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Esophageal adenocarcinoma is a cancer with rising incidence and poor survival. Most such 

cancers arise in a specialized intestinal metaplastic epithelium, which is diagnostic of 

Barrett’s esophagus. In a genome-wide association study, we compared esophageal 

adenocarcinoma cases (n=2,390) and patients with precancerous Barrett’s esophagus 
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(n=3,175) with 10,120 controls in two phases. For the combined case group we identified 

three new associations. The first is on 19p13 (rs10419226, P=3.6×10−10) in CRTC1 (CREB-

regulated transcription co-activator), whose aberrant activation has been associated with 

oncogenic activity. A second is on 9q22 (rs11789015, P=1.0×10−9) in BARX1, which 

encodes a transcription factor important in esophageal specification. A third is on 3p14 

(rs2687201, P=5.5×10−9) near the transcription factor, FOXP1, which regulates esophageal 

development. We also refine a previously-reported association with Barrett’s esophagus near 

the putative tumor suppressor gene, FOXF1, on 16q24, and extend our findings to now 

include esophageal adenocarcinoma.

A genetic component to the development of Barrett’s esophagus and esophageal 

adenocarcinoma has long been suspected based on prior studies in unrelated individuals and 

familial disease clusters.1–9 This study leverages the resources of the Barrett’s and 

Esophageal Adenocarcinoma Consortium (BEACON), and combines high-quality largely 

population-based epidemiologic studies of esophageal adenocarcinoma and Barrett’s 

esophagus conducted over two decades.

For the discovery phase, we used 1,516 EA cases, 2,416 Barrett’s esophagus cases and 3,209 

controls, all of European ancestry, after rigorous quality control (QC) procedures (Online 

Methods) were applied to the genotyping data. The cases and 2,187 of the controls were 

collected by investigators in BEACON from cohort and case-control studies conducted in 

Western Europe, Australia, and North America. An additional 1,022 cancer-free controls 

were obtained from a study of melanoma10 and included to increase statistical power. All 

cases were histologically confirmed. The distribution of samples by study is given in 

Supplementary Table 1 and their demographic characteristics in Supplementary Table 2. All 

samples were genotyped on the Illumina HumanOmni1-Quad platform.

We performed association analyses on the 922,031 autosomal and X chromosome SNPs that 

passed QC using an additive logistic regression model implemented in GWASTools11 

including as covariates age, sex and the first four eigenvectors from principal component 

analysis (PCA). To assess variants not present on the Illumina HumanOmni1-Quad, we 

performed imputation for each region of interest (Tables 1 and 2). To identify shared genetic 

susceptibility loci for the two conditions, we treated the esophageal adenocarcinoma and 

Barrett’s esophagus cases as a single phenotype. The results are shown in a Manhattan plot 

in Figure 1. We also compared Barrett’s esophagus and esophageal adenocarcinoma 

separately against the controls (Supplementary Figure 1). QQ plots are shown in 

Supplementary Figure 2. The genomic inflation factor λ for analysis of the combined case 

group was 1.039 (1.084 excluding the first four principal components); no evidence for 

population stratification in our data set is indicated.

We selected 94 associated (p < 10−4) SNPs for replication. Of these, 87 were genotyped in 

874 histologically confirmed esophageal adenocarcinoma cases from the Stomach and 

Oesophageal Cancer Study (SOCS), 759 histologically confirmed Barrett’s esophagus cases 

from the UK Barrett’s Oesophagus Gene Study (UK Gene Study) and 6,911 controls, of 

which 1,711 were from the SEARCH Study and 5,200 from the Welcome Trust Case 

Control Consortium 2 (WTCCC2).12 All SOCS, UK Gene Study and SEARCH samples 
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self-identified as Caucasians and were genotyped on a Fluidigm 96.96 Dynamic Array IFC. 

WTCCC2 subjects were of European ancestry as determined by projection onto the first two 

principal components of a PCA of HapMap individuals and were genotyped on a custom 

version of the Illumina Human1.2M-Duo array. Replication analysis was done using an 

additive logistic regression model with sex as a covariate. METAL software 13 was used for 

meta-analysis of the discovery and replication data sets.

The three loci that reached genome-wide significance (P < 5 × 10−8) in the combined case 

group meta-analysis are given in Table 1 and results for all replicated SNPs are given in 

Supplementary Table 3. The most strongly associated SNP for each of the three loci had 

similar ORs in Barrett’s esophagus and esophageal adenocarcinoma. None of the top 

imputed SNPs showed substantially stronger association than the genotyped SNPs.

