
foods

Article

Non-Thermal Ultrasonic Extraction of Polyphenolic
Compounds from Red Wine Lees
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Abstract: This study presents the results of conventional aqueous (CE) and non-conventional
ultrasound-assisted (UAE) extractions of polyphenolic compounds from lees extracts of red wine
varieties (Merlot and Vranac). The effect of ultrasound extraction time (t, s), and amplitude (A,%) from
a 400 W ultrasound processor with different ultrasonic probes diameters (Ds, mm) on the amount
and profile of polyphenolic compounds in the obtained extracts was investigated and compared to
CE. The optimal conditions resulting in maximum extraction of phenolic compounds were: Probe
diameter of 22 mm, amplitude 90% and extraction time for Vranac wine lees 1500 s and for Merlot
wine lees extraction time of 1361 s. UAE proved to be significantly more effective in enhancing
the extraction capacity of trans-resveratrol glucoside (30.57% to 300%), trans-resveratrol (36.36% to
45.75%), quercetin (39.94% to 43.83%), kaempferol (65.13% to 72.73%), petunidin-3-glucoside (41.53%
to 64.95%), malvidin-3-glucoside (47.63% to 89.17%), malvidin-3-(6-O-acetyl) glucoside (23.84%
to 49.74%), and malvidin-3-(6-O-p-coumaroyl) glucoside (26.77% to 34.93%) as compared to CE.
Ultrasound reduced the extraction time (2.5-fold) and showed an increase of antioxidant potential by
76.39% (DPPH) and 125.83% (FRAP) compared to CE.
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1. Introduction

Grapes are one of the fruit crops produced in largest quantities throughout the world. About 80%
of all grapes are used in wine production [1]. The annual production of 60 million tons of grapes
is mostly for wine production, which consequently generates huge amounts of by-products such as
stalks, pomace, seeds, and lees. These by-products are potentially good sources of valuable bioactive
compounds. Wine lees are the sediment remaining in vessels containing wine after fermentation and
during wine maturation [2]. According to the EEC regulation 337/79 wine lees are defined as residues
formed at the bottom of vessels containing wine, after fermentation, during storage, as well as the
residue obtained following filtration or centrifugation [3]. It is a known fact that the skin and seeds
of black grape berries (V. vinifera L.), as well as red wines naturally contain more than 200 different
polyphenolic compounds [4–9]. Previous studies performed on extraction of polyphenolic compounds
from red grapes were mostly focused on their extraction from seeds or the epidermis of grape berries.
Highly profitable commercial extracts of polyphenolic compounds originating from grapes can be
found in the market [9–12].

Scientific studies have confirmed that polyphenolic compounds have a positive impact on human
health, primarily due to their antioxidant effects that protect the body from harmful radicals [13–17].
Higher consumption of phenolic antioxidants (accomplished through moderate consumption of wine,
especially red wine) correlates to a decreased incidence of certain coronary heart diseases [18–23].
The most relevant phenolic and polyphenolic compounds in red grapes are tannins, anthocyanins,
flavanols, flavonols, and stilbenes of which most notable are the resveratrols, phenolic acids and their
derivatives [24–30].

An important compound in red wine containing particular antioxidant properties is resveratrol
(3,5,4’-trihydroxy-stilbene) [31–33]. A very important class of polyphenolic compounds in wines are
the flavonoids, which constitute >85% of the total phenol content in red wines. Among these are
anthocyanidins, which are viewed as having a strong antioxidant effect and procyanidins, which are
even stronger in terms of antioxidant efficiency in wine [34–37].

Polyphenol rich residues of red wines may be used to enrich several food products, thus
attracting the interest of food producers [38–43]. Grape polyphenols can be extracted successfully
using conventional extraction (maceration) [44] or modern innovative extraction methods [45] such
as high-intensity ultrasound-assisted extraction [46,47], microwave-assisted extraction [48], high
pressures (i.e., supercritical extraction) [49], or pulsed electric field extraction [50]. Besides traditional
technologies like extrusion, freezing, distillation and drying, ultrasound has found applications
in the food processing and bioactives extraction in the food industry and biotechnology [51–54].
The application of high intensity ultrasound has proven to be extremely effective as a pretreatment for
drying [55,56], emulsification [57], and for other uses in the food industry and biotechnology [58,59].

An innovative high-intensity ultrasound process has proven to be highly effective for extracting
polyphenolic compounds [40,60–68], and with reduced amount of solvents (enabling the use of green
solvents and solvents permitted for human consumption). Moreover, these technologies have been
reported to be relatively friendly to the environment [69,70]. The efficiency of ultrasound-assisted
extraction of polyphenolic compounds depends on various factors such as frequency, rated output
power, amplitude, probe geometry, treatment time, temperature, dry matter content, sample particle
size and type of solvent used [71–73].

Recently, natural deep eutectic solvents (NADESs) such as choline chloride:malic acid (ChMa),
choline chloride:oxalicacid (ChOa), and choline chloride:citric acid (ChCit) have been recognized
as a novel class of sustainable solvents to replace common organic solvents. Combination of
ultrasound-assisted extraction and natural deep eutectic solvents (NADESs) of wine lees anthocyanins
to result higher efficiency of extraction have also been previously explored [74].

Despite numerous potential applications, large quantities of lees generated as a by-product during
the production of red wines are discarded [45,73,75–77]. Therefore, the present study aims to analyze
the polyphenols extracted from wine lees found in grape varieties Merlot and Vranac the common
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regional variety grown in Croatia, as well as to explore the possibility of using UAE for enhancing the
extraction efficiency of high value polyphenolic compounds.

2. Materials and Methods

2.1. Chemicals and Reagents

Ethanol from Pharmachem (Ljubljana, Slovenia), formic acid from Sigma-Aldrich Chemie GmbH
(Schnelldorf, Germany) and deionized water, purified using a Milli-Q water system (Millipore,
Burlington, USA) were used to prepare the extracts. Standards including malvidin 3-O-glucoside,
petunidin 3-O-glucoside, procyanidin B1 and procyanidin B2; were purchased from Polyphenols
(Sandnes, Norway); while kaempferol, (+) catechin, (–) epicatechin, myricetin, trans-resveratrol
quercetin and isorhamnetin were obtained from Sigma-Aldrich Chemie GmbH (Schnelldorf, Germany)
for identification and quantification utilizing HPLC–mass spectrometry (MS) and HPLC– diode array
detection (DAD).

All chromatographic solvents (HPLC grade) and the remaining reagents (analytical or
high-performance liquid chromatography (HPLC) grade) were obtained from Sigma-Aldrich Chemie
GmbH (Schnelldorf, Germany). The solutions were prepared using Milli-Q water (Millipore, Burlington,
USA). All sample preparations, extractions and chemical analyses were carried out at Biotechnical
Faculty University of Ljubljana, Department of Food Science, Slovenia.

2.2. Samples

The present study utilized wine lees from two varieties of red grapes i.e., Merlot grape varieties
grown in Istria (Croatia) and Vranac grape variety grown in Mostar, (Bosnia and Herzegovina). The wine
lees were sampled and immediately packed in impermeable polyethylene bags and frozen. Lees were
then lyophilized, and subsequently packed in vacuum bags and stored at −80 ◦C before extraction.

2.3. Preparation of Wine Lees for Extraction

Thawed samples of lyophilized lees were crushed in the mortar and sieved through 500 microns
sieve. Samples were prepared in a 200 mL of 50% aqueous ethanol (v/v) mixture containing 1.5%
formic acid (v/v). The ratio of the dry matter to solvent was 1:60 (w/v) as previously described [73].

