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Multi-Omic analyses characterize the
ceramide/sphingomyelin pathway as a
therapeutic target in Alzheimer’s disease
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Kevin Huynh7, Barbara Brauner3, Gregory Louie4, Alexandra Kueider-Paisley4, Karsten Suhre 8,

Andrew J. Saykin 6, Kim Ekroos9, Peter J. Meikle 7, Leroy Hood1, Nathan D. Price1, The Alzheimer’s Disease

Metabolomics Consortium*, P. Murali Doraiswamy4, Cory C. Funk 1, A. Iván Hernández10,

Gabi Kastenmüller 3, Rebecca Baillie 11, Xianlin Han 12✉ & Rima Kaddurah-Daouk 4,13,14✉

Dysregulation of sphingomyelin and ceramide metabolism have been implicated in Alzhei-

mer’s disease. Genome-wide and transcriptome-wide association studies have identified

various genes and genetic variants in lipid metabolism that are associated with Alzheimer’s

disease. However, the molecular mechanisms of sphingomyelin and ceramide disruption

remain to be determined. We focus on the sphingolipid pathway and carry out multi-omics

analyses to identify central and peripheral metabolic changes in Alzheimer’s patients, cor-

relating them to imaging features. Our multi-omics approach is based on (a) 2114 human

post-mortem brain transcriptomics to identify differentially expressed genes; (b) in silico

metabolic flux analysis on context-specific metabolic networks identified differential reaction

fluxes; (c) multimodal neuroimaging analysis on 1576 participants to associate genetic var-

iants in sphingomyelin pathway with Alzheimer’s disease pathogenesis; (d) plasma meta-

bolomic and lipidomic analysis to identify associations of lipid species with dysregulation in

Alzheimer’s; and (e) metabolite genome-wide association studies to define receptors within

the pathway as a potential drug target. We validate our hypothesis in amyloidogenic APP/PS1

mice and show prolonged exposure to fingolimod alleviated synaptic plasticity and cognitive

impairment in mice. Our integrative multi-omics approach identifies potential targets in the

sphingomyelin pathway and suggests modulators of S1P metabolism as possible candidates

for Alzheimer’s disease treatment.
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To date, ~400 trials of experimental Alzheimer’s treatments
have failed1. In the wake of such large-scale failure, addi-
tional hypotheses have been proposed to accelerate stra-

tegies for treatment and researchers are pursuing alternative
approaches, with a greater focus on the complex mechanisms
underlying this neurodegenerative disease2. In an effort to address
this knowledge gap, the NIH-funded Accelerating Medicines
Partnership—Alzheimer’s Disease (AMP-AD) has successfully
generated new hypotheses and insights around Alzheimer’s dis-
ease (AD) and produced large, publicly available datasets. The
knowledge gained from this initiative will lead to a major para-
digm shift in research focus, resulting in novel targets and testable
hypotheses that are currently being investigated in clinical
phase 1 and 2 trials aimed at neuroprotection and anti-
neuroinflammation3. These new hypotheses also suggest poten-
tial drug repositioning and development.

While the central neuropathological features of AD are the
accumulation of misfolded β-amyloid (Aβ) plaques and phos-
phorylated tau proteins, brain atrophy and neuronal loss are
equally important. The relationship between Aβ accumulation, tau
phosphorylation, and neuronal loss is unclear. What is clear is that
AD etiology is multifactorial, with genetic contributions, protein
mis-trafficking and turnover, altered glucose metabolism, and
lipid metabolism failures4. Recent studies have clarified the
important relationship between the immune system and lipid
metabolism and more than half of the genes implicated in AD via
genetic association screens are linked to lipid metabolism and
inflammation5. Exploring how these genes factor into AD
pathophysiology over the last few years is starting to increase our
understanding of the role of lipid metabolism in AD. APOE4, the
strongest genetic risk factor for late-onset AD, is centrally involved
in lipid metabolism, including the transport of cholesterol to
neurons from astrocytes6. Additionally, several independent
genetic association studies have reported replicable associations of
the APOE locus with blood levels of sphingolipid species7–9.
Lipids, including sphingomyelins (SMs), have been shown to be
disrupted in AD10–12. However, few studies have taken a holistic
view of how lipid dysregulation contributes to AD pathogenesis.

Brain lipids constitute ~50% of the brain’s dry weight with
myelin, a proteolipid, composed of 70–80% lipids13. Several lines
of supporting evidence implicate various sphingolipids in neu-
ronal signaling and toxicity14,15. Sphingomyelin (SM) primarily
resides in two locations within the brain: (1) lipid rafts, found in
neurons, astrocytes, and microglia where they are involved in
several aspects of signal transduction and homeostasis of the
brain and (2) the membranous myelin sheath that insulates many
nerve cell axons16. As part of lipid rafts, SMs are involved in
signal transduction and the regulation of inflammatory processes
and response to oxidative stress17. Our previous studies18–21

indicated a complex pattern of deregulation in the sphingolipid
metabolism, including ceramides, in the early stages of AD. We
have also reported changes at the gene expression level of the
myelin network in AD22. Hydrolysis of sphingomyelin produces
ceramide (Cer). Ceramides are the simplest of sphingolipids, are
neurotoxic, and induce apoptosis23,24. Ceramides are known to
mediate the relationship between Aβ and neurodegeneration25.
Increasing Aβ levels elevate SM phosphodiesterase (SMase)
activity leading to an increase in Cer26,27. It is suggested that the
increase in ceramides boosts BACE-1 activity28, which cleaves
amyloid precursor protein (APP) in two soluble Aβ. Sphingosine-
1-phosphate (S1P), is an important neuroprotective signaling
molecule and product of the SM pathway that blocks SMase
activity29 and inhibits APP secretion30. By understanding the
changes in SM/Cer homeostasis and their underlying mechanism,
we can better understand how perturbations in the SM pathway
contribute to neurodegeneration.

As part of normal homeostasis, microglia constantly surveil
the brain parenchyma. In development, and throughout the
normal lifespan, they remove neuronal synapses, eliminate
dying neurons, and clean up myelin debris31–34. Sphingolipid-
rich neuronal and myelin membranes captured through these
processes undergo lysosomal degradation within microglia.
This degradative process is facilitated by a lipid-sensing
receptor, TREM2, that is activated by various lipids (includ-
ing sphingolipids, sphingomyelin, and sulfatide). TREM2-
deficient microglia phagocytose myelin debris but fail to clear
myelin cholesterol, resulting in cholesteryl ester (CE) accu-
mulation. CE increase is also observed in APOE-deficient
glial cells, reflecting impaired brain cholesterol transport35.
Recent studies have begun to elucidate the important role
of microglia in AD, with evidence for differences in
microglial subpopulations, related to myelin clearance and
activation36–42.

