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Abstract

More than five decades have been invested in understanding glucose biosensors. Yet, this

immensely versatile field has continued to gain attention from the scientific world to bet-

ter understand and diagnose diabetes. However, such extensive work done to improve

glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity

of the invasive finger-pricking step and the lack of optimization of diagnostic interventions

still need to be considered to improve the testing process of diabetic patients. To upgrade

the glucose-sensing devices and reduce the number of intermediary steps during glucose

measurement, fourth-generation glucose sensors (FGGS) have been introduced. These

sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic

efficiency and cost-effectiveness. This review aims to present the essential scientific pro-

gress in copper nanostructure-based FGGS in the past 10 years (2010 to present). After a

short introduction, we presented the working principles of these sensors. We then
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highlighted the importance of copper nanostructures as advanced electrode materials to

develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and

prospects for developing highly sensitive, stable, and specific FGGS.

K E YWORD S

diabetes management, early detection, electrode materials, hybrid copper nanostructures,
nonenzymatic glucose sensors

1 | INTRODUCTION

Glucose is the primary source of energy in living cells and plays a criti-

cal role in biology. Diabetes can result in elevated blood glucose levels

that pose a severe hazard to human health.1,2 Diabetes is an over-

growing global public disease and is characterized by insufficient insu-

lin formation or distribution in the body, causing the death of 1.6

million people per year worldwide.3–6 It is a chronic condition that

requires daily monitoring of blood glucose levels,7 and in severe cases,

insufficient insulin levels can result in diabetic ketoacidosis, leading to

seizures.8 Diabetes complications can also include neuro and cardio-

vascular diseases in addition to kidney disorders9 and new risks such

as heart failure, kidney dysfunction, poor vision, nerve damage, and

disability.10–12 These complications often result due to poor blood

glucose control. Regulated and routine blood glucose tests are neces-

sary when coping with emergencies, including hypoglycemia (low

blood sugar level).13–15 Detecting glucose levels rapidly and reliably in

clinical and biological samples remains a major challenge.16,17 Limiting

sugar consumption and continuously tracking blood glucose levels is

critical to managing diabetes and can significantly reduce life-

threatening diabetes and provide sufferers with a healthy lifestyle.18–

22 Electrochemical glucose sensors23–25 with high sensitivity, good

selectivity, rapid test, low-cost, reliable, and accurate in situ

detection,26–29 have attracted great attention when compared to

other sensing technologies like chemiluminescence,30 surface-

enhanced Raman scattering,31 mass spectrometry,32 calorimetry,33

fluorescence spectroscopy,34,35 and optical sensors.36 In addition,

substantial efforts have been made to investigate glucose sensing in

various potential fields such as the pharmaceutical industry, pathol-

ogy, physiology, food processing, and bio-fermentation.37 Glucose

sensors account for approximately 85% of the biosensors industry

because they represent the direct health consequences of diabetes,

which affects over 400 million people worldwide.38–40 Reliability and

economic glucose sensors with good sensitivity and low detection

limits are crucial to combat the prevailing situation. This current

review targets the rapid development and recent advances of Cu-

based electrochemical biosensors for glucose detection. It summarizes

all the generations of electrochemical glucose sensors, followed by

the fundamentals of fourth-generation glucose sensors (FGGS). In the

end, future challenges and perspectives for further development of

Cu-based FGGS are proposed.