2.4. Extraction of Bioactive Compounds from Wine Lees

2.4.1. Conventional Extraction

Extraction of previously prepared wine lees samples as described was carried out using an
aqueous bath (temp. 25 ◦C) with the external stirrer (40 rpm), for 1 h, as described [45,78,79].

2.4.2. High-Intensity Ultrasound-Assisted Extraction (UAE)

Ultrasound-assisted extraction was carried out using ultrasonic equipment UP 400s, procured
from Laboratory of Thermodynamics, Faculty of Food Technology and Biotechnology, University of
Zagreb, Croatia. UAE of bioactive substances in the wine lees (Cw) was performed using ultrasonic
processor with nominal power of 400 W at a constant frequency of 24 kHz. Five different amplitudes
(A), 30%, 38.79%, 60%, 82.21%, and 90%, and treatment times (t) of 120 s, 322.10 s, 810 s, 1297.90 s, and
1500 s, with ultrasonic probes of diameter (Ds) 22 mm and 40 mm, at a full cycle were considered as
optimization conditions in accordance with the central composite rotatable design (CCRD) for the
experiments. Following extraction under these conditions, 50 mL of each extract was centrifuged at
4000 rpm/15 min. to separate the lees particles as residues. The extracts were then flushed with inert
nitrogen gas and stored in dark at −80 ◦C till further analyses. The results obtained represent the mean
value of three replicates.



Foods 2020, 9, 472 4 of 20

2.5. Bioactive Potential of Extracted Compounds

2.5.1. Ferric Reducing Antioxidant Power (FRAP) Assay

A standard solution of Trolox 100 mg/L was prepared in methanol and working solutions of
25−500 µM were used. Briefly, 0.1 mL of extracts (diluted 1:10) was mixed with 3 mL of a FRAP
reagent (25 mL of acetate buffer 300 mM at pH = 3.6 (corrected with formic acid) + 2.5 mL of Fe
(II)-TPTZ 10 mM in HCl 40 mM + 2.5 mL of FeCl3 × 6H2O, 20 mM). The FRAP reagent was used as a
blank, with final absorbance read at 593 nm after 10 min at room temperature. The ferric reducing
antioxidant power of the samples (AOP FRAP) was determined in triplicate and expressed as mg of
Trolox equivalents per gram of the dried wine lees sample (mg TEAC/g d.m.) [80–83]. A calibration
curve was freshly prepared before each assay using 5-point calibration plot.

2.5.2. 2-Diphenyl-1-picrylhydrazyl (DPPH) Assay

The method utilizes scavenging potential of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with
an absorbance maximum at 515 nm. The radical is reduced in reaction with an antioxidant or another
radical [84]. Determination of the antioxidant activity was carried out according to [85]. Briefly, the
extracts were diluted (1:5, v/v) and subsequently 100 µL of the diluted extracts was added to 2.9 mL of
a methanol solution of the radical DPPH (with a concentration of 6 × 10–5 M) and an absorbance of
515 nm was measured after 25 min at room temperature. A calibration line (5 points plot) was freshly
prepared before each assay from methanol solutions of Trolox ranging from 0.19 to 0.93 mM [85].
The results (AOPDPPH) were expressed as mg of Trolox equivalents per gram of samples of dried wine
lees (mg TEAC/g d.m.).

2.6. Determination of Total Phenolic Content

The total phenolic compounds content (TPC) of the samples were determined using the
Folin–Ciocalteu assay and the results were expressed as mg/g dry matter (d.m.) of gallic acid
equivalents (GAE) [86–88], with some modifications. Briefly, Milli-Q water was added to aliquots of
the extracts (diluted 1:5, v/v) in order to obtain a final volume of 1.400 mL and then mixed with 300 µL
of freshly prepared Folin–Ciocalteu reagent diluted with water (1:2, v/v). The mixtures were vortexed
and allowed to react for 5 min. Then, 300 µL of 20% sodium carbonate in water (w/v) was added and
the tubes were vortexed. After 60 min of incubation, the absorbance was measured in a 1-cm cuvette at
765 nm using a UV–vis spectrophotometer (CECIL CE 2021, 2000 Series, Cecil Instruments Limited,
Cambridge, UK) at a room temperature [89]. The results were expressed as mg of GAE/gram of dried
wine lees. All the samples were measured in triplicate.

2.7. HPLC-DAD-ESI-MS/MS Analyses for Phenolic Characterization

Polyphenol analysis was performed according to method described by Bosiljkov et al. [74] and
modified with the following elution gradient: solvent B: 0–20 min, 14–23%; 20–40 min, 23–35%;
40–50 min, 40%; 50–60 min, 60%; 60–65 min, 95%. Method in brief description analysis was carried out
using LC-ESI-MS/MS an Agilent 1260 series LC and Agilent LC-QQQ-MS G6460A mass spectrometer
(Agilent Technologies, Palo Alto, CA, USA) equipped with an electrospray ionization (ESI) interface.
The LC system includes a G1322A on-line degasser, a G1312B Bin Pump, a G1367E autosampler,
a G1330B thermostatic column control, and a G4218B DAD, all of which were controlled by the Agilent
MassHunter B 6.0 software. The HPLC separation was performed on a Poroshell 120 EC-C18 column
(120 × 2.1 mm i.d. 2.7 µm particle size, Agilent Technologies, Palo Alto, CA, USA) at 30 ◦C. The mobile
phase consisted of 1% formic acid in water (solvent A) and methanol (solvent B) by applying the
following gradient: 0−20 min: 2−23% B, 20−40 min: 23−35% B, 40−46 min: 35−38% B, 46−60 min: 60%
B, 60−65 min: 95% B. The flow rate was 0.2 mL min-1. The injection volume was 1.0 µL with the UV
detector set to an absorbance wavelength of 280 nm for phenolic acid, 520 nm for anthocyanins and
360 nm for flavonol glycosides. The mass spectrometer was equipped with electrospray ion source
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(ESI), parameters were as follows: nebulizer 35 psi; dry gas (N2) flow, 6 L min−1; and dry gas temp.
300 ◦C; capillary voltage, 4 kV where the ion trap mass spectrometer was operated in negative/positive
ion mode with a scanning range from m/z 100 to m/z 1000. Individual phenolic compounds were
identified by comparing their retention times MS/MS and UV/Vis spectra with those of authentic
standards [89–91]. Quantification of phenolic compounds were calculated from the peak areas of
the samples and corresponding standards. For the compounds lacking standards, the quantification
was achieved using similar compounds. Trans-resveratrol glucoside was quantified in equivalents of
trans-resveratrol, malvidin-3-(6-O-p-coumaroyl) glucoside and malvidin-3-(6-O-acetyl) glucoside were
quantified in equivalents of malvidin 3-O glucoside.

2.8. Experimental Design and Statistical Analysis

A central composite rotatable design for the UAE experiments based on two numeric factors:
A (%) and t (s), set to five levels i.e., ±1.414 (axial points), ±1 (factorial points), center point (with five
replicates for both probes and both wine lees varieties); and two categorical factors (±1): Ds (mm) and
wine less cultivar (Cw) was prepared using the statistical software Design-Expert 9.0.6. (Stat-Ease,
Minneapolis, MN, USA).

The reduced quadratic model equation Equation (1) was used to express the investigated responses
(Yn) as a function of the coded independent variables (A, t, Ds, and Cw), where a0 and a1-a23 represent
the intercept and regression coefficients for linear, quadratic, and interaction effects, respectively.