This comprehensive study analyzed human in vivo data and
post-mortem brain data to finely characterize the SM pathway for
molecular links to AD pathogenesis. We used multi-omics
approach to identify metabolic readouts that helped to char-
acterize molecular changes back to potential intervention targets,
which were experimentally validated in animal models resulting
in repurposed drug for AD. By using complementary approaches,
we were able to reveal how sphingosine 1-phosphate (S1P) reg-
ulates the balance in the pathway. We tested our hypothesis and
demonstrated that fingolimod, an S1P receptor (S1PR) mod-
ulator, is able to improve cognition in amyloidogenic mice model.
We highlight S1P as the metabolite involved in maintaining the
balance in the pathway and identifying drugs regulating S1P
levels that can be repurposed for AD.

Results
Post-mortem brain transcriptome analysis identifies global
dysregulation of the SM pathway in AD. We analyzed gene
expression changes of well-characterized enzymes in the
sphingolipid pathway from post-mortem brain RNA-seq data
generated on seven brain regions (cerebellum, temporal cortex,
dorsolateral prefrontal cortex, parahippocampal gyrus, frontal
pole, inferior frontal gyrus, and superior temporal gyrus) in
three independent cohorts (ROS/MAP, Mayo, and Mount
Sinai), of 2114 brain samples as well as the cross-region, cross-
study meta-analysis43. For this study, we manually curated the
sphingolipid subsystem definition of the human genome-scale
metabolic reconstruction44 resulting in the identification of a set
of 35 enzymes catalyzing 18 enzymatic reactions within the SM
pathway (Fig. 1, Supplementary Table 1). The reactions cover
Cer and SM biosynthesis, as well as four exit routes (through
sphinganine-1-phosphate, ceramide-1-phosphate, sphingomye-
lin, glycosphingolipids, and sphingosine-1-phosphate). Gene
expression data were available for 31 of the 35 genes, the
exceptions being CERS3, ACER1, ASAH2, and ENPP7. Low and/
or no expression of these genes in the brain was confirmed in
the GTEx Portal45.

Analysis of differential gene expression showed significant
(FDR-corrected) gene expression changes in brain tissue of AD
cases vs. controls for 20 of the genes (Supplementary Table 2). Of
those 20, 19 showed differential expression in one or more
studies/brain regions. Fourteen of these were also detected in the
meta-analysis. Transcripts of SPTLC3 were not measured in all
brain regions, hence it was not reported in the meta-analysis.
DEGS1, on the other hand, was insignificantly but consistently
upregulated in the single studies, leading to a detectable
significant overall upregulation in the meta-analysis. Almost all
of the genes showed significantly higher expression in AD cases,
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consistent across all brain regions. Exceptions were CERS5
(lower levels in cerebellum of AD cases; not significant in the
meta-analysis), CERS6 (higher levels in cerebellum vs. lower
levels in the parahippocampal gyrus of AD cases; not significant
in the meta-analysis), and SMPD3 (lower levels in the temporal
cortex of AD cases; also significant in the meta-analysis).

In silico metabolic flux analysis identified reactions with dif-
ferential fluxes in AD and control samples. We used brain
region-specific metabolic reconstructions46 and integrated the
post-mortem brain RNA-seq data with them to identify reac-
tions that had differential fluxes in AD vs. no cognitive
impairment (NCI) or control individuals and mild cognitive
impairment (MCI). For the dorsolateral prefrontal cortex, we
identified reactions catalyzed by serine palmitoyltransferase
(SPT, encoded by SPTLC1/2/3, enzyme A in Fig. 1), sphingo-
myelin synthase (SMS, encoded by SGMS1/2, enzyme G in
Fig. 1), and ceramide kinase (CERK, encoded by CERK,
enzyme F in Fig. 1) as having significant flux differences as
shown in Fig. 2. The plots are colored based on the diagnosis
and adjusted p-values are indicated. SPT catalyzes the first step
in the biosynthesis of sphingolipids condensing serine and
palmitoyl-CoA to form 3-ketosphinganine, which is the rate-
limiting step in the synthesis of SMs (Fig. 1). For this reaction,
we found significant differences in flux values comparing AD
and mild cognitive impairment (MCI) cases (Fig. 2a; Supple-
mentary Table 2). Sphingomyelin synthase synthesizes sphin-
gomyelin from ceramide. Here, we observed AD samples
having higher reaction fluxes compared to the NCI samples
(Fig. 2b; Supplementary Table 2). We further identified flux
differences for the reaction catalyzed by ceramide kinase
(phosphorylation of ceramide to form ceramide-1-phosphate)
in AD and NCI samples (Fig. 2c; Supplementary Table 2) and
observed a significant difference between AD and MCI
samples.

Genetic association studies and multimodal neuroimaging
analysis link SM pathway to AD pathogenesis. Using gene-
based association analysis in 1576 participants of the AD neu-
roimaging initiative (ADNI) phases 1, GO and 2, we identified
genetic variants in the coding regions linked to seven of the 35
genes in the SM pathway to be significantly associated with AD
and its (bio)markers, which covered the whole spectrum of
Amyloid, Tau, Neurodegeneration, Cognition (A-T-N-C)
measures47 (Supplementary Table 3). A-T-N-C measures of AD
are calculated by investigating genetic associations of CSF bio-
marker levels, brain atrophy (magnetic resonance imaging), brain
glucose metabolism ([18F]FDG-PET), cognition, and clinical
diagnosis. In this analysis, Bonferroni-significance was deter-
mined by gene-specific thresholds correcting for the number of all
genetic variants assigned to a certain gene. Associated markers
included CSF Aβ1–42 (CERS2, enzyme C in Fig. 1), the ratio
between CSF tau (both total tau and p-tau) and CSF Aβ1–42
(ACER2 (enzyme C in Fig. 1), PLPP2), region of interest-based
measures of [18F] fluorodeoxyglucose positron emission tomo-
graphy (FDG-PET; CERS3, SPHK2), cognitive performance
measured, among other, by the 13-item cognitive subscale of the
AD assessment scale (ADAS-Cog.13; CERS6, DEGS1), and clin-
ical AD (CERS3, CERS6, DEGS1). Furthermore, a detailed whole
brain analysis of brain glucose metabolism (FDG-PET) on voxel-
wise levels showed that rs1847325 in CERS3 (enzyme C in Fig. 1)
and rs281380 in SPHK2 (J in Fig. 1) were significantly associated
with increased brain glucose metabolism in the bilateral frontal,
parietal, and temporal lobes (colored regions with corrected p-
value < 0.05; Supplementary Fig. 1). Previously, a study on
clinico-pathologic AD dementia48 yielded an association with
SMPD2 (enzyme G in Fig. 1) that is Bonferroni-significant at the
gene-wide level.

