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Abstract

Background and aims

So far, few clinical trials are available concerning the role of growth hormone receptor

(GHR)/signal transducer and activator of transcription 5 (STAT5)/insulin like growth factor-1

(IGF-1) axis in hepatocarcinogenesis. The aim of this study was to evaluate the hepatic

expression of GHR/STAT5/IGF-1 signaling pathway in hepatocellular carcinoma (HCC)

patients and to correlate the results with the clinico-pathological features and disease out-

come. The interaction between this signaling pathway and some inducers of epithelial-mes-

enchymal transition (EMT), namely Snail-1 and type 2 transforming growth factor-beta

receptor (TGFBR2) was studied too.

Material and methods

A total of 40 patients with HCV-associated HCC were included in this study. They were com-

pared to 40 patients with HCV-related cirrhosis without HCC, and 20 healthy controls. The

hepatic expression of GHR, STAT5, IGF-1, Snail-1 and TGFBR2 proteins were assessed

by immunohistochemistry.

Results

Compared with cirrhotic patients without HCC and healthy controls, cirrhotic patients with

HCC had significantly lower hepatic expression of GHR, STAT5, and IGF-1proteins. They

also displayed significantly lower hepatic expression of TGFBR2, but higher expression of
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Snail-1 versus the non-HCC cirrhotic patients and controls. Serum levels of alpha-fetopro-

tein (AFP) showed significant negative correlations with hepatic expression of GHR (r =

-0.31; p = 0.029) and STAT5 (r = -0.29; p = 0.04). Hepatic expression of Snail-1 also showed

negative correlations with GHR, STAT5, and IGF-1 expression (r = -0.55, p = 0.02; r =

-0.472, p = 0.035, and r = -0.51, p = 0.009, respectively), whereas, hepatic expression of

TGFBR2 was correlated positively with the expression of all these proteins (r = 0.47, p =

0.034; 0.49, p = 0.023, and r = 0.57, p<0.001, respectively). Moreover, we reported that

decreased expression of GHR was significantly associated with serum AFP level>100 ng/ml

(p = 0.048), increased tumor size (p = 0.02), vascular invasion (p = 0.002), and advanced

pathological stage (p = 0.01). Similar significant associations were found between down-

regulation of STAT5 expression and AFP level > 100 ng/ml (p = 0.006), vascular invasion (p

= 0.009), and advanced tumor stage (p = 0.007). Also, attenuated expression of IGF-1

showed a significant association with vascular invasion (p < 0.001). Intriguingly, we detected

that lower expression of GHR, STAT5 and IGF-1 were considered independent predictors

for worse outcome in HCC.

Conclusion

Decreased expression of GHR/STAT5/IGF-1 signaling pathway may have a role in develop-

ment, aggressiveness, and worse outcome of HCV-associated HCC irrespective of the liver

functional status. Snail-1 and TGFBR2 as inducers of EMT may be key players. However,

large prospective multicenter studies are needed to validate these results.

Introduction

Hepatocellular carcinoma (HCC) is a global health problem, as it is the sixth most prevalent

cancer and the fourth cause of cancer-associated deaths [1]. It develops in 80–90% of patients

on a background of liver cirrhosis, irrespective of the underlying etiology [2]. Among the dif-

ferent etiological factors of liver cirrhosis, chronic hepatitis C virus (HCV) infection contrib-

utes to the most frequent risk factor for developing HCC in Egypt [3] due to its widespread

presence in this locality [4].

HCC is highly heterogeneous; from clinical point of view, ~ 80% of patients are diagnosed

with advanced stage which makes palliative therapy requisite, in addition to the diverse etio-

logical risk factors [5], and the high 5-year recurrence rate [6]. As yet, the imaging modalities

used for HCC diagnosis and staging are comparatively imprecise [7], moreover, the various

histopathological subtypes might contradict accurate diagnosis [8]. With respect to the molec-

ular mechanisms, HCC is associated with multiple genetic and epigenetic alterations that co-

operate with the tumor microenvironment to hasten hepatocarcinogenesis, tumor progression

and metastasis [9]. As a result of these alterations, several signaling pathways are dysregulated,

including growth factors e.g insulin like growth factor (IGF) [10].

The cytokine growth hormone (GH) is secreated in a pulsatile manner by somatotropic

cells in the lateral wings of the anterior pituitary gland. It fulfills its effects by direct or indirect

means; the direct effect is mediated by binding of GH to its receptors (GHR) on target cells by

activating the mitogen activated protein kinase/extracellular signal-regulated kinase pathway,

whereas the indirect effect is exerted by the way of its effectors, mainly IGF-1. While the GH is

the major regulator of IGF-1 production by liver cells, IGF-1 counteracts GH synthesis by a
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negative feedback mechanism. IGF-1 is also synthesized by all target tissues, so it acts as an

endocrine and autocrine / paracrine hormone [11].

IGF system includes 2 specific ligands; IGF-1 and IGF-2. Both IGFs play a crucial role in

somatic growth and anabolic roles in various tissues and organs. IGF-1 exerts its growth pro-

moting effects of GH during postnatal life, however, IGF-2 is responsible for prenatal and fetal

growth, that is GH-independent [12]. IGFs mediate their effects through a group of cell surface

receptors including type I IGF receptor (IGF-IR), type II IGF receptor (IGF-2R), insulin recep-

tor (IR), and hybrid receptor (IGF-IR/IR). IGF-IR binds IGF-1 with higher affinity than IGF-2

and insulin, while IGF-2 is the only ligand of IGF-2R [13]. In biological fluids, levels of IGF are

adjusted by a group of six IGF binding proteins (IGFBPs) that subjected to proteolysis by

IGFBP- specific proteases to release bound IGF by decreasing their affinity. The majority of

IGF is bound to IGFBP-3, with acid-labile subunit (ALS) forming ternary complexes that act

as transporters of IGF and prolong their half-lives in the circulation [14].

GH/GHR interaction evokes activation of various tyrosine kinases including Janus Kinase 2

(JAK2) protein. Subsequently, the activated GHR-JAK 2 complex triggers phosphorylation of

signal transducer and activator of transcription 5A (STAT5A) and STAT5B (both referred to

as STAT5), in addition to STAT1 and STAT 3, when STAT 5 expression is low or absent. Acti-

vated STAT proteins translocate into the nucleus to initiate different gene expression. STAT5B

is aminly expressed in liver cells. Hepatic STAT5B guides the transcription of IGF-1, ALS, sup-

pressors of cytokine signaling 2, components of the cytochrome p 450 detoxifying system, as

well as many genes related to glucose and lipid metabolism [15].

Taken into account the potent mitogenic and antiapoptotic role of GH and IGF-1 in all

cells of the organism [16], it is not surprising that both can influence cancer risk. Compelling

evidences obtained from different types of studies have demonstrated significant associations

between raised serum levels of IGF-1 and increased risk of various solid tumors [17–19],

including HCC [20–22]. Likewise, epidemiological studies have revealed an increased risk of a

variety of cancers in patients with acromegaly [23]. Additionally, a high incidence of colorectal

cancer and Hodgkin’s lymphoma has also been reported in children treated with pituitary–

derived GH [24]. However, the causal role of GH and IGF-1 in oncogenesis is still debated;

they might serve as permissible agents [25]. Although the activation of STAT5 system has been

considered a risk factor for different human cancers [26–28], its role in HCC is context–

dependent as it can act as a tumor promoter and a tumor suppressor [29]. To the best of our

knowledge, the clinical studies in this research area have been relatively scarce and had discor-

dant results.