Yn = a0 + a1 × A + a2 × t + a3 × Ds + a4 × Cw + a5 × A × t + a6 × A × Ds + a7 × A × Cw + a8 ×

t × Ds + a9 × t × Cw + a10 × Ds × Cw + a11 × A2 + a12 × t2 + a13 × A × t × Ds + a14 × A × t ×
Cw + a15×A+Ds×Cw + a16×t × Ds × Cw + a17 × A2 × Ds + a18 × A2 × Cw + a19 × t2 × Ds + a20

× t2 × Cw + a21 × A × t × Ds × Cw + a22 × A2 × Ds × Cw + a23 × t2 × Ds × Cw

(1)

The obtained results were statistically analyzed using ANOVA and backward elimination
regression at the significance level of p < 0.05. The adequacy of the models was evaluated based on the
coefficient of determination (R2) and the model p-value. The intercept (a0) in the acquired models
represents the mean value of the investigated dependent variable (Yn) under the conditions of the
performed experiments, whereas a1-23 refers to the significant regression coefficients which enable
determination of the most significant effects of the investigated variables (p-value and numeric value)
and their position and negative impact (sign + or –) on the investigated dependent variable. Response
surface plots were generated using the design expert and were based on a function of two factors
while keeping the others constant. Numerical and graphical optimization was carried out according
to conditions for each response. Results of numerical optimization are described with desirability.
Desirabilities range from zero to one for any given response. A value of one represents the case where
all goals of optimization are met perfectly. A zero indicates that one or more responses fall outside
desirable limits [92].

3. Results

The average measured values of all investigated variables in wine lees extracts obtained using
conventional extraction and UAE are given in Table 1. The regression equations of polyphenolic
compounds identified and quantified in extracts using HPLC-MS/MS with the significant coefficients
for the studied effects of UAE conditions are given below in text.
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Table 1. (a) Concentration of investigated polyphenolic compounds and total antioxidants capacity (mg/g dry matter (d.m.)) in wine lees extracts for Merlot variety
(ultrasound-assisted (UAE) and conventional aqueous (CE)); (b) Concentration of investigated polyphenolic compounds and total antioxidants capacity (mg/g dry
matter (d.m.)) in wine lees extracts for Vranac variety (UAE and CE).

A t Ds AOP DPPH AOP FRAP TPC trans-resv-
3-O-gluc

trans
Resveratrol Quercetin Kaempferol Pt-3-

Glucoside
Mv-3-

Glucoside
Mv-3-

acetyl gluc
Mv-3-p-coum

gluc

38.79 322.10 22 56.43 ± 0.31 58.05 ± 1.21 56.52 ± 1.11 0.61 ± 0.00 0.04 ± 0.00 1.09 ± 0.02 0.13 ± 0.01 2.44 ± 0.05 2.46 ± 0.04 1.36 ± 0.01 0.79 ± 0.01
81.21 322.10 22 64.17 ± 0.22 68.76 ± 1.13 37.64 ± 1.52 0.68 ± 0.00 0.04 ± 0.00 1.23 ± 0.01 0.15 ± 0.02 3.00 ± 0.09 2.91 ± 0.01 1.64 ± 0.02 1.11 ± 0.02
38.79 1297.90 22 68.09 ± 0.11 76.99 ± 0.98 32.45 ± 1.21 0.69 ± 0.01 0.04 ± 0.01 1.25 ± 0.03 0.15 ± 0.01 3.09 ± 0.08 3.33 ± 0.02 1.57 ± 0.01 1.08 ± 0.03
81.21 1297.90 22 78.30 ± 0.61 92.74 ± 0.96 39.01 ± 1.09 0.78 ± 0.01 0.05 ± 0.01 1.37 ± 0.01 0.16 ± 0.03 3.41 ± 0.01 3.68 ± 0.03 1.74 ± 0.03 1.17 ± 0.01
30.00 810.00 22 60.98 ± 0.21 66.97 ± 0.99 54.30 ± 0.89 0.64 ± 0.00 0.04 ± 0.00 1.21 ± 0.02 0.15 ± 0.03 2.96 ± 0.11 3.22 ± 0.01 1.64 ± 0.01 1.00 ± 0.02
90.00 810.00 22 72.94 ± 0.11 82.29 ± 1.12 49.57 ± 0.75 0.72 ± 0.01 0.04 ± 0.01 1.31 ± 0.03 0.16 ± 0.01 3.22 ± 0.09 3.47 ± 0.04 1.64 ± 0.01 1.14 ± 0.01
60.00 120.00 22 48.39 ± 0.40 52.45 ± 1.50 50.42 ± 0.49 0.63 ± 0.00 0.04 ± 0.01 1.12 ± 0.01 0.13 ± 0.01 2.63 ± 0.08 2.99 ± 0.05 1.45 ± 0.01 1.03 ± 0.02
60.00 1500.00 22 76.98 ± 0.55 89.90 ± 1.11 43.74 ± 0.29 0.75 ± 0.00 0.05 ± 0.00 1.32 ± 0.02 0.17 ± 0.02 3.09 ± 0.11 3.41 ± 0.04 1.67 ± 0.20 1.12 ± 0.01
60.00 810.00 22 67.61 ± 0.51 77.31 ± 2.14 42.40 ± 1.93 0.67 ± 0.01 0.04 ± 0.00 1.21 ± 0.01 0.14 ± 0.01 3.01 ± 0.08 3.29 ± 0.04 1.68 ± 0.02 1.06 ± 0.01
38.79 322.10 40 48.64 ± 0.02 55.39 ± 2.10 49.13 ± 1.01 0.63 ± 0.01 0.04 ± 0.01 1.16 ± 0.01 0.15 ± 0.00 2.85 ± 0.03 2.97 ± 0.11 1.59 ± 0.11 1.02 ± 0.02
81.21 322.10 40 53.43 ± 0.05 58.32 ± 2.11 42.36 ± 0.99 0.68 ± 0.01 0.04 ± 0.02 1.10 ± 0.01 0.16 ± 0.01 3.07 ± 0.02 3.13 ± 0.09 1.69 ± 0.11 1.02 ± 0.02
38.79 1297.90 40 59.97 ± 0.20 66.48 ± 1.51 48.68 ± 0.84 0.64 ± 0.00 0.04 ± 0.01 1.09 ± 0.03 0.14 ± 0.01 2.87 ± 0.01 3.23 ± 0.09 1.61 ± 0.09 1.03 ± 0.01
81.21 1297.90 40 65.31 ± 0.31 82.36 ± 1.31 46.18 ± 0.85 0.68 ± 0.02 0.04 ± 0.00 1.03 ± 0.02 0.14 ± 0.02 2.41 ± 0.04 2.45 ± 0.05 1.46 ± 0.80 0.93 ± 0.01
30.00 810.00 40 55.93 ± 0.33 70.57 ± 1.89 46.49 ± 0.77 0.60 ± 0.01 0.03 ± 0.00 1.00 ± 0.02 0.13 ± 0.01 2.38 ± 0.02 2.64 ± 0.09 1.18 ± 0.11 0.94 ± 0.02
90.00 810.00 40 62.16 ± 0.11 71.25 ± 2.05 57.24 ± 0.22 0.66 ± 0.00 0.04 ± 0.01 0.85 ± 0.01 0.13 ± 0.03 2.90 ± 0.02 3.11 ± 0.11 0.32 ± 0.05 1.04 ± 0.01
60.00 120.00 40 38.93 ± 0.22 41.97 ± 1.13 51.92 ± 0.56 0.64 ± 0.01 0.05 ± 0.01 1.06 ± 0.03 0.14 ± 0.04 2.46 ± 0.01 2.74 ± 0.10 1.52 ± 0.09 0.94 ± 0.02
60.00 1500.00 40 63.99 ± 0.31 69.25 ± 2.98 48.31 ± 0.78 0.68 ± 0.01 0.04 ± 0.00 1.15 ± 0.02 0.15 ± 0.00 2.98 ± 0.02 3.15 ± 0.11 1.66 ± 0.08 0.99 ± 0.01
60.00 810.00 40 58.34 ± 0.62 66.39 ± 3.15 52.63 ± 1.08 0.67 ± 0.02 0.04 ± 0.00 1.16 ± 0.02 0.14 ± 0.00 2.92 ± 0.03 2.94 ± 0.16 1.52 ± 0.14 0.95 ± 0.09
CE 3600.00 44.21 ± 0.33 42.52 ± 1.13 32.95 ± 1.09 0.60 ± 0.01 0.030 ± 0.00 1.01 ± 0.02 0.10 ± 0.02 2.26 ± 0.03 2.39 ± 0.09 1.36 ± 0.09 0.93 ± 0.01

(a)
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Table 1. Cont.