A less stringent p-value cutoff (adjusting for multiple testing
by permutation as SNPs are correlated due to linkage
disequilibrium) identified variants in two additional genes,
SPTLC3 (enzyme A in Fig. 1) and SGMS1 (enzyme G in Fig. 1).

Fig. 1 Overview of sphingolipid pathway manually curated from the Recon3D model. The metabolites participating in reactions are represented in boxes.
The arrows for reactions A–K are colored based on the direction in the pathway. Some reactions are not reversible (single arrows). The table on the right
lists the catalyzing enzymes in the sphingolipid pathway in humans and is denoted with the same color code as the reaction arrow.
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SPTLC3 was associated with cognitive performance (corrected
p-value= 0.02; Fig. 3a), brain atrophy in focal regions of the
bilateral temporal and frontal lobes (determined by detailed
surface-based whole-brain analysis of cortical thickness mea-
sured from MRI scans on a vertex-wise level; colored regions
with corrected p-value < 0.05; Fig. 3b) and FDG-PET measures
in the bilateral temporal and parietal lobes (colored regions with
corrected p-value < 0.05; Fig. 3c). SGMS1 was associated with
brain glucose metabolism measured by region of interest-based
FDG-PET (corrected p-value= 0.02; Fig. 3d) that was mapped
by whole brain analysis to the bilateral temporal, parietal, and
frontal lobes, as well as the hippocampus (colored regions with
corrected p-value < 0.05; Fig. 3f). In addition, surface-based
whole brain association analysis showed a significant associa-
tion with cortical thickness in the bilateral temporal, parietal,
and frontal lobes, with the strongest association located in the
entorhinal cortex (colored regions with corrected p-value < 0.05;
Fig. 3e).

SM (d34:1)/SM (d43:1) ratio as a strong intermediate trait for
sphingolipid dysregulation in AD. Sphingomyelin species (SMs)
of differing lengths have been implicated in the early vs. late stages
of AD20. SM (d34:1) is associated with CSF Aβ1-42 pathology,
while SMs with longer fatty acid chains (≥C20) are correlated with
brain atrophy and cognitive decline. Utilizing the concept of
metabolite ratios49, which enables both removal of potentially
remaining technical variance and modeling of enzymatic/pathway
activity9, we selectively screened ratios of shorter chain SMs
(<C20) and longer chain SMs (≥C20) in the ADNI-1 dataset
(n= 732) similar to Toledo et al.20. This revealed the ratio of SM
(d34:1) and SM (d43:1) as the metabolic trait most significantly
associated with a diagnosis of clinical AD (p-value= 1.70 × 10−4,
Pgain= 178.37), brain atrophy in regions implicated in AD50

(p-value= 7.64 × 10−6, Pgain= 687.57) as well as cognition
(measured by ADAS-Cog. 13; p-value= 4.36 × 10−6, Pgain=
2544.51). The modified Alzheimer’s Disease Assessment Scale
cognitive subscale (ADAS-Cog 13-item scale)51 has all the original
ADAS-Cog items with additional items that were aimed to
increase the number of cognitive domains and range of symptom
severity.

To expand upon and further validate this finding, we examined
the same cohort (ADNI1) using a more comprehensive
lipidomics method covering a broader range of sphingolipids.
In total, 112 sphingolipids were examined in serum samples
(n= 754), where chromatography enabled the separation of some
isomeric and isobaric species. Regression analysis (adjusting for
age, sex, BMI, HDL-C, total cholesterol, triglycerides, APOE e4,
and fasting status) between individual lipid species and lipid
ratios (112 individual species, totaling 12,544 ratios) with ADAS-
Cog 13 identified 3385 ratios associated with an uncorrected
p-value of <0.05 and 1552 significant post-FDR correction
(Supplementary Data 1). This analysis confirmed that ratios of
short to longer chain sphingomyelins, in particular the ratio of
SM(d43:1)/SM(d34:1), presented with a positive association with
ADAS-Cog 13 scores (FDR corrected p-value of 3.98 × 10−2).

Using the SM species for genetic screening and pathological
markers in AD. To link SM readouts associated with AD to
genes, we performed metabolite genome-wide association studies
(mGWAS) with the three SMs reported to be associated with
markers of AD in Toledo et al.20, as well as the selected ratio of
SM(d43:1)/SM(d34:1). The discovery analysis was performed in a
subset of 674 ADNI-1 participants from Toledo et al.20 that had
genome-wide genotyping data available. While the three single
SM species did not yield significant results, the SM ratio was

Fig. 2 In silico flux analysis for metabolic reactions in the sphingolipid
pathway. Box plot of normalized reaction fluxes for a serine palmitoyl
transferase (SPT), b sphingomyelin synthase (SMS), and c ceramide kinase
(CERK) reactions. The orange, mustard yellow, and blue bars correspond to
Alzheimer’s Disease (AD), mild cognitive impairment (MCI), and no
cognitive impairment (NCI). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ns is
non-significant.
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associated with SPTLC3 (enzyme A in Fig. 1) at genome-wide
significance corrected for four metabolic traits (lead SNP
rs680379, p-value= 1.01 × 10−9). This association replicated a
previous finding in a larger population-based mGWAS investi-
gating metabolite ratios (rs168622, r2= 0.98 with rs680379, p-
value= 5.2 × 10−25)21.

Lookup of the SPTLC3 (enzyme A in Fig. 1) locus using the
large collection of metabolite–genotype associations in the SNiPA
database52) revealed significant links to several additional SM
species. To obtain a comprehensive map of genetic influences on
SM levels across the whole SM pathway, we again used gene-
based association analyses including all 35 genes in the pathway
analogously to the analysis of associations with markers of AD.
To this end, we used an expanded set of 1407 ADNI participants
with SM readouts and genome-wide genotype information
available, as well as two large population-based mGWAS studies
that included SM levels7,9. We found genome-wide and gene-
wide significant associations with a set of 14 related SMs for six
genes (Fig. 4, Supplementary Table 4). Three of the encoded
enzymes are involved in SM synthesis (SPTLC3, CERS2, CERS4),
while the other three function in the synthesis and degradation of
S1P (SPHK2, SGPP1, SGPL1), a central exit route of the pathway.
Notably, the significant associations include all three SMs
identified by Toledo et al.20 (SM (d33:0), SM (d34:1), and SM

(d38:2)), highlighting a potential role for S1P metabolism and
signaling in AD pathogenesis.