The most significant locus was at 19p13 (Figure 2a); rs10419226, PMETA(BE+EA) = 

3.55×10−10, odds ratio (OR) = 1.18, 95% confidence interval (CI) = 1.12 – 1.24. Five 

imputed SNPs in high LD with rs10419226 (r2 > 0.85) were genome-wide significant in the 

combined discovery data set and two were also significant in the Barrett’s esophagus 

discovery set (Supplementary Table 4). A second significant locus was at 9q22.32 (Figure 

2b) for rs11789015 PMETA(BE+EA)= 1.02 × 10−9, OR(CI) = 0.83 (0.79–0.88). The third 

genome-wide significant locus was at 3p13 (rs2687201) near FOXP1 (Figure 2c) with 

PMETA(BE+EA)= 5.47 × 10−9, OR(CI) = 1.18 (1.12 – 1.25)

A previous study of Barrett’s esophagus identified the SNP rs9936833, near the putative 

tumor suppressor gene FOXF1.14 A subset of the BEACON samples from the present study 

(2,398 Barrett’s esophagus cases, 2,167 controls) were used in the replication analysis of 

rs9936833 (P = 5.13 × 10−4, OR(CI) = 1.16 (1.07 – 1.27)). With the additional samples used 

here (18 Barrett’s esophagus cases and 1,042 controls) the p-value was more significant 

(PDISCOVERY(BE) = 1.69 × 10−4), but with no change in the odds ratio (OR(CI) = 1.16 (1.07 

– 1.26)). This SNP was associated with esophageal adenocarcinoma (PDISCOVERY(EA) = 

2.06 × 10−3, OR(CI) = 1.16 (1.05 – 1.27)) (Table 2).

Examining the regional association plot of chromosome 16 near rs9936833 for the combined 

data (Figure 2d) we identified four nearby SNPs that had more significant P-values than 

rs9936833. To test the independence of these associations, this region was fine-mapped 

using conditional analysis to assess whether the associations were due to one or multiple 

variants. The discovery and replication results are shown in Table 2, with conditional 

analysis results in Table 3. Our results indicate that these markers define a set of complex 

susceptibility alleles; with between two and four independent loci.

The previous study of Barrett’s esophagus also identified rs9257809 in the major 

histocompatibility complex (HLA) as being associated with increased risk of Barrett’s 

esophagus.14 The significance in our extended data set (PDISCOVERY(BE) = 0.11, OR(CI) = 

1.11 (0.99 – 1.29)) is not substantially different from the original replication results (P = 

0.083, OR(CI) = 1.13 (0.98 – 1.30)). We found a similar OR for esophageal adenocarcinoma 

as in Barrett’s esophagus, suggesting the previously identified genome-wide significant 

Barrett’s esophagus association also plays a role in esophageal adenocarcinoma risk 
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(PDISCOVERY(EA) = 0.09, OR(CI) = 1.14 (0.97 – 1.32); PDISCOVERY(BE+EA) = 0.06, OR(CI) 

= 1.12 (1.01 – 1.27)).

A previous report using BEACON data showed that Barrett’s esophagus and esophageal 

adenocarcinoma risk is influenced by a large number of common genetic variants, and that a 

large proportion of the genes affecting risk of these two conditions are shared between 

them.15 These findings informed our choice of analysis approach with a primary focus on 

the combined esophageal adenocarcinoma and Barrett’s esophagus samples. The utility of 

this approach was borne out in the results presented here. The ORs after meta-analyses 

comparing esophageal adenocarcinoma cases vs. controls and Barrett’s esophagus cases vs. 

controls for our top five loci are very similar, whereas direct comparison of the two case 

types revealed no significant differences (data not shown). Combining the two case types 

allows these SNPs to clearly achieve genome-wide significance in the combined data sets 

(Table 1).