A t Ds AOP DPPH AOP FRAP TPC trans-resv-
3-O-gluc

trans
Resveratrol Quercetin Kaempferol Pt-3-

Glucoside
Mv-3-

Glucoside
Mv-3-

acetyl gluc
Mv-3-p-coum

gluc

38.79 322.10 22 59.86 ± 0.11 68.83 ± 1.33 44.92 ± 0.78 0.00 ± 0.00 0.11 ± 0.01 1.17 ± 0.02 0.06 ± 0.01 1.27 ± 0.03 3.40 ± 0.05 1.30 ± 0.02 1.62 ± 0.02
81.21 322.10 22 67.20 ± 0.25 76.28 ± 1.25 41.34 ± 0.63 0.00 ± 0.00 0.12 ± 0.02 1.22 ± 0.03 0.06 ± 0.01 1.37 ± 0.02 3.70 ± 0.06 1.45 ± 0.01 1.64 ± 0.01
38.79 1297.90 22 70.07 ± 0.10 79.82 ± 1.29 40.48 ± 0.22 0.00 ± 0.00 0.11 ± 0.00 1.29 ± 0.02 0.05 ± 0.02 1.41 ± 0.03 3.78 ± 0.01 1.39 ± 0.01 1.66 ± 0.02
81.21 1297.90 22 79.76 ± 0.05 96.45 ± 1.34 43.70 ± 0.45 0.01 ± 0.00 0.13 ± 0.02 1.42 ± 0.04 0.08 ± 0.03 1.52 ± 0.01 4.24 ± 0.02 1.63 ± 0.02 1.80 ± 0.01
30.00 810.00 22 65.39 ± 0.09 73.34 ± 1.02 32.34 ± 0.36 0.00 ± 0.00 0.11 ± 0.01 1.22 ± 0.03 0.07 ± 0.01 1.30 ± 0.02 3.31 ± 0.03 1.36 ± 0.03 1.61 ± 0.02
90.00 810.00 22 73.58 ± 0.24 90.62 ± 1.27 32.61 ± 0.56 0.00 ± 0.00 0.11 ± 0.00 1.34 ± 0.02 0.06 ± 0.00 1.43 ± 0.04 3.96 ± 0.04 1.51 ± 0.02 1.74 ± 0.01
60.00 120.00 22 51.00 ± 0.11 56.14 ± 1.08 34.20 ± 0.68 0.00 ± 0.00 0.09 ± 0.01 1.11 ± 0.03 0.06 ± 0.01 1.15 ± 0.01 3.32 ± 0.05 1.18 ± 0.01 1.55 ± 0.02
60.00 1500.00 22 76.47 ± 0.22 96.75 ± 1.04 49.16 ± 0.71 0.00 ± 0.00 0.13 ± 0.02 1.35 ± 0.02 0.07 ± 0.01 1.41 ± 0.02 4.02 ± 0.01 1.54 ± 0.00 1.74 ± 0.00
60.00 810.00 22 71.68 ± 0.32 85.93 ± 1.44 48.09 ± 0.84 0.00 ± 0.00 0.11 ± 0.01 1.28 ± 0.03 0.06 ± 0.00 1.35 ± 0.02 3.75 ± 0.07 1.37 ± 0.02 1.66 ± 0.02
38.79 322.10 40 52.73 ± 0.22 55.63 ± 2.10 43.35 ± 1.21 0.00 ± 0.00 0.10 ± 0.00 1.14 ± 0.03 0.05 ± 0.01 1.16 ± 0.01 3.11 ± 0.02 1.24 ± 0.05 1.51 ± 0.02
81.21 322.10 40 58.77 ± 0.66 66.56 ± 1.57 37.09 ± 1.51 0.00 ± 0.00 0.11 ± 0.01 1.18 ± 0.01 0.07 ± 0.02 1.22 ± 0.02 3.26 ± 0.02 1.31 ± 0.04 1.55 ± 0.01
38.79 1297.90 40 62.74 ± 0.22 70.80 ± 1.45 43.53 ± 1.32 0.00 ± 0.00 0.11 ± 0.01 1.18 ± 0.02 0.06 ± 0.01 1.29 ± 0.01 3.37 ± 0.05 1.39 ± 0.04 1.57 ± 0.02
81.21 1297.90 40 69.40 ± 0.45 81.12 ± 2.01 54.06 ± 1.52 0.00 ± 0.00 0.12 ± 0.00 1.24 ± 0.04 0.07 ± 0.01 1.41 ± 0.02 3.71 ± 0.01 1.43 ± 0.03 1.61 ± 0.02
30.00 810.00 40 57.98 ± 0.25 64.99 ± 1.55 47.34 ± 1.03 0.00 ± 0.00 0.11 ± 0.01 1.18 ± 0.03 0.05 ± 0.02 1.27 ± 0.03 3.34 ± 0.02 1.37 ± 0.04 1.57 ± 0.01
90.00 810.00 40 64.14 ± 0.29 71.33 ± 1.36 37.84 ± 1.05 0.00 ± 0.00 0.11 ± 0.01 1.19 ± 0.02 0.06 ± 0.01 1.35 ± 0.01 3.63 ± 0.03 1.38 ± 0.03 1.59 ± 0.01
60.00 120.00 40 40.74 ± 0.35 44.24 ± 1.32 39.66 ± 1.10 0.00 ± 0.00 0.10 ± 0.00 1.08 ± 0.01 0.05 ± 0.00 1.10 ± 0.01 2.98 ± 0.00 1.21 ± 0.05 1.56 ± 0.01
60.00 1500.00 40 65.89 ± 0.38 73.05 ± 1.87 57.43 ± 1.21 0.00 ± 0.00 0.11 ± 0.00 1.24 ± 0.04 0.06 ± 0.00 1.34 ± 0.02 3.57 ± 0.04 1.19 ± 0.01 1.56 ± 0.02
60.00 810.00 40 59.95 ± 0.88 67.26 ± 2.18 48.86 ± 1.71 0.00 ± 0.00 0.09 ± 0.00 1.09 ± 0.03 0.05 ± 0.00 1.04 ± 0.00 2.71 ± 0.05 1.06 ± 0.08 1.44 ± 0.02
CE 3600.00 49.72 ± 0.22 50.39 ± 1.08 41.22 ± 1.03 0.00 ± 0.00 0.09 ± 0.01 1.00 ± 0.01 0.04 ± 0.00 0.97 ± 0.03 2.36 ± 0.02 1.1 ± 0.03 1.40 ± 0.01