Fingolimod treatment produces a reversal of synaptic plasticity
and cognitive impairment in 9-month-old APP/PS1 mice.
APP/PS1 are double transgenic mice expressing chimeric amyloid
precursor protein (APP) and mutant human presenilin 1 (PS1).
These mice are a valuable model to study AD progression and the
effect of drugs on AD53. To functionally investigate the involve-
ment of deregulated S1P metabolism in amyloid pathology along
with strategies to counter AD pathogenesis, we applied a drug
repositioning approach by treating amyloidogenic APP/PS1 mice
with fingolimod (FTY720), an FDA-approved drug for the use in
the relapsing‐remitting form of multiple sclerosis54. This immu-
nomodulating compound is a sphingosine analog that, after
endogenous phosphorylation by sphingosine kinases 1 and 2,
broadly binds to S1P receptors (S1PR1/3/4/5)55,56.

It has been previously shown that the first signs of impairment
in cognitive performance and synaptic plasticity occur as early as
5 months of age in APP/PS1 mice57. We, therefore, decided to
establish the onset of fingolimod treatment at 7 months old (mo)
for our rescue studies and set out to confirm cognition and
synaptic plasticity deficits in APP/PS1 mice compared to WT
mice at this age. We tested mice in two behavioral tasks, the novel

Fig. 3 Association of genetic variants in SPTLC3 and SGMS1 with structural (MRI) and molecular (FDG-PET) neuroimaging phenotypes. a Gene-based
association analysis of SPTLC3 with cognitive performance (Rey auditory verbal learning test total score). d Gene-based association analysis of SGMS1 with
global brain glucose metabolism. b and e Surface-based whole brain analysis of cortical thickness (brain atrophy measured from MRI scans) for SPTLC3 and
SGMS1. c and f Voxel-based whole brain analysis of brain glucose metabolism measured from FDG-PET scans for SPTLC3 and SGMS1. Red color suggests a
decrease in glucose metabolism. chr chromosome, FDG fluorodeoxyglucose, MRI magnetic resonance imaging, PET positron emission tomography, SNP
single nucleotide polymorphism.
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object recognition (NOR) task, and the Barnes maze (BM) task, to
assess episodic and spatial memory, respectively. After behavioral
testing, long-term synaptic potentiation (LTP) was evaluated at
the hippocampal Schaffer collateral-CA1 (CA3-CA1) synapses
and at the lateral entorhinal intracortical synapses (LEC-LEC) to
assess synaptic plasticity in the hippocampus and entorhinal
cortex, two brain areas compromised in AD58–62.

APP/PS1 mice showed a significant deficit in the NOR task
compared to WT mice (Supplementary Fig. 2a, unpaired two-
sided Student’s t-test; p= 0.04). APP/PS1 mice showed a mild
deficit during the first two training days in the BM task. However,
there was no significant difference when comparing the
interaction genotype and trial (Supplementary Fig. 2b, two-way
repeated measure ANOVA, Šídák’s post hoc; p= 0.5). However,
during the memory probe trial of the BM task, APP/PS1 mice
spent significantly less time in the target/escape hole than their
WT littermates (Supplementary Fig. 2c; unpaired two-sided
Student’s t-test; p= 0.02). Consistent with the behavioral
findings, APP/PS1 mice showed abnormal LTP expression
compared to WT mice at both the CA3-CA1 (Supplementary
Fig. 2d and e, unpaired two-sided Student’s t-test; p= 0.0002) and
LECII-LECII (Supplementary Fig. 2f, g, unpaired two-sided
Student’s t-test; p= 0.003).

To test the potential reversal effect of fingolimod on cognitive
performance and synaptic plasticity, APP/PS1 and WT mice at 7
mo were treated with fingolimod (1 mg/kg/day) for 8 weeks. In
the NOR task, fingolimod-treated APP/PS1 mice significantly
enhanced their ability to recognize a novel object than the APP/
PS1 vehicle group (Fig. 5a, one-way ANOVA, Tukey’s post hoc
test; p= 0.03; probabilities against chance are shown in
Supplementary Table 5). Moreover, APP/PS1-treated mice had
similar values in NOR discrimination index as compared to
treated WT mice (Fig. 5a, one-way ANOVA, Tukey’s post hoc
test; p= 0.99). In the BM task, fingolimod-treated APP/PS1 mice
also showed better retention memory in the probe trial than the
APP/PS1 vehicle group (Fig. 5c, Kruskal–Wallis, Dunn’s post
hoc; p= 0.004; probabilities against chance are shown in
Supplementary Table 5), and no statistical difference was
observed between the APP/PS1-treated compared to the WT-
treated group (Fig. 5c, Kruskal–Wallis, Dunn’s post hoc;
p= 0.99). Analysis of training performance in the BM task

showed no significant interaction between treatment effects and
genotype across days (Fig. 5b, two-way repeated measure
ANOVA, Tukey’s post hoc; p= 0.3). These findings suggest that
fingolimod effectively enhanced both episodic and spatial
memory in an amyloidogenic AD mice model.

To confirm the mechanistic underpinnings of this behavioral
rescue, we tested the effect of fingolimod on synaptic plasticity.
Fingolimod treatment significantly augmented LTP expression in
APP/PS1 mice at the CA3–CA1 (Fig. 5d) and LECII–LECII
(Fig. 5f) synapses. LTP expression in fingolimod-treated APP/PS1
and WT mice was indistinguishable at the CA3–CA1 synapse
(Fig. 5e, two-way ANOVA, Tukey’s post hoc; p= 0.7) and the
LECII–LECII synapse (Fig. 5g, two-way ANOVA, Tukey’s post
hoc; p= 0.99). These data indicate that S1P pathway modulation
via prolonged fingolimod treatment can rescue cellular and
cognitive deficits in the APP/PS1 mouse model of AD.

Discussion
This study systematically analyzed the SM pathway for multi-
omics links to pathogenic processes in AD. We were able to
replicate the findings in human post-mortem samples, in vivo
samples, and mouse models. The key findings from the multiple
lines of evidence presented here are: (a) using post-mortem brain
transcriptome data of 2114 samples, we identified differentially
expressed genes in the SM pathway of AD patients; (b) com-
parison of 1708 context-specific metabolic reconstruction of the
brain regions showed differences in the reaction fluxes for AD
and NCI samples; (c) multimodal neuroimaging analysis of 1576
individuals identified genetic variants linked to genes in SM
pathway and associated with AD pathogenesis; (d) plasma
metabolomic and lipidomic analysis identified the SM(d43:1)/
SM(d34:1) ratio as a strong intermediate trait for sphingolipid
dysregulation in AD; (e) metabolite genome-wide association
studies (mGWAS) identified S1P metabolite as potential AD drug
target; and (f) experimental analyses of amyloidogenic APP/PS1
mice treated with fingolimod revealed beneficial effects of S1P
modulation and alleviated synaptic plasticity and cognitive
impairment in mice.