The SNPs in 19p13.11, rs10419226 and rs10423674, are intronic CRTC1 (CREB-regulated 

transcription co-activator) variants associated with oncogenic activity.16 Phosphorylation of 

CRTC1 is regulated by the tumor suppressor kinase LKB1. Down-regulation or loss of LKB1 

expression in human esophageal cancer cell lines and patient samples resulted in activated 

CRTC1 signaling and the transcriptional activation of downstream targets including LYPD3, 

which is associated with cancer metastasis leading to the promotion of esophageal cancer 

cell migration and invasion.16

rs10419226 has been shown to be an expression quantitative trait loci (eQTL) for PIK3R2 in 

lymphoblastoid cell lines.17 PIK3R2 is known to be involved in cancer18 and is expressed in 

gastrointestinal tumors.19 PIK3R2 is also known to interact with epidermal growth factor 

(EGF), which plays an important physiological role in the maintenance of esophageal and 

gastric tissue integrity. The biological effects of salivary EGF includes healing of oral and 

gastroesophageal ulcers and inhibition of gastric acid secretion.20 Furthermore the EGF 

receptor has been found in gastrointestinal tissue and demonstrates increased expression in 

BE and esophageal adenocarcinoma.21 The G/G genotype for the SNP EGF A61G is 

associated with a two- to four-fold increased risk of esophageal adenocarcinoma.22,23

There are several SNPs in high LD (r2 > 0.9) with rs10419226. Three of these, rs200331191, 

rs139340769 and rs8102046, lie in a region of probable promoter and enhancer activities 

across multiple cell lines.24 The intronic CRTC1 SNP rs10423674 influences age at 

menarche.25 The basis of this pleiotropic effect is unclear, but may be related to obesity as 

CRTC1−/− mice are hyperphagic and obese.26 rs10423674 is an eQTL for PBX4 in 

lymphoblastoid cell lines.

The nearest gene to the peak SNP on chromosome 3 (rs2687201) is FOXP1. The 

transcription factors FOXP1 and FOXP2 cooperatively regulate lung and esophagus 

development and FOXP1 is a therapeutic target in cancer.27,28 The FOX family is 

overexpressed in esophageal cancer.14 There are several SNPs in high LD (r2 > 0.8) with 

rs2687201 which lie within enhancer histone marks. One of them, rs7626449, is at a site 
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where there is also evidence from DNase-seq for transcription factor binding in esophageal 

epithelial cells.29

The SNP rs11789015 lies in an intron of BARX1, a homeobox transcription factor known to 

be involved in esophageal and trachea differentiation in developing mouse embryos and 

associated with down-regulation of Wnt pathway activity in stomach morphogenesis and 

specification.30 The BARX1 promoter region is hypermethylated in gastric cancer (GC) cell 

lines and patient samples, with BARX1 mRNA expression in GC tissues and cell lines 

reduced.31 rs11789015 lies in a region where histone marks denote likely promoter activity. 

rs11789015 also alters a known regulatory motif for the transcription factor FOXP1. A 

correlated SNP, rs62574346 (r2=0.97 with rs11789015), resides where there is also evidence 

from DNase-seq for transcription factor binding in esophageal epithelial cells.29

A subset of the BEACON data presented here (Supplementary Figure 3a) formed part of the 

replication arm of a recent Barrett’s esophagus GWAS.14 A primary finding from that work 

was a Barrett’s esophagus association at 16q24 SNP rs9936833. Here we found clear 

evidence this locus is also associated in esophageal adenocarcinoma (PDISCOVERY(EA) = 

2.06 × 10−3, OR(CI) = 1.16 (1.05 – 1.27), as did a recent small study (316 esophageal 

adenocarcinoma cases, 602 controls; OR(CI) = 1.21 (0.99 – 1.47)).32 Two other SNPs near 

rs9936833, rs2178146 and rs3111601, have stronger and more significant associations in 

esophageal adenocarcinoma cases (Table 2 and Supplementary Figure 3b).

Since the size and direction of effect of the Barrett’s esophagus-associated SNPs at 16q24 

were similar in esophageal adenocarcinoma, we used the combined Barrett’s esophagus and 

cancer data to identify other SNPs which are more significantly associated in 16q24 than 

rs9936833 (Table 2). One of these is rs3111601, which is in high LD (r2 = 0.75) with 

rs9936833. All of the SNPs in high LD with rs3111601 are intergenic, although rs1979654 

(r2=0.64 with rs3111601) stands out as having excellent regulatory potential across a wide 

range of cell types and is likely to affect protein binding, chromatin structure and histone 

modification.29 There was evidence for additional independent signals in the region at 

rs3950627 (38kb nearer to FOXF1) and rs2178146 (64kb nearer to FOXF1), where both had 

similar P-values to rs3111601 (Table 2 and Figure 2d), but were in only modest LD (r2 < 

0.2) with rs3111601. Neither are good regulatory candidates, although rs8045253 

(imputation association PDISCOVERY(BE+EA) = 8.04 × 10−5), in r2=0.63 with rs3950627, 

changes a motif for the transcription factor FOXP1. Changing the way that FOXP1 binds to 

this region is particularly interesting in light of our association findings on chromosome 3.

