 95% CI 1.06–2.29) was associated with a greater
risk of Aβ positivity after controlling for age, sex, APOE e4
genotype, years of education, hypertension, diabetes, baseline
BMI, and BMI variability (Table 2). Increased BMI (OR = 1.58,
95% CI 1.06–2.34) was also associated with a greater risk of
Aβ positivity (Table 2). Higher BMI variability (OR = 2.12,

TABLE 2 Association of Aβ positivity with BMI change and variability.

OR (95% CI)* p

Visually rated Aβ positivity

BMI change

Stable 1 (ref.)

Decreased 1.68 (1.16–2.42) 0.006

Increased 1.60 (1.11–2.32) 0.012

BMI variability

Normal 1 (ref.)

High 1.73 (1.07–2.80) 0.025

CL cutoff-based Aβ positivity

BMI change

Stable 1 (ref.)

Decreased 1.56 (1.06–2.29) 0.025

Increased 1.58 (1.06–2.34) 0.024

BMI variability

Normal 1 (ref.)

High 2.12 (1.28–3.51) 0.003

Aβ, amyloid-β; BMI, body mass index; OR, odds ratio; CI, confidence; CL, Centiloid.
*Adjusted ORs for Aβ positivity were obtained by logistic regression analysis with BMI
change and BMI variability together as predictors after controlling for age, sex, APOE e4
genotype, years of education, hypertension, diabetes, and baseline BMI.
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FIGURE 1

Body mass index (BMI) patterns of representative participants in each group. Group 1 had a constant pattern of both BMI change and variability.
Group 2 showed a constant BMI change and some variability. Group 3 was a cluster with increasing BMI changes and high variability. Group 4
was a cluster with a decreasing BMI changes and high variability. The graphs on the right are spaghetti plots representing the BMI pattern of all
patients in each group, and a blue line representing the trend of the group. BMI, body mass index.

95% CI 1.28–3.51) was associated with a greater risk of Aβ

positivity after controlling for age, sex, APOE e4 genotype, years
of education, hypertension, diabetes, baseline BMI, and BMI
change (Table 2).

Discussion

We systematically investigated the association of Aβ

positivity with BMI change and variability in a relatively large
group of participants who did not have dementia. In the present
study, we found that BMI change (increased or decreased)
was associated with a greater risk of Aβ positivity, regardless
of baseline BMI status. Furthermore, we noted that greater
variability in BMI predicted a greater risk of Aβ positivity
despite baseline BMI status and BMI change. Finally, our cluster
analysis identified BMI subgroups with specific patterns of
BMI change and variability, which eventually showed a greater
risk of Aβ positivity. Taken together, our findings suggest that
participants with BMI change, especially those with greater BMI
variability, are more vulnerable to Aβ deposition regardless of
baseline BMI. Furthermore, given the paucity of modifiable risk
factors for the development of Aβ, our results may contribute
to the design of strategies to prevent Aβ deposition with respect
to weight control.

Our major finding was that BMI change (increased or
decreased) was associated with a greater risk of Aβ positivity,
regardless of baseline BMI status. Considering that Aβ

deposition is associated with the development of dementia,
our findings are supported by previous epidemiologic studies
(Ye et al., 2016; Giudici et al., 2019). Specifically, a previous
study suggested that patients with MCI who had larger BMI
changes are more likely to convert to probable AD dementia
regardless of baseline BMI status (Ye et al., 2016). In another
study, cognitively unimpaired individuals with decreased BMI
were also reported to be at an increased risk of cognitive decline
over a 5-year follow-up (Giudici et al., 2019). Furthermore,
in agreement with our finding, recent study identified that
decreased BMI or unstable BMI was associated with Aβ

positivity in non-demented individuals (Buchman et al., 2021;
Lane et al., 2021). Altogether, there is no exact pathobiology
to explain these associations. However, as the elderly age,
there is a loss of muscle mass and gain in visceral fat (Al-
Sofiani et al., 2019). Therefore, it is reasonable to expect
that participants with decreased BMI and increased BMI
might reflect decreased muscle mass and increased visceral
fat, respectively. In fact, some studies have investigated the
relationship between the progression of sarcopenia and Aβ

deposition (Maltais et al., 2019). Aβ deposition was found to
be associated with sarcopenia, which might be mediated by an
increased systemic inflammatory reaction (Yaffe et al., 2004;
Maltais et al., 2019). Alternatively, decreased BMI might be an
early reflective symptom of Aβ pathology (Grundman et al.,
1996). In fact, a recent study revealed that the Aβ burden
was associated with a prospective BMI decline in individuals
with normal cognition (Rabin et al., 2020). On the other hand,
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regarding increased BMI, increased visceral fat deposition might
affect brain atrophy and Aβ deposition (Kim H. J. et al., 2015)
through several potential mechanisms, including increased
insulin resistance (Jack et al., 2013; Luchsinger et al., 2013),
lower levels of adipose-derived hormones (Montague et al.,
1998), and a larger pattern of proatherogenic gene expression
(Yao et al., 2012). Further studies are needed to examine
the independent effects of specific body composition on
Aβ deposition.