We demonstrated that, on the gene expression level, the SM
pathway is globally dysregulated across brain regions in samples
of AD cases compared to controls. We found that 20 out of 35

Fig. 4 Hybrid network of genetic associations revealed by gene-based association studies and significant partial correlations of detected
sphingomyelins9, 20. The six identified genes can be grouped into two categories: global sphingomyelin synthesis and synthesis and degradation of
sphingosine-1-phosphate. The selected SM ratio is colored orange, other SM species are in green (light green: non-targeted metabolomics in Shin et al.9;
dark green: targeted metabolomics in ADNI and Draisma et al.7), and genes are in dark yellow. S1P Sphingosine-1-phosphate, SM sphingomyelin species.
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genes encoding the core enzymes in the pathway are significantly
differentially expressed in the AD population. The only sub-
pathway that appears to be unaffected by or uninvolved in the
disease is the synthesis and recycling of glycosphingolipids. Using
constraint-based metabolic networks of brain regions integrated
with post-mortem brain transcriptome data, we further show that

the differential expression of the enzymes involved in at least
three reactions is predicted to result in significant flux differences
in AD cases versus controls. An increase in the flux for the
reaction catalyzed by serine palmitoyl transferase (SPT) between
AD, control, and MCI was consistent with the expression level of
SPT gene in these groups. It was interesting to observe a higher
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flux distribution for MCI group. Some of the previous studies
have shown that level and range of hypermethylation are rela-
tively higher in MCI than in AD cases63–65. Hypermethylation in
the promoter region has been studied with respect to the upre-
gulation of gene expression and it might have important impli-
cations. It will be interesting to analyze the methylation state of
the promoter region of the SPT gene in MCI and AD cases to
support our hypothesis. We also observe an increased flux of
reaction catalyzed by sphingomyelin synthase (SGMS). Studies
have shown that elevated SGMS activity and sphingomyelin levels
impacted APP processing to produce Aβ and are a potential
contributing factor in Aβ pathology associated with AD66–68.
While flux differences cannot be directly interpreted with respect
to the resulting metabolic changes, there is ample evidence from
metabolomics studies that the pathway exhibits differential
output in AD.

We next assessed the association of genes in the SM pathway
with A-T-N-C measures of AD by investigating genetic associa-
tions of CSF biomarker levels, brain atrophy (magnetic resonance
imaging), brain glucose metabolism ([18F] FDG-PET), cognition,
and clinical diagnosis. Ten of the 35 genes in the pathway showed
significant associations with at least one (endo)phenotype at the
gene level. Although not genome-wide significant, this large
coverage of genes in the SM pathway suggests that there might be
at least a small fraction of genetic risk predisposition to AD
attributable to the pathway as a whole. Using SM levels as
intermediate traits for the genetic association, screening further
revealed six central enzymes in the pathway to be genetically
influencing levels of a network of 14 SM species. As all the genetic
variants associated with SM levels were linked to the respective
enzymes via expression quantitative trait loci, this indicates that
some of the genetic links between the pathway and markers of
AD may be mediated by altered regulation of SM levels via
genetically influenced differential gene regulation.

While associations from the analysis of differential gene
expression in brain tissue as well as from the phenotype GWASs
were broad and generally implicated in SM pathway function,
the associations from the SM mGWASs linked two central
pathway routes: global SM synthesis and S1P metabolism. Based
on previous mGWAS analysis, genetic associations with core
enzymes involved in the primary synthesis of SM metabolites
are expected. However, the specific association with one parti-
cular exit route out of the pathway (via sphingosine and S1P) is
striking. Five of the six detected genes (SPTLC3, CERS2, CERS4,
SPHK2, and SGPL1) were also found to be significantly linked to
AD either through differential gene expression or via genetic
associations or both, which suggests that S1P metabolism may
be relevant to disease.

S1P is known to be involved in endothelial barrier function in a
context-dependent manner. Decreased S1P by lipopolysaccharide
(LPS) treatment produced blood–brain barrier (BBB) abnormal-
ities, and increased activity of SGPP1 and S1PR28. Chronic BBB
leakiness is associated with cognitive impairment, but not with
signs of brain inflammation29. S1P in general increases neuronal
and circuit excitability30,31. Depletion of the S1P-producing
enzyme SphK1 induces an impairment of mossy fiber—CA3 LTP
and deficits in spatial reference memory32. Depletion of SphK2
produced lower levels of hippocampal S1P, reduced histone
acetylation and deficits in spatial memory as well as impaired
contextual fear extinction33. Thus, S1P, SphK1, and SphK2 play
specific roles in brain areas serving specific memory functions
through intracellular S1P effects as well as signaling pathways
downstream of S1P GPCRs. A recent study showed that Aβ1–42
enhanced SphK1 expression and activity after 24 h, but down-
regulated them after 96 h and had no effect on Sphk2. Aβ1–42
and SKI II-induced free radical formation, disturbed the balance
between pro- and anti-apoptotic proteins and evoked cell death in
PC12 cells while SP1 rescued part of this damage37. S1P may act
as a second messenger, but it can also be transported to extra-
cellular space and may affect cell function via stimulation of the
receptors (S1PR1–5). Two modulators of SP1R1 (Fingolimod and
SEW2871) have been shown to improve Aβ-mediated behavior
abnormalities and decrease tau phosphorylation.

To explore the effect of fingolimod administration on cognition
and plasticity, we used the APP/PS1 mouse model for AD. Fin-
golimod is a sphingosine-1-phosphate receptor modulator
approved for treating multiple sclerosis in the US54. APP/PS1
mice had a significant deficit in cognitive and memory behavior
and synaptic function that was reversible with FTY720 treatment.
These results suggest that fingolimod modulates the S1P pathway
to alleviate AD-associated deficits in APP/PS1 mice. The effect of
fingolimod in APP/PS1 on behavior and synaptic transmission
can be direct or through the activation of S1P receptors or both
since they are not mutually exclusive.

To date, despite its potential therapeutic relevance, fingolimod
research in mice models of AD is scarce. Two studies using
5xFAD female mice found that fingolimod treatment halted
spatial memory decline assessed in a Morris Water Maze (MWM)
task and expression of pathological biomarkers69,70. Another
study found changes in gene expression profiling in the brains of
FVB-Tg females after two weeks of FTY720 treatment71. Lastly, a
reversal treatment study found that 8-week fingolimod treatment
recovered deficits in dendritic spines, CA3–CA1 synaptic plasti-
city, and spatial memory in an MWM task in eight months old
APP/PS1 males72. Our results extend previous observations on
the positive effects of fingolimod treatment on AD mouse models.