In summary, we report the first genome-wide association study of esophageal 

adenocarcinoma, and the first to examine this cancer together with its precancerous lesion, 

Barrett’s esophagus. Consistent with our findings showing extensive polygenic overlap 

between esophageal adenocarcinoma and Barrett’s esophagus,15 our most significant results 

were for cancer and pre-cancer combined. Together, these findings suggest that much of the 

genetic basis for esophageal adenocarcinoma lies in the development of Barrett’s esophagus, 

rather than progression from Barrett’s esophagus to esophageal adenocarcinoma. We found 

three novel genome-wide significant loci for esophageal adenocarcinoma and Barrett’s 

esophagus combined, and extended existing findings at the FOXF1 and HLA loci. One of the 
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novel regions is chromosome 3p13, near FOXP1, a gene encoding a transcription factor 

which regulates esophageal development. Interestingly, two of the other regions 

(BARX1/9q22.32 and FOXF1/16q24.1) contain risk associated SNPs which disrupt binding 

of FOXP1. Further dissection of these loci is likely to lead to insights into the etiology of 

this rapidly fatal cancer.

Online Methods

DISCOVERY

Study subjects—Cases of Barrett’s esophagus and esophageal adenocarcinoma, together 

with associated population controls, were collected by investigators in the BEACON 

consortium. A subset of these individuals with European ancestry from epidemiologic 

studies conducted in Western Europe, Australia, and North America over the past twenty 

years were used in the Barrett’s and Esophageal Adenocarcinoma Genetic Susceptibility 

Study (BEAGESS) study. To increase the statistical power of the study we included 

additional controls from a hospital based case-control study of melanoma.10 These controls 

(“MD Anderson controls”) were cancer-free friends or acquaintances of European ancestry 

who had accompanied melanoma patients to their clinical visits at the MD Anderson Cancer 

Center in Houston, Texas. The distribution of samples by study is given in Supplementary 

Table 1.

Histological confirmation of esophageal adenocarcinoma was carried out for all esophageal 

adenocarcinoma studies. Similarly, Barrett’s esophagus was histologically confirmed via 

identification of goblet cells in metaplastic columnar epithelium in a biopsy taken from the 

esophagus. Age, sex (Supplementary Table 2) and other esophageal adenocarcinoma/

Barrett’s esophagus risk factors were collected by all of the included studies via 

standardized questionnaires, usually through personal interviews. All recruited participants 

gave informed consent and this project was approved by the ethics boards of each 

participating institution.

Genotyping—BEAGESS specimens were shipped to the Fred Hutchinson Cancer 

Research Center (Seattle, WA) where they were processed and genotyped in three batches. 

In each batch, samples on each genotyping plate were stratified and balanced according to 

case/control status, study, and gender with samples assigned to plates randomly within those 

strata. Genotyping of DNA from buffy coat or whole blood was performed using the 

Illumina HumanOmni1-Quad platform. MD Anderson controls were genotyped using the 

Illumina HumanOmni1-Quad platform at the Johns Hopkins University Center for Inherited 

Disease Research (CIDR). SNP annotations were based on version H of the Illumina product 

files and corresponded to the Genome Reference Consortium GRCh37 release.

Quality control—Quality assurance and quality control (QA/QC) of the BEAGESS and 

MD Anderson data sets were carried out independently by the Genetics Coordinating Center 

at The University of Washington following standard procedures33. QA/QC of the MD 

Anderson data set was described previously10. BEAGESS samples with call rate < 95%, 

admixture of more than one DNA source, or unexpected relatedness (including unexpected 

duplicates) or misannotated sex that could not be explained were removed from the data set. 
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We looked for batch and plate effects using intensity data and allelic frequency and checked 

for case control associations with different experimental factors. No important batch or plate 

effects or case control associations with experimental factors were found. We used 

heterozygosity, sex chromosome intensity data, identity by descent (IBD) analysis and 

visualization of B allele frequency (BAF) and log R ratio (LRR) plots to identify samples 

that had one or more of misannotated sex, unexpected relatedness or were sample 

mixtures.34 Two additional sample mixtures were removed from the data set. After further 

sample filtering to keep only unrelated European ancestry samples (see next section), 2,416 

Barrett’s esophagus cases, 1,516 esophageal adenocarcinoma cases and 2,187 controls 

remained. These samples were combined with 1,022 European ancestry controls from the 

MD Anderson data set for discovery analysis.

