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Abstract 

Objective: This study aimed to develop a predictive model to detect osteoporosis using radiomic features from 
lumbar spine computed tomography (CT) images.

Methods: A total of 133 patients were included in this retrospective study, 41 men and 92 women, with a mean age 
of 65.45 ± 9.82 years (range: 31–94 years); 53 had normal bone mineral density, 32 osteopenia, and 48 osteoporosis. 
For each patient, the L1–L4 vertebrae on the CT images were automatically segmented using SenseCare and defined 
as regions of interest (ROIs). In total, 1,197 radiomic features were extracted from these ROIs using PyRadiomics. The 
most significant features were selected using logistic regression and Pearson correlation coefficient matrices. Using 
these features, we constructed three linear classification models based on the random forest (RF), support vector 
machine (SVM), and K-nearest neighbor (KNN) algorithms, respectively. The training and test sets were repeatedly 
selected using fivefold cross-validation. The model performance was evaluated using the area under the receiver 
operator characteristic curve (AUC) and confusion matrix.

Results: The classification model based on RF had the highest performance, with an AUC of 0.994 (95% confidence 
interval [CI]: 0.979–1.00) for differentiating normal BMD and osteoporosis, 0.866 (95% CI: 0.779–0.954) for osteopenia 
versus osteoporosis, and 0.940 (95% CI: 0.891–0.989) for normal BMD versus osteopenia.

Conclusions: The excellent performance of this radiomic model indicates that lumbar spine CT images can effec-
tively be used to identify osteoporosis and as a tool for opportunistic osteoporosis screening.
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Introduction
Osteoporosis is a common age-related bone metabolic 
disorder characterized by bone mineral loss and reduced 
strength, leading to an increased risk of bone fractures 
[1]. With longer life expectancy, the incidence of osteo-
porosis and fragility fractures is increasing, especially 

among postmenopausal women, worsening their quality 
of life and posing a substantial socioeconomic burden 
on patients and society [2]. Patients are often not diag-
nosed with osteoporosis prior to osteoporotic fractures; 
thus, routine identification of at-risk patients is desirable. 
Furthermore, osteoporosis is considered a major cause of 
surgery instrumentation failure, including screw loosen-
ing and pull-out after spinal fusion surgery [3]. Therefore, 
knowledge of a patient’s bone mineral metabolism before 
surgery plays a critical role in reducing postoperative 
complications.

Currently, the most widely used method for diagnosing 
osteoporosis is based on the assessment of bone mineral 
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density (BMD) using dual-energy X-ray absorptiometry 
(DXA) [4]. However, this method has inherent limita-
tions [5]: DXA fails to accurately reflect the real BMD 
in patients with severe degenerative spine disease, spine 
deformity, aortic calcification, and obesity due to techni-
cal limitations. Furthermore, BMD alone is insufficient to 
determine bone strength. Characterization of the struc-
tural and physical properties of the trabecular bone is 
crucial for the assessment of bone quality and the identi-
fication of fracture risk [6]. Therefore, a clinically feasible 
tool is urgently needed to improve the diagnosis of osteo-
porosis in the spinal region.

Lumbar CT is routinely used in the diagnostic process 
of patients with low back pain. Previous studies have 
shown that the average density of the lumbar vertebral 
bodies measured in Hounsfield units (HU) is significantly 
associated with BMD [7]. The average HU value derived 
from the lumbar vertebrae can be used to detect osteo-
porosis or predict vertebral fractures [8, 9]. However, 
the CT values are influenced by different acquisition 
parameters, such as scanning voltage and manufacturer 
(e.g., GE, Philips, Siemens, Toshiba) [10]. In contrast to 
CT HU values, the radiomic features extracted from the 
CT vertebral images are insusceptible to varying image 
acquisition, reconstruction, segmentation, and data mod-
eling [11]. This image processing approach is reproduc-
ible, repeatable, and robust and is expected to improve 
diagnostic accuracy.