(b)
A, amplitude; t, time; Ds, probe diameter; AOP (DPPH) and AOP (FRAP), antioxidant potential; TPC, total phenolic content; trans-resv-3-O-gluc: trans-resveratrol-3-O-glucoside;
Pt-3-glucoside, petunidin-3-glucoside; Mv-3-glucoside, malvidin-3-glucoside; Mv-3-acetyl gluc, malvidin-3-(6-O-acetyl) glucoside; Mv-3-p-coum gluc, malvidin-3-(6-O-p-coumaroyl)
glucoside; Mv, Malvidin; Pt, Petunidin; CE, results of Classical extraction.
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3.1. Antioxidant Potential and Total Phenolic Content Extracts

The antioxidant potential (AOP) obtained after using 2-diphenyl-1-picrylhydrazyl (DPPH) assay
of wine lees extracts from conventional extraction was 44.21 and 49.72 mg trolox equivalent antioxidant
capacity (TEAC)/g d.m. for the varieties Merlot and Vranac, respectively (Table 1). Moreover,
from Table 1 it can be depicted a positive effect of UAE on the AOP. From the obtained regression
equation Equation (2), it was observed that in the extracts obtained after UAE, the amplitude of
ultrasonic processors and treatment time with linear and quadratic effect had a significant positive
effect (p < 0.0001) on the AOPDPPH of extracts whereas increasing the diameter of the ultrasound probe
had a negative and linear effect on AOPDPPH (p < 0.0001). As it is evident in Equation (2) the AOPDPPH

of wine lees extract is a varietal characteristic (p < 0.0001).On the other hand, the AOP obtained with
ferric reducing antioxidant power (FRAP) assay of wine lees extracts after conventional extraction
42.52 and 50.39 mg TEAC/g d.m. for Merlot and Vranac varieties (Table 1). It should be noted that
UAE also had a positive effect on the AOP.

AOPDPPH = 64.73 + 3.25 × A + 7.50 × t − 4.880 × Ds + 1.34 × Cw − 2.74 × t2

(p < 0.0001, R2 = 0.9437)
(2)

From the obtained regression equation Equation (3), it is evident that for AOPFRAP there are
significant linear and quadratic effects of the investigated variables as is for AOPDPPH (p < 0.0001),
the AOPFRAP is subject to a significantly positive effect of the interrelation of A × t (p < 0.0414) and
A2
× Ds (p < 0.0034), including the quadratic effect of A (p < 0.4394), whereas a negative effect is

provided by the interrelation A ×Ds (p < 0.0124), t ×Ds (p < 0.0294), Ds ×Cw (p < 0.0016) and quadratic
effect of t (p < 0.0001).

AOPFRAP = 74.22 + 4.58 × A + 10.27 × t − 7.50 × Ds + 2.11 × Cw + 1.66 × A × t − 1.46 ×
A × Ds − 1.26 × t × Ds − 1.48 × Ds × Cw + 0.47 × A2

−3.77 × t2 + 1.85 × A2
× D

(p < 0.0001, R2 = 0.9476)
(3)

The extracts of wine lees obtained after conventional extraction were found to contain a significant
amount of total phenols (TPCMerlot = 32.95 and TPCVranac = 41.22 mg GAE/g d.m., respectively)
(Table 1). From Table 1 it was also observed that UAE had a positive effect on TFC. Equation (4) shows
that there are significant effects of the investigated variables from the UAE of wine lees on the quantity
of total phenols (TPC) found in the Merlot and Vranac extracts. On the TPC had a positive linear effect
of t (p < 0.2530), Ds (p < 0.0019), Cw (p < 0.5570), interrelation A × t (p < 0.0029), A × Ds (p < 0.5090),
A × Cw (p < 0.8688), t × Ds (p < 0.293), t × Cw (p < 0.0003), A2

× Ds × Cw (p < 0.0393). The TPC
decreased with an increase in A (p < 0.3539), with the interrelation of Ds × Cw (p < 0.0346), A × Ds ×
Cw (p < 0.1570), A2

× Ds (p < 0.744), A2
× Cw (p < 0.0012) and A2 (p < 0.0151).

TPC = 47.25 + −0.69 × A + 0.86 × t + 2.53 × Ds + 0.45 × Cw + 3.33 × A × t + 0.49 × A ×
Ds + 0.123 × A × Cw × D + 1.68 × t × Ds + 2.98 × t × Cw − 1.68 × Ds × Cw − 2.00 × A2

− 1.06 × A × Ds × Cw − 0.26 × A2
× Ds −2.77 × A2

× Cw + 1.68 × A2
× Ds × Cw

(p < 0.0001, R2 = 0.6963)

(4)

The presented Equation (4) and Figure 1a,b show that the greatest amount of total phenols is
obtained in the extracts after using a probe of 40 mm at a middle amplitude and at different times
of ultrasonic treatment depending on the origin of the wine lees. Wine lees from the Vranac variety
contained a larger amount of total phenols.
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Figure 1. The effect of the probe with a diameter of 40 mm, the amplitude A (%), and ultrasound
extraction time t (s), on the quantity of total phenols (mg GAE/g d.m.) in the wine lees extracts from the
Merlot variety (a) and wine lees from the Vranac variety (b).

3.2. Individual Phenolics of CW and UAE Extracts

3.2.1. Trans-Resveratrol Glucoside

Equations (5) and (6) show that the most important effect on the quantity of t-Res-3-O-glc was
provided by Cw (p < 0.0001), meaning that the quantity of these compounds is a characteristic of
wine lees variety. Regarding the amount of t-Res-3-O-glc in the lees obtained using UAE, a positive
linear effect was observed using A (p < 0.0001), t (p < 0.0001), Ds (p < 0.0001) and quadratic impact
of t (p < 0.3025). As well significant positive impact was observed from the interrelations A × Ds ×
Cw (p < 0.0336), t × Ds × Cw (p < 0.0001), A2

× Cw (p < 0.0249), A2
× Ds × Cw (p < 0.0004) and

t2
× Ds × Cw (p < 0.0410). A negative linear effect on the quantity of t-Res-3-O-glc was provided by

Cw (p < 0.0001), as well as a quadratic effect from A (p < 0.0350) and interrelations A × Ds (p < 0.0160),
A × Cw (p < 0.0001), t × Ds (p < 0.0001), t × Cw (p < 0.0001), Ds × Cw (p < 0.6957), A2

× Ds (p < 0.0002),
t2
× Ds (p < 0.0293) t2

× Cw (p < 0.3766).

t−Res-3-O-glc = 0.34 + 0.02 × A + 0.01 × t + 0.00 × Ds − 0.33 × Cw − 0.00 × A × Ds −
0.01 × A × CW − 0.01 × t × Ds − 0.01 × t × Cw − 0.00 × Ds × Cw −0.00 × A2 + 0.00 × t2

+ 0.00 × A × Ds × Cw + 0.01 × t × Ds × Cw − 0.01 × A2
× Ds + 0.00 × A2

× Cw − 0.00 ×
t2
× Ds − 0.00 × t2

× Cw + 0.01 × A2
× Ds × Cw + 0.00 × t2

× Ds × Cw
(p < 0.0001, R2 = 0.9997)

(5)

t-Res = 0.01 + 0.00 × A + 0.00 × t − 0.01 × Ds + 0.03 × Cw − 0.00 × A × Ds + 0.00 × A ×
Cw − 0.00 × t × Ds + 0.00 × t × Cw − 0.00 × Ds × Cw + 0.00 × A2 + 0.00 × t2

− 0.00 × A
× Ds × Cw + 0.00 × A2

× Ds + 0.00 × A2
× Cw + 0.00 × t2

× Ds + 0.00 × t2
× Cw + 0.00 × A2

× Ds ×Cw
(p < 0.0001, R2 = 0.9844)

(6)

The quantity of trans-resveratrol (t-Res) was subject to a significant positive linear effect from A
(p < 0.0359), t (p < 0.0003) and Cw (p < 0.0001), quadratic A (p < 0.0180) and t (p < 0.0134), including
the interrelations A × Cw (p < 0.3058), t × Cw (p < 0.0042), A2

× Ds (p < 0.0474), A2
× Cw (p < 0.0004),

t2
× Ds (p < 0.0408), t2

× Cw (p < 0.0349), A2
×Ds×Cw (p < 0.0300). The quantity of extracted t-Res

was subject to a negative effect from Ds (p < 0.0001) and the interrelation A × Ds (p < 0.4459), t × Ds
(p < 0.0252), Ds × Cw (p < 0.0006), A × Ds × Cw (p < 0.3178).