SNPs were clustered using Illumina’s GenomeStudio software and defining SNP clusters 

using all samples with a call rate > 95%. SNPs that had either a GenTrain score < 0.6 or a 

cluster separation value < 0.4 had their genotypes set to missing. Additionally, we filtered 

SNPs that were intensity only, had a missing call rate > 5%, had a Hardy Weinberg 

equilibrium p-value over controls >= 10−4, had a discordance among any of the duplicate 

pairs, or had a Mendelian error in either BEAGESS families or HapMap trios. These filters 

were combined with similar filters calculated for the MD Anderson data set.10 Additionally, 

we removed a further 344 SNPs that were discordant in the same HapMap control samples 

(n=3) run in both the BEAGESS and MD Anderson data sets. After QA/QC a total of 

926,923 SNPs remained for analysis.

Principal Components Analysis—We performed Principal Component Analysis (PCA) 

as a two-step process using the SNPRelate software. First, we used PCA to define a 

homogeneous set of European ancestry samples in the BEAGESS data set. We did this by 

running PCA on a set of 6,248 unrelated (except for six two-person families) subjects each 

of which was an EA case, a BE case, or a control. A majority of these subjects (~98%) self-

identified their race as “White” and a scatterplot of all subjects along the axes of the first 

two eigenvectors showed the majority of samples formed a tight cluster (Supplementary 

Figure 4). Therefore, we computed the means and standard deviations (SD) of the first two 

eigenvectors and defined any sample that fell within a two SD rectangle of both eigenvector 

means to be of homogeneous European ancestry (n=6,125).

Second, we ran PCA on the combined data set (n=7,147) consisting of the BEAGESS 

European ancestry samples (n=6,125) and the similarly defined set of MD Anderson 

controls (n=1,022). The intent here was to identify eigenvectors to include as covariates in 

our model to adjust for population differences that were present in the remaining European-

ancestry-only samples.35,36 For this analysis we selected 65,774 SNPs that were non-

monomorphic, autosomal, passed quality control, had missing call rate < 5%, minor allele 

frequency > 5%, did not have an LD value > 0.2 between any two SNPs in a sliding window 

of 500K bases, and were not in the LCT gene (2q21), HLA region or polymorphic regions 

on chromosomes eight (8p23) and seventeen (17q21.31). We included the first four 

eigenvectors as covariates in the association test model to account for population 

stratification by ancestry since they were significantly correlated with case-control status 

and a scree plot showed that the variance accounted for by each eigenvector flattened out 
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after these four eigenvectors (data not shown). To check that only genome-wide variation 

was detected we computed the absolute value of the correlation coefficient of each 

eigenvector against the genotypes for each SNP. We observed one small region of high 

correlation (ρ = ~0.4) between eigenvector one with chromosome two which may indicate 

long-range LD with the LCT gene.

Statistical Analysis—After excluding six related samples and six other samples that had 

missing call rate > 2%, we ran a case-control analysis of the remaining 7,135 samples: 3,928 

cases (1,514 EA and 2,414 BE) vs. 3,207 controls. We used an additive logistic regression 

model with case status regressed on each SNP’s genotype score (coded as 0, 1, or 2 for BB, 

AB and AA) including covariates age, sex and the first four PCA eigenvectors to compute 

the odds ratios (OR) and 95% confidence intervals (95% CI) relating risk of EA or BE to a 

given SNP variant. To test SNPs on the X chromosome, male genotypes were coded as 0 

and 2 and female genotypes as 0, 1 and 2. After filtering SNPs that did not pass quality 

control and SNPs with a minor allele frequency < 1% the λ value was 1.04. The QQ plot is 

shown in Supplementary Figure 2. We also compared Barrett’s esophagus and esophageal 

adenocarcinoma cases separately against the controls using the same model. The 

corresponding Manhattan and QQ plots are shown in Supplementary Figures 1 and 2, 

respectively. Analysis was carried out in the R statistical programming language37 using the 