Using the radiomic approach, imaging features 
extracted from the segmented regions may quantitatively 
reflect lesion heterogeneity [12]. Radiomics is commonly 
used in clinical oncology for cancer detection, diagnosis, 
prognosis, and treatment response prediction [13], while 
rarely employed to investigate bone diseases. Recently, 
several studies have reported using textural features 
extracted from x-ray/MRI/DXA for osteoporosis detec-
tion, diagnosis, and bone disorder classification [14–16]. 
However, the predicted performance for osteoporosis 
diagnosis is still insufficient, and the area under the curve 
(AUC) reported for osteoporosis classification is approxi-
mately 0.8. These results may be attributed to the fact that 
the selected region of interest (ROI) was not a 3D recon-
struction of the whole vertebral body, consequently lead-
ing to the loss of some possibly relevant information and 
affecting the precision of the predictive model. Therefore, 
further research is necessary to improve predictive per-
formance. Multi-detector CT images were converted into 
volumetric data, more suitable for 3D radiomic feature 
analysis of the trabecular bone. At present, reports on 
lumbar CT radiomics for osteoporosis classification are 
lacking. Therefore, the present study aimed to investigate 
the utility of radiomic analysis based on lumbar spine CT 

images in distinguishing osteoporosis from normal bone 
density.

Materials and Methods
Subjects
This retrospective study was approved by the institu-
tional review board of the Shanghai Ninth People’s Hos-
pital, and the need for informed consent was waived. 
Between January 2019 and August 2020, 553 patients 
were admitted to the hospital for low back pain and were 
retrospectively reviewed for inclusion. Among them, 260 
patients with available DXA reports and lumbar spine 
CT images were initially selected. The exclusion criteria 
were as follows: 1) previous lower lumbar surgery with 
metal fixation or bone cement (n = 80); 2) bone metas-
tases (n = 6); 3) hematological disorders (n = 3); 4) meta-
bolic bone diseases other than osteoporosis (n = 17); 5) 
poor DXA image quality (n = 2); and 6) L1-L4 vertebral 
body fracture or compression and deformation (n = 19). 
In total, 133 patients were included in this study.

Image Acquisition and Preprocessing
All BMD examinations were performed using a DXA 
system (Discovery-A, Hologic Inc. Marlborough, MA, 
USA) with 140 kVp and 2.5 mAs. Prior to the examina-
tion, quality assurance procedures were routinely per-
formed. BMD reports were based on the spine (L1–L4) 
and hips. Based on the WHO diagnostic criteria [4], 
the patients were divided into three groups: 1) nor-
mal BMD and patients with a T-score ≥  − 1.0 standard 
deviations (SD); 2) osteopenia: patients with a T-score 
between − 2.5 and − 1 SD; and 3) osteoporosis: patients 
with a T-score ≤  − 2.5 SD. CT acquisition and sagittal 
reformation of the lumbosacral spine of all patients were 
performed using a 64-slice spiral multidetector CT (Bril-
liance 64; Philips, Amsterdam, Netherlands).

For fully automated vertebral segmentation and iden-
tification from CT images, we used SenseCare [17], a 
research platform for medical image informatics and 
interactive 3D visualization. Next, the segmented images 
were reviewed, and the boundaries of the whole vertebral 
bodies were revised manually by a radiologist (CL) with 
eight years of experience, blinded to the BMD reports. 
Then, the L1–L4 vertebral bodies from each patient were 
selected as the ROIs for radiomic analysis. An example of 
ROI delineation with the overview of the framework is 
shown in Fig. 1.

Preprocessing and Radiomic Feature Extraction
Radiomic features were extracted from the ROIs using 
PyRadiomics, an open-source package in Python that 
was recently developed for the automatic extraction of 
radiomic features from medical images [18]. Before the 
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extraction, the image intensity was normalized; the 0.1 
and 99.9 percentiles of each image were assigned as the 
minimum and maximum values, and values out of range 
were discarded. Then, the CT values were scaled to a 
range of 0–255 by using the following formula:

xscored =
xraw−min

max−min
• 255,

to extract feasible features with PyRadiomics. In our 
study, we extracted 1,197 radiomic features in seven 
classes from each region (L1–L4): 1) first-order statis-
tics (n = 234); 2) shape (n = 14); 3) gray level co-occur-
rence matrix (n = 286); 4) gray-level run-length matrix 
(n = 208); 5) gray level size zone matrix (n = 208); 6) 
neighboring gray-tone difference matrix (n = 65); and 7) 
gray level dependence matrix (n = 182), and several filters 
including Laplacian of Gaussian (LoG, σ = 1.0, 1.5, 2.0, 
and 2.5 mm) and wavelets. All the features extracted are 
listed in the Supplementary Data (Table S1).