In the analyzed extracts of wine lees from the Merlot variety, the maximum quantity of t-Res-3-O-glc
was obtained at high amplitudes and long extraction time when using the probe with a diameter of
22 mm (Figure 2a,b). The greatest quantity of t-Res was obtained in the extracts of wine lees from the
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Vranac variety, at high amplitudes and long extraction time when using the probe with a diameter of
22 mm (Figure 3a,b).
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3.2.2. Quercetin and Kaempferol

Equation (7) shows the significant effects of the investigated variables of UAE for wine lees of the
Merlot and Vranac variety on the quantity of extracted quercetin in the obtained extracts. The same
equation indicates that a positive linear effect on the quantity of quercetin in lees is obtained after using
UAE parameters A (p < 0.0079), t (p < 0.0001) and Cw (p < 0.6653), including the quadratic effect of t
(p < 0.6362) and interrelations A × Cw (p < 0.0616), t × Cw (p < 0.0457), A × Ds × Cw (p < 0.0210), t ×
Ds × Cw (p < 0.1689), A2

× Cw (p < 0.0001), t2
× Ds (p < 0.1143), t2

× Cw (p < 0.6340), A2
× Ds × Cw

(p < 0.0001), t2
× Ds × Cw (p < 0.0265). A negative linear effect on the quantity of quercetine in the lees

was provided by Ds (p < 0.0001) and a quadratic effect by A (p < 0.4833) and the interrelations A × Ds
(p < 0.0001), t × Ds (p < 0.0001), Ds × Cw (p < 0.0002), A2

× Ds (p < 0.0051). The analyzed extracts
showed that the largest quantity of quercetin for both varieties was obtained using high amplitudes and
long extraction times when using a probe with a diameter of 22 mm. Equation (8) shows the significant
effects of the investigated variables of UAE for wine lees of the Merlot and Vranac on the quantity of
extracted kaempferol in the obtained extracts. The same equation indicates that a positive linear effect
on the quantity of kaempferol in lees is obtained using UAE with A (p < 0.0079), t (p < 0.0001), and
interrelations between A × Cw (p < 0.0616). A negative linear effect on the quantity of kaempferol
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in the lees was provided by Ds (p < 0.0069) and Cw (p < 0.0001), including the interaction between
t × Ds (p < 0.0069), t × Cw (p < 0.2954) and Ds × Cw (p < 0.6695). The analyzed extracts showed that
the largest quantity of kaempferol for both varieties was obtained using high amplitudes and long
extraction times when using a probe with a diameter of 22 mm (Figure 4a,b). Equation (8) and Figure 4,
as well as the results, showed that the quantity of kaempferol is a varietal characteristic and that the
lees of the Merlot contain two and half times more kaempferol.

Quercetin = 1.19+ 0.02 × A + 0.05 × t − 0.06 × Ds + 0.00 × Cw − 0.03 × A × Ds + 0.012 ×
A × Cw −0.03 × t × Ds + 0.01 × t × Cw − 0.03 × Ds × Cw − 0.01 × A2 + 0.00 × t2 + 0.01
× A × Ds × Cw + 0.01 × t × Ds × Cw − 0.02 × A2

× Ds + 0.03 × A2
× Cw + 0.01 × t2

× Ds+ 0.00 × t2
× Cw + 0.04 × A2

× Ds × Cw + 0.02 × t2
× Ds × Cw

(p < 0.0001, R2 = 0.9241)

(7)

Kaempferol = 0.10 + 0.00 × A + 0.00 × t − 0.00 × Ds − 0.04 × Cw − 0.00 × t × Ds − 0.00
× t × Cw −0.00 × Ds × Cw + 0.00 × t × Ds × Cw

(p < 0.0001, R2 = 0.9797)
(8)
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3.2.3. Petunidin-3-O-Glucoside

Equation (9) shows the significant effects of the investigated variables of UAE for wine lees of the
Merlot and Vranac variety on the quantity of extracted Pt-3-glc in the obtained extracts. The conclusion
from Equation (9) is that the quantity of Pt-3-glc in the extracts obtained using UAE is subject to a
positive linear effect from A (p < 0.0098), t (p < 0.0011), whereas a linear negative effect on the quantity
of extracted Pt-3-glc is provided by Ds (p < 0.0002) and Cw (p < 0.0001). The analyzed extracts showed
that the largest quantity of Pt-3-glc for both varieties was obtained using high amplitudes and long
extraction times when using a probe with a diameter of 22 mm.

Petunidin-3-O-glucoside = 2.08 + 0.07 × A + 0.10 × t − 0.09 × Ds − 0.82 × Cw
(p < 0.0001, R2 = 0.9676)

(9)

3.2.4. Malvidin-3-Glucoside

Equation (10) shows a significant effect of the investigated variables of UAE on wine lees of
the Merlot and Vranac regarding the amount of extracted malvidin-3-glucoside (Mv-3-glucoside)
in the obtained extracts. The same equation indicates a positive linear effect on the quantity of
malvidin-3-glucoside in lees after using UAE parameters A (p < 0.0009), t (p < 0.0001) and Cw
(p < 0.0245), including the quadratic effect of A (p < 0.0312), t (p < 0.1852), and interactions A × Cw
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(p < 0.1879), t×Cw (p < 0.3030), A × Ds × Cw (p < 0.7606), A2
× Ds (p < 0.0061), A2

× Cw (p < 0.0058),
t2
× Ds (p < 0.0086), t2

× Cw (p < 0.0143) and A2
× Ds × Cw (p < 0.0071). A negative linear effect on the

quantity of Mv-3-glucoside in the wine lees from the Merlot and Vranac varieties was provided by Ds
(p < 0.0001) and the interactions of A × Ds (p < 0.0705), t × Ds (p < 0.0245) and Ds × Cw (p < 0.0001).

The greatest quantities of Mv-3-glucoside in the analyzed extracts for both varieties were obtained
at high amplitudes and long extraction times when using a probe with a diameter of 22 m (Figure 5a,b).
Moreover, it is also evident that the extracts of wine lees from the Vranac variety contained greater
amounts of Mv-3-glucoside.

Malvidin-3-glucoside = 3.18 + 0.12 × A + 0.18 × t − 0.35 × Ds + 0.05 × Cw − 0.06 ×
A×Ds + 0.04 × A × Cw − 0.08 × t × Ds + 0.03 × t × Cw − 0.14 × Ds × Cw + 0.08 × A2 +

0.05 × t2 + 0.01 × A × Ds × Cw + 0.10 × A2
× Ds + 0.10 × A2

× Cw + 0.10 × t2
× Ds +

0.09 × t2
× Cw + 0.10 × A2

× Ds × Cw
(p < 0.0001, R2 = 0.8379)

(10)
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Figure 5. The effect of the probe with a diameter of 22 mm, amplitude A (%) and the time of ultrasound
extraction t (s) on the quantity of Mv-3-glucoside (mg/g d.m.) in the extracts of the wine lees of the
Merlot variety (a) and the wine lees of the Vranac variety (b).