Bioconductor packages GWASTools11 and SNPRelate.38

Using the combined BE + EA discovery data set we performed a step-wise series of nested 

logistic regression analyses to test the independence of the associations in 16q24 near 

rs9936833. We used the same logistic regression model and covariates as in our primary 

analysis, and also fitted rs3950627 as a covariate since it was the most significant SNP 

100kb up or downstream of rs9936833. This conditional analysis identified rs2178146 as the 

most significant SNP 100kb up or downstream of rs9936833. We repeated this analysis four 

more times identifying and adding to each successive model rs2178146, rs3111601, 

rs1490865, and rs13332095, respectively, stopping when the p-value of the most significant 

remaining SNP had P > 0.01 (Table 3).

Imputation—To assess the impact of variants not present on the Illumina HumanOmni1-

Quad, we imputed genotypes using the MaCH39 software and a European reference panel 

from the 1000 Genomes project. At each region in Tables 1 and 2 imputation was done in 

two steps. First, haplotypes were estimated in a pre-phasing step. Second, missing alleles for 

additional SNPs were imputed onto these phased haplotypes using Minimac39 and a publicly 

available reference panel of haplotypes from European ancestry populations. SNPs with 

very different allele frequencies (a Chi Square statistic > 40 in a test for difference in allele 

frequency) between the BEACON data and the reference panel were removed prior to the 

second step. SNPs with MACH imputation r2 < 0.3 (a measure of imputation quality) and 

SNPs with a minor allele frequency < 1% were also removed. Association analysis between 

imputed SNPs and disease status was performed using the same regression model as for 

genotyped SNPs, but with dosage probabilities as predictors, rather than the actual genotype 

calls. All association tests were two-sided. Linkage disequilibrium (LD) calculations (r2) 

were computed with the discovery data when the two SNPs being compared were both 
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genotyped, otherwise the European ancestry samples from Phase 1 of the 1000 genomes 

project were used.

REPLICATION

SNP selection—We selected post-QA/QC SNPs for replication that had a p-value from 

discovery < 10−4 and a minor allele frequency > 1%. This yielded 406 SNPs: 179 from 

Barrett’s esophagus and esophageal adenocarcinoma vs. controls, 105 from esophageal 

adenocarcinoma vs. controls and 122 from Barrett’s esophagus vs. controls, of which 321 

were unique. A subset of these SNPs (n=111) were selected via LD pruning with PLINK 

using the command clump40; if a SNP was in LD > 0.5 with any other SNP(s) in the list, the 

SNP with lowest p-value was selected for replication. For each of the ten SNPs on this list 

with the smallest p-value, we selected an extra “proxy” SNP to include in case the top SNP 

was not successfully genotyped in the replication set. These proxy SNPs were ones in high 

LD with the top SNP, but with a less significant p-value. We visually examined cluster plots 

of all SNPs and kept only those that were high quality. SNPs were rank ordered by p-value 

and replication attempted for the top 94.

Study Subjects—The replication cohort consisted of Barrett’s esophagus cases, 

esophageal adenocarcinoma cases and two control sets. Barrett’s esophagus cases were 

identified at endoscopy with a confirmed histopathological diagnosis of intestinal metaplasia 

from the UK Barrett’s Oesophagus Gene Study. esophageal adenocarcinoma cases were 

selected from the Stomach Oesophageal Cancer Study and had an ICD coding of malignant 

neoplasm of the esophagus (C15) and a pathological diagnosis of adenocarcinoma. One set 

of controls came from the SEARCH study which ascertains eligible cases of breast, ovary, 

prostate, colorectal, melanoma and endometrial cancer from the UK Eastern Cancer 

Registration and Information Centre. Controls were ascertained by frequency matching on 

age (five-year age bands) and sex to the esophageal adenocarcinoma and Barrett’s 

esophagus cases excluding individuals with a past history of cancer (excluding non-

melanoma skin cancer). All recruited participants gave informed consent and the studies 

have been approved by the relevant institutional ethics review board. The other set of 

controls was from the Wellcome Trust Case Control Consortium 2 (WTCCC2).

Genotyping—Barrett’s esophagus cases, esophageal adenocarcinoma cases and SEARCH 

controls were genotyped using the FluidigmTM high-throughput platform and Fluidigm 

96.96 Dynamic ArraysTM according to the manufacturer’s instructions and read using the 

Fluidigm EP1TM. Each array is capable of running 96 samples against 96 SNP assays. 