EMT is a developmental regulatory reversible process initiated in cancer cells by which epi-

thelial cells acquire the capability to proliferate, invade, and resist apoptosis. EMT is character-

ized by down-regulation of epithelial markers such as E-cadherin, Claudin family and specific

cytokeratin intermediate filament proteins, combined with up-regulation of mesenchymal

markers e,g., N-cadherin, α-smooth muscle actin and vimentin [30]. It is triggered by repres-

sion of E-cadherin expression via transcription factors; including zinc finger proteins, (Snail 1/

2/3 and Zeb 1/2), and basic helix loop-helix proteins (Twist 1/2) [31]. E-cadherin is a cell

membrane protein that binds to β-catenin; one of the components of Wnt signaling pathway

which allows epithelial cells to firmly attached. Therefore, reduced expression of E-cadherin

resulting in translocation of β-catenin into the nucleus leading to induction of EMT via libera-

tion of many transcription factors [32]. At the metastatic site, the epithelial cells return toward

its ancestral condition by a process known as mesenchymal-epithelial transition to return the

proliferative state to produce metastatic nodules [33].

Snail-1 is the most important transcription factor responsible for E-cadherin repression by

mediating histone modification [34]. Additionally, Snail-1 plays a critical role in cell survival
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[35], immune regulation [36] as well as, preservation of cancer stem cell-like properties [37].

Snail expression is under control of many signaling molecules released from tumor microenvi-

ronment (TME) such as epidermal growth factor, fibroblast growth factor, transforming

growth factor-beta (TGF-β), Notch, Wnt, tumor necrosis factor-α, and cytokines [38].

TGF-β is a multifunctional cytokine that signals through heteromerics of type 1 and type 2

TGF-β receptors (TGFBR1, TGFBR2) which activate either Smad family via Smad 2/3/4 com-

plexes or non-Smad cascades such as PI3K/Akt, p38MAPK, MAPK-ERK and JNK pathways

[39]. Activated TGF-β could be tumor suppressive or oncogenic as determined by the context.

In tumor cells, the TGF-β signaling is unregulated by various mutations or epigenetic changes,

thereby; cells become resistant to the suppressive sequel of TGF-β signaling pathway [40].

Down-expression or mutations of TGFBR2 has been reported in various cancers [41–43],

inclusive of HCC [44], however, the underlying mechanism has not been clarified yet.

The purpose of this study was to investigate the tissue expression of GHR/STAT5/IGF-1

signaling pathway by immunohistochemistry (IHC) in HCV–associated HCC patients and to

correlate the results with the clinico-pathological features and disease outcome. The interplay

between this signaling pathway and both Snail-1 and TGFBR2 as inducers of EMT, was evalu-

ated as well.

Subjects and methods

Eligible subjects

The current retrospective, cross-sectional, comparative study was carried out in the Internal

Medicine and Pathology Departments at Minia University Hospital, Egypt, in collaboration

with the Pathology Department at Minia Oncology Center, Egypt between May 2019 and Feb-

ruary 2021. To obtain a power of 99%, a sample size of 40 patients with HCV-related HCC was

enrolled in this study. It was calculated at the level of 0.05 significance using G Power 3.19.2

Software. The study was conducted on formalin-fixed paraffin-embedded liver tissues from 40

patients with HCC on a background of HCV-associated liver cirrhosis. This group of patients

was compared to two other groups: a group of HCV-related liver cirrhosis patients without

HCC, and healthy controls. Data of HCC and cirrhosis patients were retrieved from their med-

ical files in Minia Oncology Center archives. Only patients with adequate liver tissue and com-

plete clinico-pathological data were eligible. The exclusion criteria included causes of chronic

liver diseases other than chronic HCV infection, endocrinal diseases that may influence the

level of GH-IGF-1 axis, diabetes mellitus, end-organ failure, organ transplantation, hepatic

resection, prior locoregional treatment for HCC, extrahepatic and hematological malignancies,

autoimmune diseases, as well as steroid and immunosuppressive medications.

Hepatocellular carcinoma patients (group I)

This group included 40 consecutive patients with HCC, of whom 32(80%) were males. They

were recruited from attendants of Minia Oncology Center for liver biopsy. The diagnosis of

HCC was based on the characteristic imaging criteria as defined by Bruix and Sherman [45]

and histological evaluation [46].

Liver cirrhosis patients (group II)

This group comprised 40 patients with HCV-related cirrhosis (30(75%) males, and 10(25%)

females). They were consecutively enrolled from those referred by outpatient clinics. The diag-

nosis of liver cirrhosis was built on the standard clinical criteria, in addition to the
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histopathological examination [47]. Presence of anti-HCV and detection of serum HCV-RNA

for 6 months or more, were characteristic features of chronic HCV infection.

Healthy controls (group III)

A total of 20 healthy subjects were prospectively collected from subjects who underwent

abdominal surgery in the Department of General Surgery at Minia University Hospital. They

were 15 (75%) males and 5(25%) females. All were clinically free and showed nothing abnor-

mal in laboratory analyses.

Informed consent

This study protocol was approved by the Institutional Ethics Committee of the School of Medi-

cine, Minia University, and by Institutional Review Board of Minia Oncology Center, Egypt.

The study was performed according to the guidelines and regulations of the 1975 Helsinki

Declaration and International Conference on Harmonization Guidelines for Good Clinical

Practice. Informed written consent was obtained from all subjects.

Clinical and laboratory assessment

Demographic, clinical data, and laboratory findings including; the peripheral hemogram, liver

and kidney function tests, fasting and postprandial serum glucose levels, plasma levels of alpha

fetoprotein (AFP), and virological assays, as well as the imaging studies were obtained by

reviewing the medical files. The functional status of the liver was evaluated by the Child-Pugh

[48] and the Model for End-Stage Liver Disease (MELD) [49] scoring systems. The clinico-

pathological features were assessed according to the Tumor-Node-Metastasis (TNM) [50] and

Okuda [51] staging systems. Concerning the healthy volunteers, they were asked to complete a

questionnaire on the age, sex, tobacco and alcohol exposure, and current history of any medi-

cal illness including diabetes mellitus. They gave venous blood samples to assess the aforemen-

tioned laboratory tests using the commercially available kits according to the manufacturer’s

guidance.

Immunohistochemistry (IHC)

IHC was performed on 4-μm tissue sections taken from 10% buffered formalin-fixed, paraffin-

embedded tissue blocks. Sections were deparaffinized in xylene bath and rehydrated by

descending dilutions of ethyl alcohol. Hydrogen peroxide was used to block endogenous per-

oxidase activity. Antigen retrieval was carried out utilizing citrate buffer concentrate (pH 6).