Radiomic Feature Selection
Since the radiomic features typically contain redundant 
information, a selection is required before constructing 
classification models. Before selecting them from the raw 
data, we scaled and zero-centered the features extracted 

using the Z-score method (i.e., xscored =
x−µ

σ
 , where μ 

and σ are the mean and standard deviation of each fea-
ture). We built a logistic regression model with an L2 
penalization term for feature selection[19]. If the corre-
sponding coefficient of a feature was above the threshold 
(set as the mean of coefficients by default), the feature 
was considered important. The maximum number of fea-
tures to select was empirically set to 150. Five-fold cross-
validation was applied to determine the reliability of the 
selected features; those found in all five validation results 
were selected as the important features related to spine 
bone mass subtypes. All the feature selection methods 
above were applied to three types of binary classification 
tasks: normal BMD vs. osteoporosis, osteopenia vs. oste-
oporosis, and normal BMD vs. osteopenia.

Classification Model Construction
We built three machine learning classifiers based on the 
feature selection results to divide the samples into posi-
tive and negative. Support vector machine (SVM), ran-
dom forest (RF), and K-nearest neighbor (KNN) were 
chosen as the classification algorithms. The predictive 
performance of the classification models was validated 
on our dataset using fivefold cross-validation. We also 

Fig. 1 Image acquisition, processing, radiomic analysis, and modeling pipeline
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quantified the performance of the models using the 
receiver operating characteristic (ROC) curve, and the 
AUC was calculated for the assessment. Additionally, we 
calculated the precision, recall, and F1 score as supple-
mentary information for prediction efficiency. All classi-
fication models were implemented using the scikit-learn 
toolkit in Python [20].

Statistical Analysis
Statistical analyses were performed using Python soft-
ware. Differences in clinical data were analyzed using 
the chi-square test and one-way analysis of variance 
(ANOVA). The numeric values of radiomic features were 
compared between two different categories using the 
independent test or Mann–Whitney U test as appropri-
ate. All tests were two-sided, and P < 0.05 was considered 
significant.

Results
Baseline Patient Characteristics
Among the 133 patients selected, 41 were men and 92 
women, with a mean age of 65.45 ± 9.82  years (range: 
31–94  years). The demographic and clinical data are 
summarized in Table  1. Among these patients, 53 had 
normal T-scores, 32 had osteopenia, and 48 had osteo-
porosis. There were no significant differences in sex, 
age, or body mass index between the three groups (All, 
p > 0.05;Table 1).

Radiomic Feature Selection
With the logistic regression method, 1,197 × 4 radiomic 
feature values were ranked based on their patient sub-
type discriminating ability. Highly relevant features were 
selected as candidates for the SVM classification model 
and were then compared between different categories.

For normal BMD vs. osteoporosis, 55 of the 4,788 
features were selected as relevant; for osteopenia vs. 
osteoporosis, 20, and for normal BMD vs. osteopenia, 
25. Nine typical features (one-way ANOVA: P < 0.05) 
are presented in the box plots in Fig.  2. For potential 

multicollinearity, we calculated the Pearson’s correla-
tion coefficient matrix of the radiomic features (shown 
in Fig.  3). We eliminated 10 redundant features for the 
normal vs. osteoporosis comparison with the correlation 
matrix and statistical significance and chose the remain-
ing 45 as highly representative. For osteopenia vs. osteo-
porosis, we preserved 19 of the selected features, and 
for normal BMD vs. osteopenia, 23 were finally selected. 
The differences in data distribution showed variations in 
feature values between the three subtypes. For instance, 
first-order statistics skewness, kurtosis, and uniformity 
in wavelet-filtered images were higher in subjects with 
osteopenia than in normal subjects. In contrast, texture 
features, such as the dependence variance of the gray-
level difference method in Laplacian of Gaussian (LoG)-
filtered images, were lower in subjects with osteoporosis 
and osteopenia.

Model Construction and Performance Evaluation
After selecting the optimal features, the RF, SVM, and 
KNN models were constructed to classify the samples in 
the dataset. The results indicated that the classification 
model based on RF had an excellent performance, with 
an AUC of 0.994 (95% confidence interval [CI]: 0.979–
1.00) for differentiating normal BMD from osteoporosis, 
0.866 (95% CI: 0.779–0.954) for differentiating osteope-
nia from osteoporosis, and 0.940 (95% CI: 0.891–0.989) 
for differentiating normal BMD from osteopenia. The 
ROC curves obtained for the three classification tasks 
are shown in Fig. 4. The AUCs obtained from the other 
two machine learning algorithms (SVM and KNN) and 
the confusion matrices for the predictions are presented 
in Table 2. The F1 scores were 0.970, 0.787, and 0.870 in 
the normal vs. osteoporosis, normal vs. osteopenia, and 
osteopenia vs. osteoporosis models, respectively. The 
waterfall plots in Fig.  5 show the relevance of the radi-
omic score to the classification categories.