Equation (11) shows the significant effects of the investigated variables of UAE for wine lees
of the Merlot and Vranac variety on the quantity of extracted malvidin-3-(6-O-acetyl) glucoside
(Mv-acetyl-3-glc) in the obtained extracts.

The same equation indicates that a positive linear effect on the quantity of malvidin-3-(6-O-acetyl)
glucoside in lees is obtained after using UAE parameters t (p < 0.0617), as well as a quadratic effect
of t (p < 0.0312) and a significant positive effect due to the interrelations A × Cw (p < 0.0799), t × Cw
(p < 0.6348), A × Ds × Cw (p < 0.1639), t × Ds × Cw (p < 0.8928), A2

× Cw (p < 0.0001), t2
× Ds

(p < 0.0204), t2
× Cw (p < 0.8610) and A2

×Ds × Cw (p < 0.0024). A negative linear effect on the quantity
of extracted malvidin-3-(6-O-acetyl) glucoside from the wine lees of the Merlot and Vranac varieties
was provided by A (p < 0.9113), Ds (p < 0.0015), Cw (p < 0.0001), A2 (p < 0.3868) and the interrelations
A × Ds (p < 0.0158), t × Ds (p < 0.1784), Ds × Cw (p < 0.2999), A2

× Ds (p < 0.2802) and t2
× Ds ×

Cw (p < 0.2577). The analyzed extracts showed that the largest amount of malvidin-3-(6-O-acetyl)
glucoside was obtained for the Vranac variety when high amplitudes, long extraction times and a
probe with a diameter of 22 mm were used, whereas for the extracts from the Merlot variety similar
or greater amounts of malvidin-3-(6-O-acetyl) glucoside were obtained when lower amplitudes and
shorter treatment times were used.

Malvidin-3-(6-O-acetyl) glucoside = 1.41 − 0.00 × A + 0.05 × t − 0.12 × Ds − 0.19 × Cw
− 0.07 × A×Ds + 0.05 × A × Cw − 0.04 × t × Ds + 0.01 × t × Cw − 0.04 × Ds × Cw − 0.03
× A2 + 0.04 × t2 + 0.04 × A × Ds × Cw + 0.00 × t × Ds × Cw − 0.03 × A2

× Ds + 0.13 × A2

× Cw + 0.07 × t2
× Ds+ 0.01 × t2

× Cw + 0.10 × A2
× Ds × Cw − 0.03 × t2

× Ds × Cw
(p < 0.0001, R2 = 0.7747)

(11)
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Equation (12) shows the significant effects of the investigated variables of UAE for wine lees of
the Merlot and Vranac variety on the quantity of extracted malvidin-3-(6-O-p-coumaroyl) glucoside
(Mv-3-p-coum glc) in the obtained extracts. The same equation indicates that a positive linear effect on
the quantity of malvidin-3-(6-O-p-coumaroyl) glucoside is obtained after using UAE parameters A
(p < 0.0010), t (p < 0.0017) and Cw (p < 0.0001), including the quadratic effect of A (p < 0.0414) and
interactions of t × Cw (p < 0.7400), A × t × Cw (p < 0.0455). A negative linear effect on the quantity
of extracted malvidin-3-(6-O-p-coumaroyl) glucoside from the wine lees of the Merlot and Vranac
varieties was provided by Ds (p < 0.0001) and the interactions A × t (p < 0.3454), A × Ds (p < 0.0156),
A × Cw (p < 0.41743868), t × Ds (p < 0.0110), Ds × Cw (p < 0.0411). The analyzed extracts showed that
the largest amount of malvidin-3-(6-O-p-coumaroyl) glucoside from the Merlot and Vranac varieties
was obtained using high amplitudes and long extraction times when using a probe with a diameter of
22 mm. Results show that the wine lees extracts from the Vranac variety contain greater quantities of
malvidin-3-(6-O-p-coumaroyl) glucoside.

Besides the detailed analysis of conditions for UAE of the compounds trans-resveratrol
glucoside, trans-resveratrol, quercetin, kaempferol, petunidin-3-glucoside, malvidin-3-glucoside,
malvidin-3-(6-O-acetyl) glucoside and malvidin-3-(6-O-p-coumaroyl) glucoside, which prevail in
the wine lees and have high individual AOP, we further discovered the presence of other phenolic
compounds that contribute to the overall AOP, but are primarily responsible for the astringent taste of
red wines.

Malvidin-3-(6-O-p-coumaroyl) glucoside = 1.29 + 0.04 × A + 0.039 × t − 0.06 × Ds +

0.29 × Cw − 0.01 × A × t −0.03 × A × Ds − 0.01 × A × Cw − 0.03 × t × Ds + 0.00 × t ×
Cw − 0.01 × Ds × Cw + 0.02 × A2 + 0.03 × A × t × Cw b2

(p < 0.0001, R2 = 0.9750)

(12)

3.3. Optimization of UAE Extraction Condition

Numerical optimization of the UAE for wine lees under research conditions, was performed
by maximizing the response AOPDPPH and AOPFRAP, in order to determine the optimal UAE
conditions for obtaining extracts with the greatest AOP value, and responses were maximized
for t-Res-3-O-glc (Merlot), trans-resveratrol (Vranac), quercetin, kaempferol, malvidin-3-glucoside,
malvidin-3-(6-O-acetyl) glucoside, and malvidin-3-(6-O-p-coumaroyl) glucoside for wine lees from
Merlot and Vranac varieties in order to obtain the most optimized UAE conditions for each wine
lees separately.

The five best optimized extraction conditions are shown in Tables 2 and 3, indicating that the
extraction of the investigated variables from wine lees requires a probe with a diameter of 22 mm for
both wine lees. Necessary extraction time for the lees of the Vranac variety is maximum, whereas for
the wine lees from the Merlot variety the extraction time is shorter than 1361.33 s with desirability
of 0.826. Based on the results obtained for each variety, a graphical optimization was performed,
as shown in Figure 6a,b and Figure 7a,b, clearly showing the optimum area in which, the largest yields
of the investigated polyphenolic compounds are achieved.

Table 2. The five best optimized conditions of the UA extraction for investigated polyphenolic
compounds expressed as a % of increased yields between the UAE and CE for the Merlot variety.

A t Ds AOP
DPPH

AOP
FRAP TPC trans-resv-

3-O-gluc
trans

Resveratrol Quercetin Kaempferol

90.000 1361.36 22 76.05 122.98 38.67 31.56 36.36 41.43 68.69
90.000 1364.32 22 76.07 123.06 38.69 31.73 36.36 41.53 68.69
90.000 1468.60 22 76.39 125.33 39.28 34.05 36.36 43.33 71.72
89.999 1313.80 22 75.71 121.66 38.37 30.57 36.36 40.64 67.68
90.000 1497.93 22 76.38 125.83 39.45 34.72 36.36 43.83 72.73

(a)
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Table 2. Cont.

A t Ds Pt-3-
Glucoside

Mv-3-
Glucoside

Mv-3-acetyl
gluc

Mv-3-p-coum
gluc Desirability

90.00 1361.34 22 41.92 49.10 25.98 26.88 0.826
90.00 1364.32 22 41.97 49.10 25.90 26.88 0.826
90.00 1468.59 22 42.90 48.01 24.35 26.77 0.824
89.99 1313.79 22 41.52 49.43 26.49 26.88 0.824
90.00 1497.93 22 43.12 47.63 23.84 26.77 0.823

(b)
A, amplitude; t, time; Ds, probe diameter; AOP (DPPH) and AOP (FRAP), antioxidant potential; TPC, total
phenolic content; trans-resv-3-O-gluc: trans-resveratrol-3-O-glucoside; A, amplitude; t, time; Ds, probe
diameter; Pt-3-glucoside, petunidin3-glucoside; Mv-3-glucoside, malvidin-3-glucoside; Mv-3-acetyl gluc,
malvidin-3-(6-O-acetyl) glucoside; Mv-3-p-coum gluc, malvidin-3-(6-O-p-coumaroyl) glucoside.