Mouse GHR monoclonal antibody (1/100 dilution, Santa Cruz Biotechnology, Texas, USA),

rabbit STAT5 monoclonal antibody (1/100 dilution, Abcam Cambridge Biomedical Campus,

UK), mouse IGF-1monoclonal antibody (1/50 dilution, MyBioSource, San Diego USA),

mouse Snail-1 monoclonal antibody (1/50 dulation, Santa Cruz Biotechnology Texas, USA),

and mouse TGFBR2 monoclonal antibody (1/100 dilution, Santa Cruz Biotechnology, Texas,

USA) were used overnight as primary antibodies. Visualization was performed by Avidin-Bio-

tin detection system (DAKO). Positive controls were used to assess correct tissue preparation

and staining. One positive control tissue section for each antibody was processed in the same

manner as the patient tissue samples and was included in each staining run. One negative con-

trol slide was processed for each case by omitting the primary antibody from the staining pro-

cedure. Absence of specific staining in the negative control sections was indicative of lack of

secondary antibody cross-reactivity with other non-target cellular components.
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Interpretation of GHR, STAT5 and IGF-1 immunoreactivity. The specimens were eval-

uated twice in different times by two experienced pathologists, blinded for the clinico-patho-

logical data of the study subjects. The final staining scores of GHR, STAT5, IGF-1, Snail-1, and

TGFBR2 were calculated by multiplying the intensity score by the percentage score. The inten-

sity of score was regarded as: absent: 0; weak: 1, moderate: 2, and strong: 3, whereas, the per-

centage score was graded as follows: none: 0, 1: 1–10%, 2:11–33%, 3:34–66%, and 4: 67–100%.

For statistical analysis, a final staining score�4 was considered as low expression and a score

>4 as a high expression.

Statistical analyses

Data were analyzed using IBM SPSS for Windows (version 20). Categorical variables were

expressed as count and percentages and compared using the Chi-square test and the Fisher

exact test when appropriate. One-sample Kolmogorov Smirnov test was used to test for the nor-

mality of quantitative variables. The normally distributed variables were described as

mean ± standard deviation (SD). Each two groups were compared using Student’s t-test,

whereas the three groups were compared using one-way analysis of variance followed by Bon-

ferroni post-hoc test between each two groups. The non-normally distributed parameters were

expressed as median and interquartile range (IQR) and compared using Kruskal Wallis test fol-

lowed by Mann Whitney test between each two groups. Pearson’s correlation coefficient was

used to evaluate the association between two continuous variables, while, Spearman’s correla-

tion coefficient was used to test the relation between non-parametric variables. Overall survival

(OS) was defined as the time (in months) between the date of disease diagnosis and the date of

last follow up or death. Univariate and multivariate survival analysis was done by Cox propor-

tional hazards regression model. Univariate regression models were used to detect independent

factors associated with OS. Multivariate Cox analysis was conducted to evaluate meaningful var-

iables detected by univariate analysis. Hazard ratio (HR) and its confidence interval (95% CI)

were calculated for each factor. A p value� 0.05 was used as a significant criterion.

Results

The present study included forty cirrhotic patients with HCC, of whom 32 (80%) were male.

The mean age at initial diagnosis was 66 ± 8.1 years. All patients were positive for anti-HCV

and PCR for HCV-RNA. Among those patients, 9 (22.5%); 8 (20%), and 23 (57.5%) were class

A, B, and C, respectively, according to the Child-Pugh classification. This group of patients

was compared to two other groups: a group of HCV-associated cirrhosis patients without

HCC and a group of healthy volunteers (c.f., Table 1).

Cirrhotic patients with HCC versus those without

Group I included 40 cirrhotic patients with HCC, whereas group II consisted of 40 cirrhotic

patients without HCC. The baseline characteristics of both groups are depicted in Table 1.

There was no statistically significant difference in age, sex, BMI, smoking exposure, platelet

count, liver function tests, functional status of the liver, and serum creatinine. However, cir-

rhotic patients with HCC had significantly higher blood levels of AFP as compared to those

without [86(31.8–1000)ng/ml vs. 8(5.1–341.8)ng/ml, p = 0.01]. (c.f., Table 1).

Cirrhotic patients with HCC versus healthy volunteers

Cirrhotic patients with HCC were matched with healthy volunteers as regards age, sex, smok-

ing exposure, and serum creatinine. The serum levels of total bilirubin, ALT, AST, PT, INR
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and AFP were significantly higher in HCC patients than in healthy controls [1.2(0.8–1.3)mg/dl

vs.0.2(0.1–0.7) mg/dl, p = 0.01; 45.5(41–82)IU/L vs. 26(18–30)IU/L, p<0.001; 66(39.5–110.8)

IU/L vs. 28(25–32)IU/L, p<0.001; 14.8±2.8sec. vs. 11.7±1.1sec., p = 0.04; 1.3±0.3 vs. 1.1±0.1,

p = 0.03, and 86(31.8–1000)ng/ml vs.4(3–4.8)ng/ml, p<0.001, respectively. Whilst, they dis-

played statistically significant lower values of BMI, platelet count, and serum albumin versus

healthy control group (25.5 ± 3.6 kg/m2 vs. 30 ±2.6 kg/m2, p<0.001; 192±66.4 (1×103 μl) vs.

248.1±63 (1×103 μl), p = 0.014, and 3.4±0.7 gm/dl vs. 3.9±0.3 m/dl, p = 0.05, respectively (c.f.,

Table 1).

Table 1. Baseline characteristics of the study groups.

Variable HCC patients G1

(n = 40)

Cirrhotic patients G2

(n = 40)

Healthy controls G3

(n = 20)

p-value

Among 3

groups

p1 p2 p3

Gender [n (%)]

Male 32 (80%) 30 (75%) 15 (75%) 0.918 0.72� 0.72� 1�

Female 8 (20%) 10 (25%) 5 (25%)

Age (years) [mean ± SD] 66±8.1 62.4±12.1 64.3±10.5 0.55 0.831† 1† 1†

BMI (kg/m2) [mean ± SD] 25.5±3.6 24±2.4 30±2.6 <0.001 0.259† <0.001† <0.001†

Smoking [n (%)]

No 28(70%) 28(70%) 15(75%) 0.921 1� 0.72� 0.72�

Yes 12(30%) 12(30%) 5(25%)

Platelets (1×103/μl) [mean ± SD] 192±66.4 186±49.8 248.1±63 0.003 1† 0.014† 0.006†

Total bilirubin (mg/dl) [median

(IQR)]

1.2(0.8–1.3) 1.2(0.9–1.3) 0.2(0.1–0.7) 0.003 0.86†† 0.01†† 0.001††

ALT (IU/L) [median(IQR)] 45.5(41–82) 43.5(35.5–65.3) 26(18–30) <0.001 0.40†† <0.001†† 0.001††

AST(IU/L) [median(IQR)] 66(39.5–110.8) 58.5(42.3–82) 28(25–32) <0.001 0.39†† <0.001†† <0.001††

Serum albumin (gm/dl)

[mean ± SD]

3.4±0.7 3.7±0.7 3.9±0.3 0.04 0.30† 0.05† 0.62†

PT (seconds) [mean ± SD] 14.8±2.8 13.6±2.7 11.7±1.1 0.041 1† 0.04† 0.264†

INR [mean ± SD] 1.3±0.3 1.2±0.3 1.1±0.1 0.036 1† 0.03† 0.320†

Serum creatinine (mg/dl)

[mean ± SD]

0.8±0.3 0.8±0.2 0.7±0.1 0.150 1† 0.831† 0.159†

AFP (ng/dl) [median (IQR)] 86(31.8–1000) 8(5.1–341.8) 4(3–4.8) <0.001 0.01†† <0.001†† <0.001††

Child-Pugh class [n (%)]

A 9(22.5%) 5(12.5%) --- 0.071� ---- ----

B 8(20%) 10(25%) ---

C 23(57.5%) 25(62.5%) ----

Child-Pugh score [mean ± SD] 9.8±2.3 9.8±2.3 ---- 0.60§ ---- ----

MELD [median (IQR)] 9.5(7–12.5) 8(7–10.8) ---- 0.35†† ---- ----

TNM score (I+II/III+IV)[n.(%)] 24(60%)/16(40%) ---- ----- ---- ---- ----

Okuda score (1/2+3) [n.(%)] 22(55%)/18(45%) ---- ----- ---- ---- ----

HCC: hepatocellular carcinoma; G: group; n: number; BMI: body mass index; kg/m2: kilogram/meter2; ALT: alanine aminotransferase; AST: aspartate transaminase; PT:

prothrombin time; INR: international normalized ratio; AFP: alpha-fetoprotein; MELD: model of end stage liver disease; TNM: Tumor-Node-Metastasis

�: Chi square test

†: one way analysis of variance test followed by Bonferroni post-hoc test between each two groups

††: Kruskal Wallis test followed by Mann Whitney test between each two groups

§: Student’s t-test; SD: standard deviation; IQR: interquartile range; p1: G1 vs. G2; p2: G1 vs. G3; p3: G2 vs. G3.