Another major novel finding was that greater BMI
variability was associated with a greater risk of Aβ positivity,
regardless of baseline BMI status and BMI changes. For example,
even if the BMI measured 5 years ago and the current BMI are
at the same level, there is a higher possibility of Aβ deposition if
there is a high variation in BMI within the 5 years. We reviewed
the literature regarding between BMI and AD related outcome
(Supplementary Table 3). To the best of our knowledge, the
association between BMI variability and Aβ positivity has not
been thoroughly investigated. These findings offer new insight
into an important role of BMI change and variability in non-
demented individuals, and evidence that unstable and higher
variability in BMI may be early manifestation related to Aβ

deposition before developing dementia. The exact pathobiology
of why greater BMI variation is detrimental to Aβ deposition
remains unclear. However, there has been growing evidence
that greater BMI variation is closely associated with a new
onset of diabetes, cardiovascular disease, atrial fibrillation, and
higher mortality (Bangalore et al., 2017; Lim et al., 2019;
Sponholtz et al., 2019). One possible mechanism of these
findings might be gene alternation. Specifically, the anti-aging
gene Sirtuin 1 repression is associated with the onset of diabetes,
cardiovascular disease and sarcopenia (Martins, 2016, 2017,
2018), which in turn leads to BMI variation, eventually resulting
in Aβ deposition. Another possible explanation is that these
medical diseases might result in both greater BMI variation
and Aβ positivity, although we excluded participants with
severe medical diseases using Christensen’s criteria (Christensen
et al., 1991). Alternatively, regarding the greater BMI variability
without medical diseases, even though there is a repeated
occurrence and recovery of sarcopenia and visceral obesity, the
accumulation of the remaining detrimental effects might affect

TABLE 3 Association of Aβ positivity with BMI subgroup.

BMI subgroup* OR (95% CI)* p

1 1 (ref.)

2 1.49 (1.05–2.13) 0.027

3 1.49 (1.01–2.20) 0.044

4 2.39 (1.37–4.16) 0.002

Aβ, amyloid-β; BMI, body mass index; OR, odds ratio; CI, confidence interval. *Adjusted
ORs for Aβ positivity were obtained by logistic regression analysis with BMI subgroup
as a predictor after controlling for age, sex, APOE e4 genotype, years of education,
hypertension, and diabetes.

Aβ deposition through the possible mechanisms mentioned in
the previous paragraph.

Finally, our cluster analysis identified BMI subgroups with
specific patterns of BMI change and variability, which eventually
showed a greater risk of Aβ positivity. Specifically, a subgroup
with decreased BMI and a greater variability in BMI was
predictive of a higher risk of Aβ positivity. This was again
replicated in cluster analyses with various BMI measures and
Aβ positivity, a prior finding suggestive of the importance of
decreased BMI with greater variability in Aβ positivity.

The strength of this study is that we investigated the
associations between Aβ positivity and BMI changes and BMI
variability in a large cohort. However, our study has several
limitations that need to be addressed. First, due to the inherent
challenges of a retrospective cohort study, we did not provide
information about the participants’ amyloid status at baseline.
Thus, we were not able to show their causal relationships.
However, a retrospective cohort study was considered a realistic
alternative given that the change in amyloid appears very slowly
and the cost of amyloid PET is very expensive. Second, because
we used the Asia-Pacific BMI criteria for participants who
are obese and underweight, caution should be taken when
generalizing our findings to other races. Third, BMI values were
collected from March 2020 until 3 years after the Aβ PET scan,
and several BMI values were recorded at 3 years after the Aβ

PET scan. This limitation might be mitigated to a certain extent
with the existing findings that the annual rate of increasing Aβ

deposition is very low (Ossenkoppele et al., 2012; Kemppainen
et al., 2014; Kim et al., 2016). Fourth, we did not assess the body
composition that might explain the associations we reported,
such as muscle mass and fat mass. Fifth, we lacked information
on whether the BMI change and fluctuations were intentional or
unintentional, although these factors may have different effects
on Aβ deposition. Sixth, we could not consider the alterations
of dietary habit, although these factors might be associated with
BMI change and Aβ positivity. Finally, because BMI data were
retrospectively derived from the clinical data warehouse, there
were differences in the duration of follow-up among participants
despite controlling for the duration of follow-up in the process
of calculating BMI changes. Instead, the results of the study
with data from the clinical data warehouse could reflect the
clinical situation in real-world settings, which were considered
as real-world evidence for healthcare decisions.

Conclusion

We provide a comprehensive understanding of the marked
influences of BMI change and variability on the risk of
Aβ positivity in non-demented individuals. Furthermore,
our findings suggest that rigorous strategies for weight
maintenance are required to prevent Aβ deposition in non-
demented individuals.
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