Fig. 5 Fingolimod (FTY720) ameliorates memory and synaptic impairment in APP/PS1 mice. a Exploration time spent on the novel object in the NOR
test session. Data are expressed as a discrimination index ± SEM. FTY720 treatment significantly enhances the discrimination index of the APP/PS1 mice at
9 mo. b Barnes maze performance during training days. Acquisition learning trials were performed, and the time it took to locate and enter the escape box
is reported in seconds. The average performance of four trials per day is expressed as mean ± SEM. A shorter latency indicates faster spatial learning. No
significant difference across trials between APP/PS1 treated and untreated was found. c Probe trial was performed on day 5 of the Barnes Maze protocol,
during which the escape box was removed. The time spent in the target/escape hole is plotted ±SEM. A larger percentage of time indicates better spatial
memory. FTY720 mitigated the spatial learning deficits of the APP/PS1 at 9 mo. d CA3 to CA1 synapse LTP. The four small line graphs are representative
analog traces of evoked EPSPs before (light colors) and after (dark colors) high-frequency stimulation (HFS). The large plot graph is an LTP timeline.
Plotted are normalized evoked excitatory postsynaptic potentials (EPSPs) slopes (Y) vs. recording time (X). The first 15 min of evoked responses were
normalized and used as the baseline responses of LTP. e The magnitude of LTP was determined according to the responses between 60 and 75min after
the HFS. Data represent mean fEPSP Slope ± SEM. A rescue of LTP at the CA3-CA1 synapse in APP/PS1 mice at 9 mo is observed after chronic FTY720
treatment. f LECII to LECII synapse LTP. The four small line graphs are representative analog traces of evoked EPSPs before (light color) and after (dark
color) HFS. The large plot graph is an LTP timeline. g LTP magnitude between 60 and 75min after the HFS. Data represent mean fEPSP Slope ±SEM.
FTY720 treatment rescues LTP at the LECII–LECII synapse in APP/PS1 mice at 9 mo. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. fEPSP Field excitatory post-
synaptic potentials, WT Wild type.
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They also expand the scope of the reversal treatment to more AD-
relevant cognitive tasks and synaptic circuits. We examined older
(9 months old), more compromised animals of both sexes. Our
choice of behavioral tasks, namely NOR and Barnes maze, differs
from MWM, being both less stressful and driven by exploratory
behavior on novelty and sheltering and distinguishing episodic
and spatial memory, respectively. In addition, our examination of
synaptic function targeted hippocampal and entorhinal cortex
circuits, two areas that are among the first neural systems affected
in AD58–62, and coordinate Barnes and NOR task performance.

This study integrated multi-omics analyses from AD patients
and led to an experimental strategy to use an animal model to
identify multiple, dysregulated steps in SM metabolism. It pro-
vides a link between SM dysregulation and changes in brain
function. The approach used here opens the possibility of
repurposing fingolimod, or other S1P modulators, for the treat-
ment of AD. Fingolimod has been shown to modulate both
amyloid and tau pathology in AD models70,71,73 and it has been
proposed to be neuroprotective by modulating S1P signaling in
the brain74. A recent study used network pharmacology methods
and showed the probable pharmacological mechanism of fingo-
limod in the frontal cortex region of AD patients75. Rescuing both
synaptic and cognitive function (cellular substrate and behavioral
end-result) with fingolimod is a compelling finding, which pro-
vides evidence for dysregulated S1P signaling in AD mice and
further supports the identification of this pathway as a high-
priority candidate AD drug target.

Methods
Identification of differential gene expression in brain tissue RNA-seq data.
We used the reprocessed AMP-AD RNA-seq data available from three studies—the
Religious Order Study and the Rush Memory and Aging Project (ROS/MAP), the
Mount Sinai Brain Bank cohort (MSBB), and the Mayo clinic RNA-seq study43—
covering seven brain regions (cerebellum, temporal cortex, dorsolateral prefrontal
cortex, parahippocampal gyrus, frontal pole, inferior frontal gyrus, and superior
temporal gyrus), as well as a published meta-analysis of these datasets43 to identify
genes in the SM pathway that are differentially expressed in AD cases compared to
controls. Gene expression changes were considered significant at an FDR-
correctedp-value ≤ 0.05. All datasets are publicly available, see the “Data avail-
ability” Statement. The data used for the analyses described in this manuscript were
obtained from the GTEx Portal on 02/10/22.

In silico metabolic flux analysis using brain region-specific metabolic net-
works. Genome-scale metabolic networks of brain regions were reconstructed in
our previous study76 and we used these metabolic networks for our present work.
We integrated the post-mortem brain transcriptome data as mentioned in ref. 76.
Using iMAT algorithm77, we generated context-specific personalized metabolic
networks for each post-mortem sample in the dataset. Human cells in general do
not proliferate rapidly and they tend to maintain their metabolic functions78. We,
therefore, chose the biomass maintenance reaction, glutamate, and glutamine
exchange as the objective function for the brain regions. We used dorsolateral
prefrontal cortex samples for the present analysis. We performed flux variability
analysis (FVA) to evaluate minimum and maximum flux for each reaction in the
metabolic networks. We carried out the analysis for all context-specific metabolic
networks. We selected the reactions that were part of sphingolipid metabolism
using the subsystem definition. We used the scale function in R to normalize the
flux values and applied the Wilcoxon test (rstatix package) to the normalized values
to identify reactions with an adjusted p-value of <0.05 in AD versus NCI and MCI
samples. These reactions were identified as significant reactions in the groups. We
used COBRA toolbox v3.079 for metabolic analysis that was implemented in
MATLAB R2018a and academic licenses of Gurobi optimizer v7.5 and IBM
CPLEX v12.7.1 were used to solve LP and MILP problems.

Neuroimaging processing and analysis. Participants of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) were used in the analysis. Demographic infor-
mation, imaging scan data, neuropsychological test scores, and clinical information
were downloaded from the ADNI data repository (www.loni.usc.edu). As described
in detail in previous studies80,81, T1-weighted structural magnetic resonance
imaging (MRI) scans were processed by using a widely employed automated MRI
analysis technique (FreeSurfer) to extract cortical thickness. Pre-processed [18F]
FDG positron emission tomography (PET) scans were downloaded. Methods for
the acquisition and processing of PET scans were described previously80. [18F]
FDG-PET scans were intensity-normalized using a pons region of interest to create

standardized uptake value ratio (SUVR) images. For surface-based whole brain
analysis of cortical thickness on a vertex-by-vertex basis, the SurfStat software
package (www.math.mcgill.ca/keith/surfstat/) was used to perform a multivariable
analysis of generalized linear regression to examine the association of genetic
variation on brain structural changes. Age, sex, years of education, intracranial
volume, and magnetic field strength were used as covariates. In order to adjust for
multiple comparisons, the random field theory correction method was used with
p < 0.05 adjusted as the level for significance. For whole-brain analysis of brain
glucose metabolism on a voxel-wise basis using the processed FDG-PET images,
SPM12 (www.fil.ion.ucl.ac.uk/spm/) was used to investigate the effect of genetic
variation on brain glucose metabolism across the whole brain. Age and sex were
used as covariates. In order to adjust for multiple comparisons, the significant
statistical parameters were selected to correspond to a threshold of p-value < 0.05
(FDR-corrected).