Bold values denote significant results

https://doi.org/10.1371/journal.pone.0277266.t001
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Comparison of hepatic expression of GHR, STAT5, IGF-1, Snail-1 and

TGFBR2 proteins in the study groups

In cirrhotic patients with HCC, hepatic expression of GHR was significantly lower than that in cir-

rhotic patients without HCC (0.5(0–3.8) vs. 4(0.8–6), p = 0.02), and control group (0.5(0–3.8) vs. 6

(4–7), p<0.001). Similar trends were observed in STAT5 and IGF-1 hepatic expression. Both were

significantly lower in cirrhotic patients with HCC in comparison to those without (0.9(0–2) vs. 1.5

(0–4), p = 0.02) for STAT5, and (1.5(0–6) vs. 4(3–6), p = 0.048 for IGF-1, and healthy controls (0.9

(0–2) vs. 4(2–5.5), p<0.001), and 1.5(0–6) vs. 6(4.5–9), p<0.001), respectively (c.f., Table 2).

The hepatic expression of Snail-1 was found to be significantly higher in cirrhotic patients

with HCC compared to those without HCC (4(3–6) vs. 2(1–3), p<0.001) and control group (4

(3–6) vs. 1(1–2), p<0.001), whereas cirrhotic patients with HCC had significantly lower

hepatic expression of TGFBR2 than did cirrhotic patients without HCC (2.5(2–4) vs. 4(3–6),

p = 0.046) and healthy controls (2.5(2–4) vs. 6(3–9), p = 0.019) (c.f., Table 2).

Regarding the subcellular localization of GHR and IGF-1 expression, it was predominantly

cytoplasmic in HCC patients. Whereas, STAT5 was found in the cytoplasm in 22(55%) cases,

localized to the nucleus in 13(32.5%) cases and to both sites in 5(12.5%) cases (c.f., Fig 1A–1I).

Snail-1 hepatic expression was mainly cytoplasmic in HCC patients, although it was mostly

nuclear in case of TGFBR2 expression (c.f., Fig 2A–2F).

Moreover, we found that the expression of all these proteins in stromal cells of HCC micro-

environment; including: kupffer cells (KCs), hepatic stellate cells (HSCs), liver sinusoidal

endothelial cells (LSECs), Cholangiocytes, and stromal inflammatory cells was higher in HCC

patients when compared to cirrhotic patients. The differences yielded statistical significance

when LSECs were examined for expression of GHR (70% vs. 25%, p<0.01), STAT5 (80% vs.

15%, p<0.001) and TGFBR2 (95% vs. 10%, p>0.001). In the case of HSCs, expression of Snail-

1 and TGFBR2 was significantly higher in HCC patients than cirrhotic patients (60% vs. 20%,

p = 0.022, and 75% vs. 15%, p< 0.001, respectively). Similar trend was observed in stromal

inflammatory cells (90% vs. 25%, p< 0.001for Snail-1 and 90% vs. 4%, p = 0.002 for TGFBR2)

(data not shown) (c.f., Fig 3A–3N).

Correlations of hepatic expression of GHR/STAT5/IGF-1 signaling

pathway with different clinico-biochemical parameters, Snail-1, and

TGFBR2 in cirrhotic patients

In cirrhotic patients, negative correlations were found between hepatic expression of GHR on

the one hand and patient age (r = - 0.30; p = 0.03) and AFP (r = 0.31; p = 0.029) on the other

Table 2. Comparison of hepatic expression of GHR, STAT5, IGF-1, Snail-1 and TGFBR2 proteins in the study groups.

Variable HCC patients G1(n = 40) Cirrhotic patients G2(n = 40) Healthy controls G3(n = 20) p-value

Among 3 groups p1 P2 P3

Hepatic expression:

GHR [median (IQR)] 0.5(0–3.8) 4(0.8–6) 6(4–7) <0.001 0.02 <0.001 0.01

STAT5 [(median (IQR)] 0.9(0–2) 1.5(0–4) 4(2–5.5) 0.003 0.02 <0.001 0.03

IGF-1[(median (IQR)] 1.5(0–6) 4(3–6) 6(4.5–9) 0.001 0.048 <0.001 0.025

Snail-1 [(median (IQR)] 4(3–6) 2(1–3) 1(1–2) <0.001 <0.001 <0.001 0.228

TGFBR2 [(median (IQR)] 2.5(2–4) 4(3–6) 6(3–9) 0.028 0.046 0.019 0.213

HCC: hepatocellular carcinoma; G: group; n: number; GHR: growth hormone receptor; STAT5: signal transducer and activator of transcription 5; IGF-1: insulin like

growth factor-1, TGFBR2: type2 transforming growth factor-beta receptor. Data are expressed as median (interquartile range) and compared using Kruskal Wallis test

among the three groups followed by Mann Whitney test between each two groups; p1: G1 vs. G2; p2: G1 vs. G3; p3: G2 vs. G3.

Bold values denote significant results

https://doi.org/10.1371/journal.pone.0277266.t002
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one. Also a significant negative correlation was detected between hepatic expression of STAT5

and blood levels of AFP (r = - 0.29; p = 0.04). Regarding the hepatic expression of IGF-1, it was

correlated positively with patient BMI (r = 0.33; p = 0.011) and negatively with patient age (r =

- 0.31; p = 0.035), serum levels of liver enzymes (r = - 0.28; p = 0.03 for ALT, and r = - 0.34;

p = 0.008 for AST), PT (r = - 0.27; p = 0.036), as well as serum creatinine (r = - 0.33; p = 0.013).

It was notable that the hepatic expression of the three studied proteins showed significant posi-

tive correlations between them. As regards the inducers of EMT, hepatic expression of Snail-

1was correlated negatively with expression of GHR, STAT5, and IGF-1 proteins (r = -0.55,

p = 0.02; r = -0.47, p = 0.035, and r = -0.51, p = 0.009, respectively). On the contrary, there

were positive correlations between hepatic expression of TGFBR2 and expression of all these

proteins (r = 0.47, p = 0.034; r = 0.49, p = 0.023, and r = 0.57, p<0.001, respectively) (c.f.,

Table 3).