Electrochemical sensors are used to monitor blood glucose levels

rapidly.41 These devices allow for real-time detection. Furthermore,

continuous glucose monitors have been used to enable autonomous

insulin delivery, where glucose measurements automatically adjust

insulin delivery in closed-loop systems. In this manner, insulin can be

administered to the patient in cases of hyperglycemia.41 Enzymatic

glucose sensors (EGS) are based on glucose oxidase or glucose dehy-

drogenase enzymes and exhibit a very high and reliable sensitivity.42

However, some limitation of such sensors, including chemical and

thermal conditions, instability, and relatively high complexity of the

test samples.43 Fluctuations in external factors like pH, humidity level,

and temperature, and so on, hinder further exploration in the field of

enzyme-based glucose biosensors.44–46

Enzymes-based glucose sensors are divided into three significant

generations.47–49 The first generation requires free oxygen to immobi-

lize the enzyme (GOx) on the electrode. Oxygen dependency of these

sensors has limited applications in oxygen-deficient blood sam-

ples.15,50 The second generation of enzyme-based glucose sensors

included an artificial mediator, which directly reacts with the enzyme

glucose oxidase leading to less sensitivity and accuracy. Artificial

mediators involved one-electron reversible redox ferrocene deriva-

tives and ferrocyanide.51 The third generation was investigated to

compensate for the shortcomings of the previous generations. How-

ever, minor changes in pH, temperature, and humidity were still sus-

ceptible to enzymatic denaturation.3,12 The immobilization of

enzymes on the conducting electrode's surface is complex, and its

quantity cannot be precisely controlled. The high cost, complicated

fabrication procedure, short shelf life, and poor reproducibility of

enzyme-based glucose sensors have always been challenging for

researchers.52,53 A description of enzymatic glucose oxidation mecha-

nisms, viewed as first-, second-, and third-generation sensors, is

depicted in Figure 1.3 The aforementioned disadvantages of EGS

attracted researchers to develop fourth-generation metal-based

enzyme-free glucose sensors (FGGS)54–56 that oxidize glucose directly

on the electrode surface.57–59 FGGS that do not rely on enzymes have

gained widespread attention60 and are considered ideal for glucose

analysis because of their low cost, efficient sensitivity, high selectivity,

and good stability.

2 | WORKING PRINCIPLE OF FGGS

Among the electrochemical detection techniques, two basic methods,

amperometry and potentiometry, have been widely used.15,50 The

potential difference between a reference electrode and a working
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electrode is determined in potentiometric sensors at zero applied cur-

rents. The potential of the working electrode varies with the concen-

tration of glucose. It has been shown that these sensors can evaluate

glucose concentrations of 10 M or higher (an average human's blood

glucose level is in the range of 4–7 mM).12 Nonenzymatic electrodes

have recently been developed by combining various metals and metal

nanoparticles (NPs), including metal/metal oxide and alloy composites,

for high sensitivity and low detection limit of the FGGS.64 Bimetallic

NPs can also be used in FGGS due to their superior electronic proper-

ties and increased catalytic activity. Similarly, alloys and metal oxides

can be employed because they improve glucose oxidation and reduce

the poisoning in the sensing electrodes of the sensor.43

The previous decade has seen extensive advancements in the

working mechanisms and principles of FGGS.61–63 Like metal oxide-

based non-EGS (NEGS), the copper-based FGGS functions at varying

pH. The functioning of the sensor depends on the stimulation of the

metal oxide surface. This occurs in the vicinity of highly reactive

hydroxide ions, which also serve the catalytic purpose during the oxi-

dation of glucose molecules. Tian et al. developed the following mech-

anism for glucose sensing using copper oxide-based NEGS.64

CuOþOH� !Cu OHð Þ2þe�,

Cu OHð Þ2þOH� !CuOOHþH2Oþe�,

CuOOHþC6H12O6 glucoseð Þ!Cu OHð Þ2
þC6H10O6 gluconolactoneð Þ:

The mechanism of this reaction is based on the electrochemical

function of copper oxide that changes its oxidation states during the

reaction.65,66 This is evident in the above-mentioned chemical reac-

tions that occur in the FGGS. During the sensing process, as the volt-

age shifts, Cu2+ cations present in CuO get oxidized to Cu3+, and

CuOOH is formed (Figure 2). This then allows the oxidation of glucose

to develop gluconolactone in the next step of the reaction. During the

same stage, Cu3+ gets reduced to Cu2+, leading to the formation of

CuO or Cu(OH)2.
64,67 These step-by-step reactions cause a shift in

the transfer rate of electrons on the electrode surface, thereby caus-

ing an increase in the overall electrical current generated. This is then

recorded by the sensing detector, which detects glucose molecules in

the given sample.

Metal oxide-based NEGS like Co3O4, MnO2, CuO, Cu2O have

almost similar glucose-sensing mechanisms (Figure 3). This could

occur by any or all of the following three methods62: (1) the cop-

per oxide gets activated under strongly alkaline conditions,

(2) formation of intermediary by-products that function as a cat-

alyst to oxidize glucose molecules, and (3) the intermediary by-

products then undergo reduction to give the original copper

oxide.

F IGURE 1 A description of the mechanisms of enzymatic glucose oxidation in first-, second-, third-, and fourth-generation glucose sensors3
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2.1 | Mechanism of FGGS

The CuO-based glucose sensors combined with gold NPs (AuNPs) and

modified with CuO nanowires electrode (CuO NWs) gave a linear

range of 0.5 μM to 5.9 mM and sensitivity of 4398.8 μA mM�1 cm�2

and a rapid response rate of 5 s.68 The synergistic mechanism pro-

posed for CuO in alkaline media requires oxides, hydroxides, and

oxyhydroxides for the electrochemical oxidation of glucose.69 The

strong catalytic properties of Cu and its derivatives have been

reported to accelerate glucose oxidation.110 Cu in CuO is electro-

chemically oxidized to strong oxidizing species such as Cu(OH)�4 or

CuOOH�. Thus, the +2 oxidation state changes to +3111:

Cuþ2OH� !CuOþH2Oþ2e� ,

CuOþOH� !CuOOHþe�,OR,

CuOþH2O!CuOH4
� þe� :