Table 3. The five best optimized conditions of the UA extraction for investigated polyphenolic
compounds expressed as a % of increased yields between the UAE and CE for the Vranac variety.

A t Ds AOP
DPPH

AOP
FRAP TPC trans-resv-

3-O-gluc
trans

Resveratrol Quercetin Kaempferol

90.00 1499.98 22 62.19 104.79 4.620 300.00 45.75 42.23 67.44
90.00 1467.48 22 62.20 104.33 3.54 300.00 44.68 42.03 67.44
86.17 1499.99 22 61.01 103.10 9.61 300.00 43.62 41.24 65.12
85.57 1499.98 22 60.83 102.81 10.31 300.00 43.62 41.04 65.12
81.49 1500.00 22 59.57 100.78 14.41 300.00 41.49 39.94 65.12

(a)

A t Ds Pt-3-
Glucoside

Mv-3-
Glucoside

Mv-3-acetyl
gluc

Mv-3-p-coum
gluc Desirability

90.00 1499.99 22 64.95 89.17 49.74 34.93 0.828
90.00 1467.48 22 64.33 88.03 49.04 34.50 0.826
86.17 1499.99 22 63.61 87.94 46.77 33.21 0.822
85.50 1499.98 22 63.40 87.73 46.34 33.00 0.821
81.49 1500.00 22 61.86 86.38 43.46 31.29 0.812

(b)
A, amplitude; t, time; Ds, probe diameter; AOP (DPPH) and AOP (FRAP), antioxidant potential; TPC,
total phenolic content; trans-resv-3-O-gluc: trans-resveratrol-3-O-glucoside; A, amplitude; t; time; Ds, probe
diameter; Pt-3-glucoside, petunidin3-glucoside; Mv-3-glucoside, malvidin -3-glucoside; Mv-3-acetyl gluc,
malvidin-3-(6-O-acetyl) glucoside; Mv-3-p-coum gluc, malvidin-3-(6-O-p-coumaroyl) glucoside.
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Figure 7. Optimal conditions of the ultrasound-assisted extraction of polyphenolic compounds from
the wine lees of the Vranac variety which most significantly affect the AOP of the extracts using the
ultrasonic probe with a diameter of 22 mm (a) and using the ultrasonic probe with a diameter of
40 mm (b).

4. Discussion

Depending on the applied conditions of UAE, the AOPDPPH in obtained extracts was enhanced by
76.39% and AOPFRAP by 125.83% with respect to the CE obtained samples. AOPDPPH and AOPFRAP of
wine lees extracts obtained using conventional extraction of the Vranac variety were higher than the
Merlot variety, which may be a varietal characteristic or a consequence of the applied technologies.
Equations (2) and (3), indicated that the highest AOPDPPH and AOPFRAP were found in the extracts
obtained using the ultrasonic probe with a diameter of 22 mm, at a maximum amplitude and longest
extraction time for both wine lees variety. In the wine lees extracts of the Vranac variety, a higher
antioxidant capacity has been achieved than in the wine lees extracts of the Merlot variety.

The obtained results regarding AOP are in accordance with other authors [45,73], who also
confirmed an increase of AOP in wine lees extracts obtained with non-thermal technologies compared
to the CE. The obtained results regarding TPC are also in accordance with other authors [45,73]. They
also confirmed an increase of TPC in wine lees extracts obtained with use of non-thermal technologies
compared to the CE. Results show that trans-resveratrol glucoside was dominant in the extracts of
wine lees from the Merlot while trans-resveratrol content is 20-fold lower. In comparison to the wine
lees of the Merlot, trans-resveratrol glucoside (t-Res-3-O-glc) was not found in the wine lees of the
Vranac, and the amount of trans-resveratrol was approximately three times greater compared to Merlot
variety as shown in Table 2a,b and Table 3a,b.

In accordance with results from other authors [45] that successfully identified and extracted
Quercetin from wine lees extracts, our results show that quercetin is present in similar quantities in lees
from both varieties. The proportion of kaempferol is around three times greater in the wine lees of the
Merlot variety as compared to Vranac variety. Moreover, in the samples that were analyzed, anthocyanin
monomers responsible for the wine’s color were obtained from the investigated grape varieties.

Likewise, Pérez-Serradilla and Luque de Castro [45] successfully identified and extracted
malvidin-3-(6-O-acetyl) glucoside from wine lees extracts, and found that malvidin-3-glucoside
(Mv-3-glucoside) and petunidin-3-glucoside (Pt-3-glc) were the predominant anthocyanins in Merlot
samples. There are twice as much malvidin-3-(6-O-acetyl) glucoside, but malvidin-3-(6-O-p-coumaroyl)
glucoside was three times lower than Mv-3-glucoside. Mv-3-glucoside prevails in the extract from the
Vranac as compared to Merlot. The proportion of malvidin-3-(6-O-acetyl) glucoside, malvidin-3-(6-
O-p-coumaroyl) glucoside and Pt-3-glc in samples is two and half times less then Mv-3-glucoside but
in similar quantities. Based on the results, it is concluded that for the greatest quantity of investigated
polyphenolic compounds from wine less of the Merlot variety, the best most optimized parameters are
use of probe with a diameter of 22 mm under the following UAE conditions: Applied amplitude of
the ultrasonic processor ranging from 89.28% to 100% and an extraction time of between 921.81 s to
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1492.15 s. To obtain the greatest quantity of investigated polyphenolic compounds from wine lees the
Vranac variety, best optimized parameters are probe with a diameter of 22 mm under the following
UAE conditions, applied amplitude of the ultrasonic processor ranging from 44.86% to 93.64%, and
an extraction time of between 1176.81 s to 1500 s. The confirmed results are in accordance with
previously reported findings which also depicted a higher yield of TPC, AOP and polyphenols such as
quercetin, malvidin-3-glucoside (Mv-3-gluc), myricetin in the range from 19−20% when compared to
the CE [45,73].

5. Conclusions

It is evident from the findings obtained in this work that ultrasound-assisted extraction (UAE)
of polyphenols from lees of the Merlot variety (five best optimized extraction conditions) results in
significantly higher yields of bioactive compounds in the extracts compared to conventional extraction
(CE). As per the DPPH assay, it is observed that UAE of the Merlot variety enhanced AOP from
76.05% to 76.39% when compared to the CE. Similarly, AOP FRAP, total phenols, trans-resveratrol
glucoside, trans-resveratrol, quercetin, kaempferol, petunidin-3-glucoside, malvidin-3-glucoside,
malvidin-3-(6-O-acetyl) glucoside and malvidin-3-(6-O-p-coumaroyl) glucoside extraction was
enhanced significantly in wine lees from both the varieties after using UAE. Therefore, it is concluded
that ultrasound processing can be successfully used to enhance the extraction of bioactive compounds
from wine lees, a by-product of the wine industry. Considering that very limited studies have been
reported about the composition and bioactivity of wine lees extracts, as well as the extraction of
phenolics from lees, a more detailed investigation could pave newer ways to utilize in wine industry
waste effectively.
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Electrotechnologies, microwaves, and ultrasounds combined with binary mixtures of ethanol and water to
extract steviol glycosides and antioxidant compounds from Stevia rebaudiana leaves. J. Food Process. Preserv.
2017, 41, 5. [CrossRef]
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