Relationship between hepatic expression of GHR/STAT5/IGF-1 signaling

pathway and clinico-pathological features of the tumor in HCC patients

HCC patients with lower GHR hepatic expression exhibited significantly higher frequency of

patients with AFP> 100 ng/ml (76.5% vs. 23.5%; p = 0.048); tumor size >5cm (82% vs. 18%;

p = 0.02); vascular invasion (85.5% vs. 14.5%; p = 0.002), and advanced TNM stage (80.6% vs.

Fig 1. (a-i): Hepatic expression of GHR, STAT5, and IGF-1 proteins in the study groups. GHR expression: a)in healthy control: b) in cirrhotic patients; c) in

HCC patients; (predominantly cytoplasmic); STAT5 expression: d) in healthy control; e) in cirrhotic patients; f) in HCC patients (cytoplasmic/nuclear) IGF-1

expression: g)in healthy controls; h) in cirrhotic patients; i) in HCC patients (predominantly cytoplasmic). Magnification 200 X scale bar 100 μm. HCC:

hepatocellular carcinoma; GHR: growth hormone receptor; STAT5: signal transducer and activator of transcription5; IGF-1: insulin like growth factor-1.

https://doi.org/10.1371/journal.pone.0277266.g001
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19.4%; p = 0.01). Also those with lower hepatic expression of STAT5 had significantly higher

proportion of patients with AFP>100 ng/ml (84.8% vs. 15.2%; p = 0.006); vascular invasion

(86% vs. 14; p = 0.009, and advanced pathological stage (86.7% vs. 13.3%; p = 0.007). A signifi-

cantly higher proportion of patients with portal vein infiltration was found among HCC

patients with lower IGF-1 hepatic expression (93.75% vs. 6.25%; p<0.001) (c.f., Table 4).

Factors associated with overall survival in HCC patients

Herein, univariate analysis by Cox hazard model showed that age>60 years (HR (95% CI) =

2.34 (1.15–3.86); p = 0.07), vascular invasion (HR (95%CI) = 2.19(1.19–2.82); p = 0.0001);

advanced TNM stage (HR (95% CI) = 3.10 (1.61–5.12); p = 0.0001), lower hepatic expression

of GHR (HR (95%CI) = 3.8(1.98–5.67); p<0.0001); lower hepatic expression of STAT5 (HR

(95% CI) = 1.71(1.22–2.43); p<0.01, and lower hepatic expression of IGF-1 (HR(95%CI) = 2.3

(1.27–2.99); p = 0.0061) were significantly related to worse OS in HCC patients. Age> 60

years (HR(95%CI) = 2.0(1.03–3.3); p = 0.037, vascular invasion (HR(95%CI) = 3.15(1.89–

10.61); p = 0.001, advanced TNM stage (HR(95%CI) = 5.32(1.63–12.43); p = 0.0014; lower

GHR expression (HR(95% CI) = 3.1 (1.43–4.76); p = 0.0004), lower hepatic expression of

STAT5 (HR(95%CI) = 1.45(0.96–2.33; p = 0.046) and lower hepatic expression of IGF-1 (HR

(95%CI) = 1.26(0.75–2.11); p = 0.049) were found to be independent predictors of mortality in

those patients when multivariate Cox analysis was used (c.f., Table 5).

Discussion

In spite of the progress in the management of HCC, the clinical outcome remains inadequate

due to the complexity and heterogeneity of the disease, the rarity of treatment options, being

diagnosed at an advanced stage, as well as, the increased rate of recurrence and distant metas-

tasis [52]. Therefore, the recognition of the exact mechanisms which may play a role in the

tumor incidence and progression, could be helpful to represent new targeted treatment

approaches of HCC.

Fig 2. (a-f): Hepatic expression of Snail-1 and TGFBR2 proteins in the study groups. Snail-1expression: a) in healthy control: b) in cirrhotic patients; c) in

HCC patients; (predominantly cytoplasmic); TGFBR2 expression: d) in healthy control; e) in cirrhotic patients; f) in HCC patients (predominantly nuclear).

Magnification 200 X scale bar 100 μm. HCC: hepatocellular carcinoma; TGFBR2: type 2 transforming growth factor-beta receptor.

https://doi.org/10.1371/journal.pone.0277266.g002
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Recently, there has been increasing evidences which explore the role of GH-STAT5-1GF-1

axis in cancer development [53]. Binding of GH to its cognate receptor, is an essential step to

exert its effects. In the present study, we observed that HCC patients exhibited significantly

lower hepatic expression of GHR than those of cirrhosis and control groups, mostly due to

Fig 3. (a-n): Examples of expression of GHR, STAT5, IGF-1, Snail-1 and TGFBR2 in a variety of stromal cells of TME

in HCC and cirrhotic patients. GHR: growth hormone receptor, STAT5: signal transducer and activator of

transcription5; IGF-1: insulin like growth factor-1; TGFBR2: type 2 transforming growth factor-beta receptor; TME:

tumor microenvironment; HCC: hepatocellular carcinoma. �: Images are presented at 20X magnification power with

200X zoom in boxes.

https://doi.org/10.1371/journal.pone.0277266.g003
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hepatocellular dysfunction as a consequence of chronic liver disease, and tumor burden [54].

Our findings were compatible with the scarcely available studies in literature [55–57], albeit,

GHR hepatic expression in these studies were performed by different techniques. It has been

revealed that a lower GHR levels have led to a state of GH resistance which may be related to

decreased GH clearance, defective synthesis of IGF-1 as a result of hepatocellular damage, and

defective binding capability of GH to GHR [58]. GH mediates its pro-oncogenic effects by cre-

ating a protumorigenic milieu via various mechanisms. Elevated GH leads to accumulation of

unrepaired damaged DNA, which results in increasing chromosomal instability and oncogenic

aberrations [59]. GH may increase the propensity of cancer development by suppressing many

tumor suppressor genes such as p53, leading to promotion of cell proliferation, and augmenta-

tion of GH role on accumulation of damaged DNA [60]. Moreover, increased GH may trigger

the process of EMT by suppressing the expression of E-cadherin, which is a cell-to-cell adhe-

sion molecule [61]. Additionally GH assists cell motility and invasion, as well as, acquiring

cancer stem cell-like criteria of HCC cells, by inhibiting another tight junction protein called

Claudin-1 through activation of STAT3 in HCC [62]. The effect of GH on EMT has been

reported in HCC patients [63]. A significant overexpression of Snail-1 which represents a criti-

cal transcriptional repressor of E-cadherin [34], was noticed in HCC patients versus both con-

trol groups in the current study. Loss of functionality of E-cadherin has been found in

different malignancies including the liver [64]. Although the distinct role of Snail-1 in trigger-

ing hepatocarcinogenesis is not wholly clear, a lot of evidence points to its vital role during

Table 3. Correlations of hepatic expression of GHR/STAT5/IGF-1 signaling pathway with different clinico-biochemical parameters, Snail-1 and TGFBR2 in cir-

rhotic patients.