Discussion
In the present study, we developed a predictive model for 
bone mineral loss using radiomic features extracted from 
CT images of the L1–L4 vertebral bodies. Our results 
revealed that the AUCs for the classification of normal 
BMD vs. osteoporosis, osteopenia vs. osteoporosis, and 
normal BMD vs. osteopenia were 0.994, 0.866, and 0.940, 
respectively, for the RF-based model. This high discrimi-
natory power indicates that the radiomic features from 
lumbar spine CT images can be used as a new biomarker 
to predict osteopenia and osteoporosis. For patients who 
undergo lumbar CT, the radiomic features extracted from 
L1–L4 could be used as a tool for opportunistic osteopo-
rosis screening. This image processing method is simple 

Table 1 Patients’ demographic and clinical characteristics in 
different categories

BMI: Body mass index

Variables normal BMD
(n = 53)

osteopenia
(n = 32)

osteoporosis 
(n = 48)

P value

Gender 0.074

Male 22(41.5%) 9(28.1%) 10(20.8%)

Female 31(58.5%) 23(71.9%) 38(79.2%)

Age(years) 65.28 ± 12.50 63.16 ± 7.43 67.17 ± 9.82 0.200

BMI 25.28 ± 3.52 24.76 ± 3.72 24.09 ± 2.81 0.208
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to implement and cost-effective, poses no additional radi-
ation hazard, and may serve as a substitute for DXA.

In our study, the radiomic features extracted from lum-
bar spine CT images, including first-order and higher-
order texture features, correlated with changes in BMD. 
A large subset of radiomic features was obtained from 
images filtered with an LoG operator and wavelet trans-
form; these filtering methods can uncover image infor-
mation invisible to the naked eye [21]. The LoG operation 

enhances intensity changes in CT images, and features 
extracted from processed images can more accurately 
reflect the structural differences of the vertebral bodies. 
Wavelet features contain high-order image information, 
comprehensively reflecting the spatial heterogeneity of 
the vertebral bodies.

Our results showed that the osteopenia and osteopo-
rosis groups had higher skewness and kurtosis for mul-
tiple types of wavelet features. Kurtosis and skewness 

Fig. 2 Comparison of a subset of selected L1-L4 radiomic features between different subtypes. The x-axis represents the different subtypes, and the 
y-axis shows the feature value
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Fig. 3 Each selected feature was compared with all other features, generating Pearson’s correlation coefficients (r). The r is shown as a heat map. A 
group of features with high correlation (r > 0.95) are redundant; thus, one feature should be chosen for the model, and the others can be omitted

Fig. 4 The receiver operating characteristic curve for the three classification tasks: normal vs. osteoporosis, osteopenia vs. osteoporosis, and normal 
vs. osteopenia
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derived from histograms are two important parameters 
that indicate microstructural heterogeneity of the ver-
tebral bodies. Kurtosis refers to the peakedness of the 
grey-level intensity distribution, whereas skewness rep-
resents the asymmetry. Higher kurtosis and skewness 
values reflect the increased complexity and heterogeneity 

of the selected ROIs [22, 23]. In this study, L1-L4 had 
higher kurtosis and skewness in patients with osteopenia 
or osteoporosis; this result may be attributed to increased 
bone marrow fat or changes in the microstructure of the 
trabecular bone. This finding is consistent with previous 
studies, which reported that patients with osteoporosis 

Table 2 Confusion matrix, precision, recall, accuracy and F1 score of the predictions

TP, true positive; TN, true negative; PP, predicted positive; PN, predicted negative; CI, confidence interval

normal vs. osteoporosis osteopenia vs. osteoporosis normal vs. osteopenia

PN PP PN PP PN PP

Support vector machine
Confusion matrix TN 51 2 17 15 48 5

TP 1 47 7 41 4 28

AUC (95%CI) 0.987(0.964–1.00) 0.721(0.604–0.839) 0.962(0.924–1.00)

Precision 0.959 0.732 0.848

Recall 0.979 0.854 0.875

Accuracy 0.970 0.725 0.894

F1 score 0.970 0.716 0.894

Random forest
Confusion matrix TN 52 1 23 9 48 5

TP 2 46 8 40 6 26

AUC (95%CI) 0.994(0.979–1.00) 0.866(0.779–0.954) 0.945(0.899–0.992)