Cases and controls were plated out in sets of 96 samples and combined into 384-well arrays 

for genotyping with the cases and controls mixed on each 384-well plate. Genotypes were 

automatically called using the BioMark Genotyping AnalysisTM software, but all cluster 

plots were also checked manually and adjusted as necessary. The WTCCC2 controls were 

genotyped on a custom version of the Illumina Human1.2M-Duo array.

Quality Control—We filtered Barrett’s esophagus cases, esophageal adenocarcinoma 

cases and SEARCH controls with low call rate, inconsistent gender, were duplicates or had 

self-reported ethnicity of “non-white” or “missing”. This left 759 Barrett’s esophagus cases, 
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874 esophageal adenocarcinoma cases and 1711 SEARCH controls. We excluded SNPs 

with missing call rate ≥ 5%, with significant differential missing call rates in cases and 

controls (p < 5×10−4), with low minor allele frequency (defined as <1%), and with 

significant departure from Hardy-Weinberg equilibrium (p<0.0005), leaving 87 post-QC 

SNPs. We applied standard sample and SNP exclusion criteria to the WTCCC2 controls 

keeping 5,190 post-QC European ancestry samples. There were 67 post-QC SNPs in the 

WTCCC2 controls in common with the 87-post QC SNPs from the BE cases, EA cases and 

SEARCH controls.

Statistical analysis—Each of the 87 SNPs was run using an additive logistic regression 

model with case status regressed on the SNPs genotype and including sex as a covariate. 

The analysis focus was on the comparison of BE and EA cases against controls, but we also 

ran each case type separately against the controls. The final data set used for replication 

consisted of 759 BE cases and 874 EA cases. For 67 SNPs the control set consisted of 6,911 

samples; 1711 SEARCH controls and 5200 WTCCC2 controls. For 20 SNPs that were not 

genotyped in the WTCCC2 data only the 1,711 SEARCH controls were used. The R 

statistical programming language was used for all analyses.

META-ANALYSIS

We used the inverse variance-based method in the METAL software13 to perform a meta-

analysis of the discovery and replication data sets. This approach weights the effect size 

estimates (β-coefficients from the discovery and replication regression models) by their 

standard error estimates and calculates an overall Z-score and p-value. This was done 

separately for each sample set.

BIOINFORMATICS/FUNCTIONAL GENOMICS

Each region of interest was interrogated using the tools eQTL browser, HaploReg, 

RegulomeDB, and the UCSC Genome Browser.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Plot of genome-wide association results from the discovery data for the combined Barrett’s 

esophagus and esophageal adenocarcinoma cases using an additive logistic regression model 

with age, sex and the first four eigenvectors from principal components analysis as 

covariates. Results are shown for 3,928 cases (2414 Barrett’s esophagus, 1514 esophageal 

adenocarcinoma) and 3,207 controls for 801,552 autosomal and X chromosome SNPs that 

passed quality control and have a minor allele frequency > 1%. Chromosomes are delineated 

by alternating colors, as labeled on the x-axis. The y-axis shows the −log10 P-values.
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Figure 2. 
Regional association plots showing genotyped and imputed SNPs from the discovery data 

for the combined Barrett’s esophagus + esophageal adenocarcinoma cases for three newly 

discovered loci (a–c) and one previously identified locus (d). Genotyped SNPs are indicated 

by solid triangles, and imputed SNPs are indicated by hollow circles. The top-ranked SNP at 

each locus is shown as a solid purple diamond, except in (d) where it is rs9936833. SNPs are 

ordered by genomic location. The color scheme indicates linkage disequilibrium between 

the top ranked SNP and other SNPs in the region using the r2 value calculated from the 1000 

genomes project. The y-axis is the −log10 p-value computed from 3,928 cases (2414 

Barrett’s esophagus, 1514 esophageal adenocarcinoma) and 3,207 controls. Imputation P 

values for all SNPs are plotted. Note that imputed and genotyped P-values for genotyped 

SNPs differ slightly because for the imputed result, the analysis was based on dosage scores, 

whereas with genotyped SNPs, the hard genotype calls are used. The recombination rate 

from CEU HapMap data (right side y axis) is shown in light blue. (a) Chromosome 19p13 

region. (b) Chromosome 9q22 region. (c) Chromosome 3p13 region. (d) Chromosome 

16q24 region.
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Figure 3. 
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Figure 4. 
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Figure 5. 
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