Assessment of SM ratios using targeted metabolomics in ADNI-1. For the
investigation of SM ratios measured by targeted metabolomics using the Biocrates
P180 kit, we used the same cohort data and statistical models used in Toledo
et al.20. For the selection of the most informative SM ratio, we first calculated all
ratios between short-chain (chain length < C20) and long-chain (≥C20) SMs on
metabolite levels not adjusted for medication. For each ratio, we then identified
significant medications using backward selection based on the Bayesian Informa-
tion Criterion. Significant medications were included as additional covariates
extending the base models described in Toledo et al.20 for phenotype associations.
Using the Pgain criterion, which is defined by the ratio of the minimum association
p-value of the constituents of a ratio with the association p-value of the ratio and
provides a measure of significance added by the ratio, we obtained the ratio of SM
(d34:1) and SM (d43:1) as the one with the largest overall Pgain.

Replication analysis of SM ratios using targeted lipidomics in ADNI-1. A more
detailed lipidomics method was applied in the ADNI-1 samples to obtain better
coverage of the sphingolipidome. Methodology on the ADNI cohort was as
described by Huynh et al.21. In brief, extracted samples were run using reverse
phase liquid chromatography coupled with a triple quadrupole mass spectrometer
(Agilent 6490, Agilent). Characterization of sphingolipid isomers has been reported
previously82 where repeated pooled runs using differing mass spectrometry con-
ditions to obtain structurally informative fragments in MS/MS. Ratios were gen-
erated using 112 sphingolipid species and log2-transformed. Linear regression with
ADAS-Cog. 13 was done with age, sex, BMI, HDL-C, total cholesterol, clinical
triglycerides, fasting status, and APOE e4 genotype as covariates. p-values were
corrected for multiple correction comparison using the Benjamini and Hochberg
approach83.

Candidate mGWAS analysis in ADNI-1. We downloaded genome-wide genotype
data for ADNI-1 participants from LONI. Genotype quality control (QC) included
the exclusion of samples and genotypes with <95% call rate and exclusion of
variants that violated a Hardy–Weinberg equilibrium (HWE) test p-value of
1 × 10−5 or had a minor allele frequency (MAF) < 5%. We then performed auto-
somal mGWAS analysis with the three SMs (SM (d32:0), SM d(34:1), SM (d38:3))
reported as significantly associated with markers of AD in Toledo et al.20, as well as
the SM(d43:1)/SM(d34:1) ratio reported here. As covariates, we included age, sex,
diagnostic group, as well as the first five components derived by multidimensional
scaling (MDS) analysis to account for population stratification. The threshold for
genome-wide significance adjusted for four metabolic traits was p-value ≤ 1.25 ×
10−8. Genetic associations were calculated using PLINK v1.984.

Phenotype GWAS and global SM mGWAS analysis in ADNI-1/GO/2.
Genome-wide genotyping data of ADNI-1/GO/2 participants were collected using
the Illumina Human 610-Quad, HumanOmni Express, and HumanOmni 2.5 M
BeadChips. Before imputation, standard QC procedures of GWAS data for genetic
markers and subjects were performed (variant call rate <95%, HWE test p-
value <1 × 10−6, and MAF < 1%, participant call rate < 95%, sex check and identity
check for related relatives). Then, non-Hispanic Caucasian participants were
selected using HapMap 3 genotype data and MDS analysis. Genotype imputation
was performed for each genotyping platform separately using the Haplotype
Reference Consortium (HRC) reference Panel r1.1 and merged afterward, resulting
in data on 1576 individuals and 20,779,509 variants. Using this dataset, we ran
GWAS analyses for each outcome (A-T-N-C measures, clinical diagnosis, and
metabolite levels) that included outcome-specific sets of covariates. These are listed
in Supplementary Table 6, along with the respective numbers of included indivi-
duals and genetic variants.

Annotation of genetic variants and gene-wide significance thresholds. Pre-
viously reported metabolite associations for genes in the SM pathway were
retrieved from SNiPA52, which was also used to identify overlapping expression
quantitative trait loci (eQTLs) from multiple sources. Effect directions of
genotype–metabolite and eQTL associations were obtained from the original
publications52. SNiPA was also used to project genetic variants to genes, a process
that includes mapping of variants to genes via genomic location links to genes via
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expression and protein QTLs, as well as a location in a gene-associated promoter or
enhancer region52. The number of all genetic variants projected to a particular gene
was used to derive gene-wise Bonferroni thresholds for significant genetic asso-
ciations (p-value ≤ 0.05/(number of variants)). Furthermore, as SNPs within genes
are correlated due to linkage disequilibrium and Bonferroni correction is often too
conservative, we used the permutation test, which provides a gene-based empirical
p-value that corrects for the number of SNPs within each gene by randomly
permuting the phenotypes multi times (20,000 times) and performing statistical
tests for all permuted data sets.

Mouse model. Experiments were approved by the Division of Comparative
Medicine (DCM) from SUNY Downstate Medical Center. APPswe/PS1dE9
(referred to as APP/PS1) and C57Bl/6J (referred to as WT) mice were purchased
from The Jackson Laboratory. The APP/PS1 is a double transgenic mouse
expressing a chimeric mouse/human amyloid precursor protein (Mo/
HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) both directed to
central nervous system neurons85. For all behavioral and synaptic studies at 7 and 9
mo, each experimental group comprised both males and females (Supplementary
Table 5). We found no significant differences due to sex within each experimental
group (data not shown).

Fingolimod administration. To determine if fingolimod oral administration
achieves appropriate plasma concentration, we treated 8 WT mice at 7 mo (50%
Females) with fingolimod at 1 mg/kg/day for 4 wks. Plasma samples were collected
at two-time points (2nd and 4th weeks) after treatment and analyzed by UHPLC
and MS–MS. Fingolimod levels in plasma were in ng/ml: 2nd week= 8.03 ± 0.24
and 4th week= 10.02 ± 0.4. The results indicate that oral administration is an
appropriate route for mice experiments.

We used APP/PS1 and their wild-type littermates to examine fingolimod effects
in vivo. Fingolimod treatment was provided in drinking water in a dark container
and changed every 48 h to provide 1 mg/kg/day.