Variable GHR protein expression STAT5 protein expression IGF-1 protein expression

R p-value r p-value r p-value

STAT5 hepatic expression 0.35 0.001† ------- -------- ------- -------

IGF-1 hepatic expression 0.45 0.02† 0.53 0.0001† ----- -----

Age (years) - 0.30 0.03† -0.15 0.24† -0.31 0.035†

BMI (kg/m2) 0.20 0.12† 0.11 0.41† 0.33 0.011†

Smoking (Yes/No) -0.09 0.47†† -0.05 0.72†† -0.08 0.53††

Platelets (1×103/μl) 0.01 0.96† -0.10 0.44† 0.09 0.50†

Total bilirubin (mg/dL) -0.07 0.61† -0.09 0.47† 0.07 0.59†

ALT (IU/L) -0.05 0.78† -0.05 0.72† -0.28 0.03†

AST (IU/L) -0.22 0.36† -0.09 0.49† -0.34 0.008†

Serum albumin (gm/dl) 0.17 0.20† 0.14 0.29† 0.14 0.30†

Prothrombin time (seconds) -0.22 0.09† -0.07 0.59† -0.27 0.036†

INR -0.12 0.38† -0.14 0.28† -0.18 0.231†

Serum creatinine (mg/dl) -0.06 0.63† -0.02 0.89† -0.38 0.013†

Alpha-fetoprotein (ng/ml) -0.31 0.029† -0.29 0.04† -0.23 0.08†

Child-Pugh score -0.06 0.70† -0.21 0.06† -0.02 0.92†

MELD score -0.05 0.75† -0.15 0.36† -0.03 0.88†

Snail-1 -0.55 0.02† -0.47 0.035† -0.51 0.009†

TGFBR2 protein 0.47 0.034† 0.49 0.023† 0.57 <0.001†

GHR: growth hormone receptor; STAT5: signal transducer and activator of transcription 5; IGF-1: insulin like growth factor-1; r: correlation coefficient; BMI: body

mass index; kg/m2: kilogram/meter2; ALT: alanine aminotransferase; AST: aspartate transaminase; INR: international normalized ratio; MELD: model of end stage liver

disease; TGFBR2: type2 transforming growth factor-beta receptor

†: Pearson’s correlation

††: Spearman’s correlation

Bold values denote significant results

https://doi.org/10.1371/journal.pone.0277266.t003
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malignant transformation. The tumor suppressor gene p53 hinders tumor cell invasion

through the degeneration of Snail protein in HCC [65]. Co-operatively, Notch 1 and reactive

oxygen species increase the level of Snail protein in hepatoma cells via induction of phosphori-

nositide 3- Kinase/Akt signaling pathway [66]. Yuan et al., [67] found that long non-coding

UCID interacts with Snail protein to increase its stability which promots the EMT process to

hasten HCC metastasis. Contrariwise, downregulated hepatic expression of TGFBR2 was seen

Table 4. Relationship between hepatic expression of GHR/STAT5/IGF-1 signaling pathway and clinico-pathological features of the tumor in cirrhotic patients with

hepatocellular carcinoma.

Variable Hepatic expression of GHR Hepatic expression of STAT5 Hepatic expression of IGF-1

n. No/low n(%) High n(%) p-value n. No/low n(%) High n(%) p-value n. No/low n(%) High n(%) p-value

Age (years)

� 60 20 14(70) 6(30) 1 20 8(40) 12(60) 1 20 12(60) 8(40) 1

>60 20 12(60) 8(40) 20 6(30) 14(60) 20 14(70) 6(30)

Gender

Male 22 14(63.6) 8(36.4) 1 36 34(94.4) 2(5.6) 1 34 22(64.7) 12(35.3) 1

Female 18 12(66.7) 6(33.3) 4 4(100) 0(0) 6 4(66.7) 2(33.3)

Child-Pugh score

A 28 20(71.4) 8(28.6) 0.613 28 10(35.7) 18(64.3) 1 28 14(50) 14(50) 1

B+C 12 6(50) 6(50) 12 4(33.3) 8)66.7) 12 6(50) 6(50)

MELD score

�12 20 16(80) 4(20) 0.350 20 8(40) 12(60) 1 20 10(50) 10(50) 1

>12 20 10(50) 10(50) 20 6(30) 14(70) 20 10(50) 10(50)

AFP (ng/ml)

�100 6 2(33.3) 4(66.7) 0.048 7 2(28.6) 5(71.4) 0.006 20 10(50) 10(50) 1

>100 34 26(76.5) 8(23.5) 33 28(84.8) 5(15.2) 20 10(50) 10(50)

Tumor number

Single 24 18(75) 6(25) 0.356 24 8(33.3) 16(66.7) 1 24 14(58.3) 10(41.7) 0.650

Multiple 16 8(50) 8(50) 16 6(37.5) 10(62.5) 16 6(37.5) 10(62.5)

Tumor size (cm)

�5 12 5(41.7) 7(58.3) 0.02 20 8(40) 12(60) 1 20 10(50) 10(50) 1

>5 28 23(82) 5(18) 20 6(30) 14(70) 20 10(50) 10(50)

Vascular invasion

No 12 4(33.3) 8(66.7) 0.002 11 5(45.5) 6(54.5) 0.009 8 2(25) 6(75) <0.001

Yes 28 24(85.5) 4(14.5) 29 25(86) 4(14) 32 30(93.75) 2(6.25)

Lymphatic permeation

No 36 24(66.7) 12(33.3) 1 36 12(33.3) 24(66.7) 1 36 18(50) 18(50) 1

Yes 4 2(50) 2(50) 4 2(50) 2(50) 4 2(50) 2(50)

T.N.M stage

I 9 3(33.3) 6(66.7) 0.01 10 4(40) 6(60) 0.007 24 14(58.3) 10(41.7) 0.650

II-IV 31 25(80.6) 6(19.4) 30 26(86.7) 4(13.3) 16 6(37.5) 10(62.5)

Okuda stage

1 22 14(63.6) 8(36.4) 1 22 10(45.5) 12(54.5) 0.374 22 12(54.5) 10(45.5) 1

2+3 18 12(66.7) 6(33.3) 18 4(22.2) 14(77.8) 18 8(44.4) 10(55.6)

Number of patients = 40

n.: number; GHR: growth hormone receptor; STAT5: signal transducer and activator of transcription 5; IGF-1: insulin like growth factor-1; MELD: model of end stage

liver disease; AFP: alpha-fetoprotein; TNM: Tumor-Node-Metastasis. Data are expressed as proportions and percentages, and compared using Chi-square statistic or

Fisher’s exact test

Bold values denote significant results

https://doi.org/10.1371/journal.pone.0277266.t004
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in our HCC patients compared with the two control groups. Reduced TGFBR2 expression

might result in failed cell growth arrest regulated by TGF-β which accelerates the cell oncogen-

esis [40]. Down-regulation of TGFBR2 is mostly due to epigenetic silencing by promotor

methylation [68], in addition to TGFBR2 gene loss or mutations which are rare. Our results

were consistent with those found by other investigators [44], however, others showed

unchanged TGFBR2 expression in HCC patients [69]. Interestingly, we found that GHR

expression negatively correlated to Snail-1 expression, but was positively correlated to

TGFBR2, with statistical significance.

In HCV-related HCC patients, HCV infection leads to a production of various inflamma-

tory and fibrotic mediators such as proinflammatory cytokines, cell death signals, and reactive

oxygen species [70], as well as, hepatic stellate cells activation [71]. All these events, creates a

cirrhotic microenvironment that refers to the "field cancerization", which initiates and pro-

motes hepatocarcinogenesis [72] and probably dysregulates GHR expression. The viral core

protein down-regulates CDKN1A; one of the cell cycle inhibitors leading to an aggressive type

of HCC [73]. By contrast, a previous study revealed an increased expression of GHR in HCC

patients as compared to healthy controls [74]. It has been reported that binding of GH to the

atypically expressed GHR activates the JAK2 pathway, induces EMT, and promotes tumori-

genesis [75].