Precision 0.979 0.816 0.839

Recall 0.958 0.833 0.812

Accuracy 0.970 0.788 0.870

F1 score 0.970 0.787 0.870

K-nearest neighbor
Confusion matrix TN 48 5 18 14 50 3

TP 1 47 3 45 5 27

AUC (95%CI) 0.970(0.936–1.00) 0.869(0.783–0.956) 0.940(0.891–0.989)

Precision 0.904 0.763 0.900

Recall 0.979 0.938 0.844

Accuracy 0.940 0.788 0.906

F1 score 0.941 0.776 0.905

Fig. 5 Bar charts of the prediction scores for each patient in the three tasks. The radiomic score in the y-axis represents the probability to be 
classified as positive by the support vector machine model. Each patient with a score above > 0.5 (blue dash lines) is classified as positive. Orange 
bars indicate true positives, and blue bars indicate true negatives



Page 8 of 9Xue et al. BMC Musculoskeletal Disorders          (2022) 23:336 

have more yellow fat in the vertebral bodies [24, 25]. 
However, this hypothesis needs to be confirmed in future 
pathological assessments.

Osteoporosis is characterized by a loss of bone strength 
and microarchitectural deterioration of the bone tissue 
[21]. Although BMD assessment using DXA indicates 
bone strength, it does not directly quantify microarchi-
tectural information. The CT radiomic features of the 
vertebral bodies may provide meaningful and comple-
mentary information to assess bone quality. Therefore, 
models based on radiomic features extracted from CT 
images may reflect the underlying osteoporotic pathol-
ogy more accurately. Using volumetric CT images and 
advanced imaging processing methods, we achieved 
higher predictive performance than a previous study for 
differentiating osteoporosis from normal BMD [14–16]. 
Our results showed an AUC of 0.994 to distinguish nor-
mal BMD and osteoporosis.

In comparison, Lee et al. developed a predictive model 
for BMD based on X-ray images; however, their high-
est performance was only approximately 0.7 [16]. Ras-
tegar et  al. explored the differentiation of osteoporosis 
and osteopenia from normal bone quality based on DXA 
images using a machine-learning radiomic approach, 
which yielded the highest performance (0.76) [14]. He 
et  al. recently used a radiomic model based on lumbar 
MR images to detect osteoporosis; the AUC was approxi-
mately 0.79 [15]. We included the entire L1–L4 verte-
bral region, with each vertebra as an ROI; this method 
contributed to developing a more accurate predictive 
model. We also performed fully automatic vertebral 
segmentation and identification using an iterative fully 
convolutional neural network and cascaded 3D convolu-
tion networks [26, 27]. Automatic image segmentation 
can reduce the subjective variations typical of manual 
delineation.

Quantitative CT can be used to measure volumetric 
trabecular BMD, which is more sensitive and precise 
than DXA for detecting bone mineral loss by avoiding the 
superimposition of cortical bone and other soft tissues 
[28]. However, quantitative CT is rarely used in clini-
cal practice because it requires specialized equipment 
and measurement software. In contrast, lumbar CT is 
routinely performed for the preoperative assessment of 
patients with low back pain. Opportunistic osteoporosis 
screening from lumbar CT imaging data can provide val-
uable preoperative information for spine surgeons since 
osteoporosis is a major cause of instrumentation failure 
after spinal fusion surgery [3]. Our predictive model 
with high discriminative power provides the possibil-
ity of opportunistic osteoporosis screening in non-dedi-
cated lumbar CT scans. Based on the performance in our 
study, it can be expected that quantitative CT radiomic 

features can be regarded as a reliable substitute for DXA 
in the preoperative setting

Our study has some limitations. First, it was con-
ducted in a single center, and the sample size was lim-
ited. Further research is needed on larger, multi-center 
CT imaging datasets. Second, we used L1–L4 as ROIs 
and analyzed the model performance based on all fea-
tures without comparing different models for a specific 
vertebral body. Those comparisons may demonstrate 
the advantage of multi-regional radiomic models com-
pared to single-region ones; further investigations on 
this aspect are needed in future studies. In addition, we 
only used the features extracted from CT images to rank 
the scores for osteopenia and osteoporosis. Including 
clinical risk factors (e.g., age, sex, and BMI) may also help 
improve the model’s performance as a predictor of bone 
mineral loss

In conclusion, our machine learning model based on 
3D radiomic features from lumbar spine CT images can 
accurately differentiate bone mineral loss from normal 
bone density and be used for opportunistic osteoporosis 
screening
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