In vitro electrophysiological recordings. Mice were anesthetized with Ketamine/
Xylazine (100/10 mg/kg) and decapitated with an animal guillotine. Horizontal
hippocampal slices (400 μm) were prepared using a Vibrotome slicer (VT 1000S;
Leica) in ice-cold cutting solution containing the following in mM: 130 potassium
gluconate, 5 KCl, 20 HEPES acid, 25 glucose, 0.05 kynurenic acid, 0.05 EGTA-K,
and pH equilibrated at 7.4 with KOH. After slicing, the tissue was allowed to
recover for an hour before the beginning of experiments in artificial CSF (aCSF)
that contained the following in mM: 157 Na+, 136 Cl−, 2.5 K+, 1.6 Mg2+, 2 Ca2+,
26 HCO3

−, and 11 D-glucose.
LTP recordings were performed in an interface chamber (Fine Scientific Tools,

Vancouver, Canada) and slices were perfused with aCSF continuously bubbled with
95% O2/5% CO2, to maintain pH near 7.4 and the temperature was set at 34 °C.
Field excitatory post-synaptic potentials (fEPSPs) were recorded in the
CA1 stratum radiatum and lateral entorhinal cortex superficial layer II (LECII)
with a glass electrode filled with aCSF (2–3MΩ resistance), and the fEPSPs were
elicited by stimulating the Schaffer collateral fibers and LECII with a bipolar
electrode. Input–output curves were obtained, and a stimulus that evoked ~40% of
the maximum fEPSP was selected to record the baseline. Baseline responses were
obtained (15 min with an inter-stimulus interval of 20 s) before high-frequency
stimulation (HFS) one train of 100 stimuli at 100 Hz and three trains of
100 stumuli at 100 Hz, with 10 s intervals were used to induce synaptic LTP at the
CA3–CA1 and LECII–LECII synapses, respectively. Responses were recorded for
60 min after HFS. The tungsten stimulating electrodes were connected to a
stimulus isolation unit (Grass S88), and the recordings were made using an
Axoclamp 2B amplifier (Molecular Devices) and then filtered (0.1 Hz–10 kHz using
−6 dB/octave). The voltage signals were digitized and stored on a PC using a
DigiData 1200A (Molecular Devices) for offline analysis. The fEPSP slope was
measured and expressed as a percentage of the baseline. The data was analyzed
using Axon™ pCLAMP™ software, and the results are expressed as the
mean ± standard error of the mean (SEM). Data were analyzed statistically using
two-way ANOVA or an Unpaired two-sided Student’s t-test, as described in the
figure legend, with the GraphPad Prism package.

Novel object recognition (NOR). Mice were habituated to experimental apparatus
consisting of a gray rectangular open field (60 cm × 50 cm × 26 cm) for 5 min in the
absence of any objects for 3 days. On the third day, after the habituation trial, mice
were placed in the experimental apparatus in the presence of two identical objects
and allowed to explore them for 5 min. After a retention interval of 24 h, mice were
placed again in the apparatus, where one of the objects was replaced by a novel
object. All sessions were recorded using Noldus Media Recorder software.
Exploration of the objects was defined as the mice facing and sniffing the objects
within 2 cm distance and/or touching them, assessed with ANY-maze software.
The ability of the mouse to recognize the novel object (discrimination index) was
determined by dividing the difference between exploration time devoted to the
novel object and the time devoted to the familiar object by the total time exploring
the novel and familiar objects during the test session. For the comparison of WT
and APP/PS1 treated and untreated performance in the NOR task, a one-way

ANOVA with a Tukey’s post hoc was used. An Unpaired two-sided Student’s t-test
was used to compare WT and APP/PS1 at 7 mo. All the statistical analyses
were performed using GraphPad Prism version 9.00 for Windows (GraphPad
Software).

Barnes maze. The behavioral apparatus consisted of a white flat, circular disk with
20 holes around its perimeter. One hole held the entrance to a darkened escape box
not visible from the surface of the board, allowing the subject to exit the maze. The
escape chamber position remained fixed during all trials. Mice learn the location of
the escape hole using spatial reference points that were fixed in relation to the maze
(extra-maze cues). The task consisted of one habituation trial on day 1 where the
escape hole was presented to the animal, the animal remained in the escape box for
2 min. After the habituation trial, the training phase consisted of four 3-min trials
of spatial acquisition for 4 consecutive days with a 15 min inter-trial interval. On
the fifth day (probe trial) the escape box was removed, and the animals were
allowed to explore the maze for 90 s. All sessions were recorded using Debut video
software and assessed through ANY-maze software. For each trial, several para-
meters were recorded to assess performance. These include the latency to locate the
escape box, the number of incorrect holes checked prior to entering the escape box,
as well as the distance traveled prior to locating the escape box. For the probe trial,
the time spent on the target hole was analyzed. A two-way repeated measure
ANOVA was applied to compare escape latency across days between groups. For
the comparison of WT and APP/PS1 treated and untreated performance in the
probe trial, a Kruskal Wallis test with a Dunn’s post hoc was used. An Unpaired
two-sided Student’s t-test was used to compare WT and APP/PS1 at 7mo. All the
statistical analyses were performed using GraphPad Prism version 9.00 for Win-
dows (GraphPad Software).

Statistics and reproducibility. Statistical analyses of gene expression and reaction
fluxes were done in R using the rstatix package. The genome-scale metabolic
networks were analyzed using COBRA toolbox v3.079 implemented in MATLAB
R2018a. Academic licenses of Gurobi optimizer and IBM CPLEX v12.7.1 solvers
were used in MATLAB. SurfStat software package (www.math.mcgill.ca/keith/
surfstat/) was used to perform a multivariable analysis of generalized linear
regression to examine the association of genetic variation on brain structural
changes in the neuroimaging data. For the lipidomics analysis, we used age, sex,
diagnostic group, and the first five components derived by multidimensional
scaling for population stratification and used PLINK v1.984 for calculating genetic
associations. All the statistical analyses in APP/PS1 and WT mice were performed
using the GraphPad Prism version 9.00 for Windows (GraphPad Software).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Metabolomics datasets from the AbsoluteIDQ-p180 metabolomics kit used in the current
analyses for the ADNI-1 and ADNI-GO/−2 cohorts as well as the RNASeq data from the
ROS/MAP, Mount Sinai Brain Bank Cohort, and the Mayo Clinic cohort are available via
the Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-AD) Knowledge
Portal and can be accessed athttps://doi.org/10.7303/syn5592519 (ADNI-1), https://doi.
org/10.7303/syn9705278 (ADNI-GO/−2), https://doi.org/10.7303/syn3388564 (ROS/
MAP),https://doi.org/10.7303/syn3157743 (MSSB), and https://doi.org/10.7303/
syn5550404 (Mayo clinic). The source data behind the graph in Fig. 2 can be found in
https://figshare.com/articles/dataset/merged_file_reactions_Maxflux/20769229 and
https://figshare.com/articles/dataset/Covariate_file/20769232. The full complement of
clinical and demographic data for the ADNI cohorts are hosted on the LONI data
sharing platform and can be requested at http://adni.loni.usc.edu/data-samples/access-
data/. The full complement of clinical and demographic data for the ROS/MAP cohorts is
available via the Rush AD Center Resource Sharing Hub and can be requested at https://
www.radc.rush.edu.
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