Herein, we reported a significant positive correlation between hepatic expression of both

GHR and IGF-1 proteins, whereas there was significant negative correlations between hepatic

expression of GHR on the one hand and patient age, serum levels of AFP, vascular invasion

and the TNM stage of hepatoma on the other. Also decreased hepatic expression of GHR was

associated with increased serum levels of AFP, large tumor size, vascular invasion, advanced

histo-pathological stage, and worse outcome. Nearly similar relations were reported by Lin

et al. [57].

Table 5. Univariate and multivariate analyses of risk factors related to overall survival in cirrhotic patients with hepatocellular carcinoma.

Variable Overall survival

Univariate Multivariate

HR (95%CI) p-value HR (95%CI) p-value

Age (years) (� 60vs>60) 2.34(1.15–3.86) 0.007 2.0(1.03–3.3) 0.037

Gender (Male vs. Female) 0.94(0.8–1.13) 0.541

Child-Pugh score (A vs. B+C) 1.11(0.54–1.83) 0.675

MELD score (>12 vs.�12) 1.32(0.69–2.14) 0.285

AFP (ng/ml) (�100vs.>100) 1.59(0.81–3.12) 0.273

Tumor number (single vs. multiple) 0.58(0.42–1.19) 0.269

Tumor size (cm) (�5 vs.>5) 1.37(0.65–2.43) 0.269

Vascular invasion (No vs. Yes) 2.19(1.19–2.82) 0.0001 3.15(1.89–10.61) 0.001

Lymphatic permeation (No vs. Yes) 1.12(0.63–1.87) 0.663

TNM stage (I vs. II-IV) 3.10(1.11–5.12) 0.0001 5.32(1.63–12.43) 0.0014

Okuda stage (1vs. 2+3) 0.83(0.49–1.51) 0.539

GHR expression (0–4 vs. 5–12) 3.8(1.98–5.67) <0.0001 3.1(1.43–4.76) 0.0004

STAT5 expression (0–4 vs. 5–12) 1.71(1.22–2.43) <0.01 1.45(0.96–2.33) 0.047

IGF-1 expression (0–4 vs. 5–12) 2.3(1.27–2.99) 0.0061 1.26(0.75–2.11) 0.049

Number of patients = 40

HR: hazard ratio; CI: confidence interval; MELD: model of end stage liver disease; AFP: alpha-fetoprotein; TNM: Tumor-Node-Metastasis; GHR: growth hormone

receptor; STAT5: signal transducer and activator of transcription 5; IGF-1: insulin like growth factor-1.

Bold values denote significant results

https://doi.org/10.1371/journal.pone.0277266.t005
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Many studies have been mentioned the critical roles of STAT5 proteins in the development

of various solid tumors such as prostate [76], colorectal [77], breast [78], and lung [79] cancers,

as well as, hematological malignancies [80]. However, studies on the role of STAT5 in HCC

proved that STAT5 poses contrasting functions in different contexts, where it can act as a

tumor suppressor [81, 82], or as an oncogene in other situation [83–85]. For the first time, the

current study showed lower hepatic expression of STAT5 in HCC patients than cirrhotic

patients and healthy volunteers, as clinical studies in this regard remains lacking. On the con-

trary, other investigators [83–85] reported enhanced expression of STAT5 in HCC cells that

was frequently associated with tumor aggressiveness and poor clinical outcome. The onco-

genic role of STAT5 in these studies was mediated through induction of cell growth and prolif-

eration, recruitment of cancer stem cells, promotion of drug.-resistance, as well as epithelial

meseuchymal transition. Furthermore, Lee et al. [83] mentioned the role of hepatitis B virus X

protein in activating STAT5b in HCC patients. Meanwhile, loss of STAT5 is associated with

hepatocarcinogenesis as a result of increased oncogenic STAT3 activity and induction of liver

fibrosis via increased levels of TGF-β [86]. Moreover, STAT5 deficiency leads to: increased

activity of oncogenic JNK1 and c-Jun (stress-activated protein kinases) [87]; attenuated expres-

sion of tumor suppressor gene p53 [88], and decreased activity of glutathione S-transferases

which stimulates oxidative stress and hepatocellular damage [89]. As regard the oncogenic

effects of STAT3, it is well established that activation of STAT3 promotes cell proliferation

[90], and suppresses apoptosis via up-regulation of anti-apoptotic proteins [91], and down-

regulation of pro-apoptotic genes [92]. It induces angiogenesis by enhancing the expression of

various pro-angiogenic molecules such as vascular endothelial growth factor in the tumor

microenvironment [93]. Moreover, activated STAT3 motivates the secretion of many chemo-

kines and cytokines such as, IL-6 and IL-16 to maintain activation of immune cells in the

tumor tissue [94]. STAT3 activation also regulates the expression of different cancer cells;

namely CD 44 [95], and CD 133 [96] positive cells which maintain the stem cell-like character-

istics in HCC cells by inducing the Notch signaling pathway [97]. Furthermore STAT3 is

responsible for providing the tumor cells with the energetic demands [98]. Also it assists the

motility and invasion of HCC cells by adjusting the expression of matrix metalloproteinases

that cleave the extracellular matrix in the tumor microenvironment [99].

Although the activated STAT proteins localize in the nucleus [15], in the current study,

STAT5 was predominantly cytoplasmic. It has been reported that STAT5 is found in both the

nucleus and the cytoplasm of the cells depending upon dynamic trafficking. Its nuclear entry

is induced by the importin-α3/β1 system, that is completely independent of its activation sta-

tus. It continuously shuttles in and out of the nucleous through chromosome region mainte-

nance 1-dependent and- independent pathways [100], thus unphosphorylated STAT5 could

be elicited in the nucleus. Moreover, activated STAT5 may be exclusively located in the cyto-

plasm by inducing Scr family Kinases that leads to cytoplasmic retention of activated STAT 5

via interaction of the SH2 domain [101]. So, the oncogenic STAT5 activity may include cyto-

plasmic function in addition to the nuclear function through crosstalk with various signaling

pathways.

The hepatic expression of STAT5 in our HCC patients was found to be inversely correlated

with the tumor size, vascular invasion, TNM tumor stage, and serum level of AFP. Further-

more, lower expression of STAT5 was significantly associated with serum AFP > 100 ng/ml,

vascular invasion, advanced tumor stage, and poor patient prognosis. Regarding the relation

between low hepatic expression of STAT5 and vascular invasion in our HCC patients, develop-

ment of HCC coexists with persistent inflammatory cells; including tumor-associated macro-

phages (TAM) [102]. TAMs promote EMT by producing factors such as IL-6, IL-8, TGF-β, as

well as matrix metalloproteinase 2 and 9 which break down extracellular matrix to assist local
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invasion and metastasis of tumor cells [103]. IL-6 binds to its receptor and interacts with JAK2

leading to STAT3 activation which triggers EMT that is transcriptionally induced by Twist

[104]. IL-8 is another cytokine that is secreted by TAMs in HCC; it has a role in tumor growth,

survival, angiogenesis, as well as EMT via the JAK2/STAT3/Snail signaling pathway [105] and

activation of CXC chemokine receptor, and CC chemokine ligand 2 [106]. Overexpression of

TGF-β that secreted by TAMs interacted with different transcription factors such as Snail and

Slug to induce EMT in tumor cells through down-regulation of E-cadherin expression, and

up-regulation of vimentin expression [107]. Although it has been proved by RNA-sequencing

analysis that STAT5 genes related to the anti-tumor immune response in TAM, Jesser et al.

[108] found that loss of STAT5 in macrophages increased its ability to express tumor-promot-

ing factors which enhanced the tumor cell migration and metastasis in vitro and in vivo.

Importantly, our results showed that STAT5 expression in HCC patients was negatively corre-

lated with Snail-1 expression, but directed to a positive correlation with TGFBR2 expression.

Another interesting finding of this study; we revealed that tissue expression of IGF-1 pro-

tein was significantly lower in HCC patients than cirrhotic patients and healthy controls. Our

findings were consistent with those of previous studies [57, 109–111], but only as compared to

healthy volunteers. Reduced hepatic expression of IGF-1 in HCC is multifactorial. Reduced

levels of IGF-1 lead to development of GH resistance [56], decreased expression of GHR [112]

due to hepatocellular damage by tumor cells [113], as well as, existence of feedback circuit at

endocrine [114] and paracrine [115] loops. In this study, the tumor in HCC patients was aris-

ing on a background of HCV-associated liver cirrhosis. A lot of studies have demonstrated

that liver cirrhosis by itself is responsible for decreased serum concentrations [116–118] and

tissue expression [112, 119, 120] of IGF-1 protein, that have been more pronounced in patients

with HCV infection than those without [20]. IGF-1 deficiency in cirrhotic patients may be

related to hepatocellular dysfunction, malnutrition, oxidative damage, altered lipid metabo-

lism, and insulin resistance [121, 122]. HCV infection triggers the expression of glucose

6-phosphatase and phosphoenol-pyruvate carboxykinase 2 leading to enhanced glucose pro-

duction. Additionally, HCV infection negatively regulates the expression of glucose trans-

porter-type 4 that is responsible for glucose uptake; therapy producing a state of insulin

resistance [123], which leads to acceleration of liver fibrosis [124], and hepatocellular dysfunc-

tion that is usually followed by IGF-1 deficiency. IGF-1 deficiency has various detrimental

effects. In physiological situation, liver is not a target organ for IGF-1 due to absence of its

receptor in hepatocytes [125]. IGF-1 deficiency results in hepatic expression of genes encoding

IGF-1 receptor and different proteins that are implicated in the inflammatory process, and

acute-phase responses, and consequently oxidative damage of liver begins [126], IGF-1 may

play a role in HCV-associated hepatocarcinogenesis by supporting HCV infection. IGF-1 has

an inhibitory effect on lipolytic enzyme lipoprotein lipase which prevents the virus cell entry

in hepatoma cells [127]. Besides, there is some sort of interaction between IGF-1 and the three

oncogenic HCV proteins, including, capsid protein (protein C), and two non-structural pro-

teins NS3 and NS5A [128].

In this study, we found a significant negative correlation between hepatic expression of

IGF-1 and patient age in HCC group. During childhood, there is a greater synthesis of

GH-IGF-1 axis, as a result of increased production of sex steroid hormones [129]. With age

the activity of this axis shows a gradual decline to protect the organism from the harmful

effects of GH on age-related attenuation of DNA repair [130]. Perhaps this could be a sensible

explanation of our findings. We also observed that the hepatic expression of IGF-1 was directly

related to BMI of those patients. Malnutrition is a frequent consequence of chronic liver dis-

eases which stems from inadequate dietary intake, disturbed metabolism and malabsorption

[131, 132]. It has been described that malnutrition could change the GH-IGF-1 pathway by
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producing GH resistance, inhibiting hepatic expression of GHR, and IGF-1 mRNA, as well as

precipitating the disintegration, and reducing the bioactivity of IGF-1 [133]. However, the pre-

cise mechanism(s) remains elusive [134]. The decline of hepatic expression of IGF-1, may jus-

tify the inverse correlation between hepatic expression of IGF-1 on the one hand and some

biochemical markers directly related to the severity of hepatic dysfunction; such as ALT, AST

and PT on the other hand in the current study. This has promoted investigators to use the

serum level of IGF-1 as an alternative to the subjective variables (ascites, hepatic encephalopa-

thy) in Child-Pugh scoring system, for evaluating the hepatic functional reserve in HCC stag-

ing scores [135]. Also, The negative correlation between hepatic expression of IGF-1 and

serum creatinine, signifies the extent of dysfunction of liver and not the kidneys, considering

that chronic renal diseases usually leads to increased levels of IGF-1 [136]. Concerning the

relation between hepatic expression of IGF-1 protein and the clinico-pathological characteris-

tics of tumor, herein we observed an inverse correlation between hepatic expression of IGF-1

and vascular invasion in HCC patients. Furthermore, there was a significant association

between decreased hepatic expression of IGF-1 and increased incidence of PVT in those

patients. Similar finding was reported by Ikeda et al. [111]. During HCC development,

increased hepatic expression of IGF-2 has been observed leaving these tissue more vulnerable

to the mitogenic effects of IGF-1 [137]. IGF-1 could activate STAT5 signaling, which leads to

promotion of EMT of HCC cells via downregulation of E-cadherin and upregulation of N-cad-

herin and vimentin [85]. Herein, the expression level of IGF-1was negatively related to Snail-1

expression, however, it was positively correlated to TGFBR2 expression.

Another valuable finding of this study concerns the increased hepatic expression of the

studied proteins in a variety of cells which belong to the HCC microenvironment such as KCs,

HSCs, LSECs, cholangiocytes, and stromal inflammatory cells in HCC patients. KCs are liver-

resident phagocytes which play a pivotal role in different signaling pathways mediating inflam-

mation and tumor progression [138]. Activated HSCs secret various cytokines in addition to

hepatocyte growth factor that results in attenuated antitumor immunity and triggers hepato-

carcinogenesis [139, 140]. LSECs contribute to occurrence of chronic liver injury and thus

tumorigenesis by allowing persistence of chronic viral infections, exacerbation of fibrosis,

acquisition of angiogenesis and EMT [141]. Cholangiocytes lead to liver fibrosis and hepato-

carcinogesis through triggering EMT [142], and an inflammatory cytokine, II17a/f1 that acti-

vates its receptor and thus ERK dependent pathway [143]. The main stromal inflammatory

cells in the HCC microenvironment are HSCs, fibroblasts, endothelial cells, adipocytes, and

immune cells; which include CD8+ T cells, regulatory T cells, dendritic cells, and macrophages.

Interactions between these cells and HCC initiate a media suitable for tumor progression

[140]. Our results showed that crosstalk between GHR/STAT5/TGF1 signaling pathway and

EMT inducers is required for HCC development.

Undoubtedly the current study has some limitations. First was the relatively small number

of sample size. Second, the study design was retrospective. Third, STAT5 tyrosine phosphory-

lation status, and the functional role of each STAT5 isoform were not evaluated due to limited

resources. Finally we could not rule out the role of HCV infection in downregulation of

hepatic expression of GHR and its downstream pathway among HCV-associated HCC.

In conclusion, by using 1HC method, we found that down-regulation of GHR and its

downstream pathway was correlated to the development of HCV-related HCC, that was asso-

ciated with tumor aggressiveness and worse prognosis, irrespective of the functional status of

liver. Being potent inducers of EMT, Snail-1 and TGFBR2 could be critical contributors. How-

ever, the ultimate utility of these results in practice warranted further validation by other large

prospective, multi-center studies.
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