Cu(III) catalyzes glucose's oxidation into gluconolactone and hydro-

lyzed into gluconic acid, as shown in Figure 4.112 The reduction of Cu(III)

to Cu(II) can be demonstrated by oxidation and reduction peaks. Cu(III) is

the most responsible medium for electron transfer compared to other

valence Cu ions. The stability of the AuNPs modified CuO NWs

electrode was also investigated for more than 10 days with an interval of

2 days, which showed comparatively better stability than a bare CuO

NWs electrode. The high catalytic capability of CuO NWs/AuNPs com-

pared to bare CuO NWs could be attributed to incorporating AuNPs on

the surface of CuO NWs, which significantly enhances the surface vol-

ume ratio of the designed electrode. The reported glucose sensor's prop-

erties were highly effective and reliable in testing human blood. Because

of its high sensitivity and low limit of detection (LOD), it is suitable for

noninvasive glucose detection in saliva and urine.

Cu IIIð ÞþGlucoseþe� !GluconolactoneþCu IIð Þ,

Gluconolactone!Gluconic Acid:

F IGURE 3 Operating principle for glucose sensing. When the
device is on (top), VpH = �1 V, the Pd contact absorbs H+ from the
solution and increases its pH. At high pH, the Au/Co3O4 contact is in
its more reactive CoO2 oxidized state. With Vg = 0.5 V, the CoO2

contact oxidizes glucose and the resulting Ig is collected, which
increases with increased glucose concentration. When the device is
off (bottom), VpH = 0 V, the pH is at physiological values, typically
pH 7, no sensing occurs from the Au/Co3O4 and Ig = 0 A. Reprinted
with permission from Reference 134, Copyright @ 2019 (Nature)

F IGURE 2 Reactions that occur in a copper-based fourth-
generation glucose sensors (FGGS)
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The sensitivity, detection range, detection limit, and response

time of FGGS composed of copper and copper oxide nanostructures

are given in Table 1.

3 | COPPER NANOSTRUCTURES AS
ADVANCED ELECTRODE MATERIALS
FOR FGGS

A variety of nanostructured electrocatalysts are being investigated to

develop advanced FGGS, as simple electrodes cannot compete with

their level of glucose detection.65–67 FGGS, which are based on the

electrochemical oxidation of glucose that operates through a variety

of inorganic catalysts including noble metals (Ag, Au, Pt, and Pd) and

their alloys (Pt–Pd, Pt–Au, and Au–Pd), metal oxides (Co3O4, NiO,

CuO, Cu2O, ZnO, and so on) or bimetallic electrodes and carbon-

based nanomaterials have been extensively explored for their excel-

lent68,69 glucose detecting capabilities.70–72 Pt-based nanosensors

have shown high catalytic efficiency owing to their large surface area

and their ability to control the kinetics of the reaction.76 However, Pt

and its derivatives are costly, which limits its practical application.77

The same has been observed with Au- and Pd-based NEGS. There-

fore, widespread applications of noble metals have been hampered by

disadvantages like low selectivity, high cost, toxicity, and metal scar-

city, making their use impractical on a larger scale production.73,74

In addition, metallic,75,78–81 metal-alloy based,82–84 metal

hydrate,85 metal sulfide,86 and metal oxides87–90 have been success-

fully used to study nonenzymatic glucose sensing. These metallic-

based glucose sensors make use of a variety of sensing techniques like

the fluorescent carbon dots-based fluorescent method,91 optical

methods,92 Raman spectroscopy,93 and others. To achieve efficient

reproducibility of glucose sensors, the continuous development of

nanomaterials from other transition metals and their oxides is widely

researched.94 Subsequently, researchers are excited about FGGS

since they can compare different transition metals with excellent

redox activity and select those with superior stability and selectiv-

ity.95,96 Transition metal oxides and their alloys, such as ZnO, CuO,

NiO, and CO3O4, are widely used for glucose biosensors due to their

high electrochemical activity, low cost, and the low potential require-

ment for electron transfer reactions.97–100

Copper oxides (CuO and Cu2O) are particularly significant among

transition metal oxides because of their excellent thermal, mechanical,

and chemical stability. Much attention has been paid to developing

copper oxide electrode materials for FGGS with high electrocatalytic

activities.101,102 X-ray diffraction (XRD) characterization of copper

particles, their oxides, carbon quantum dots loaded with copper oxide

NPs (CQDs/Cu2O NPs), or CoNiCu alloy nanotubes (NTs) arrays

transferred on indium tin oxide, helps to determine their crystal struc-

ture, orientation, shape, and size as well as other structural parame-

ters such as average grain size, strain and crystal defects,

characteristics that are important for FGGS applications103–106

(Figure 5).

3.1 | Electrochemical detection of glucose using
copper-based FGGS

Because of their outstanding chemical and thermal stability, various

nanomaterials exhibit remarkable sensitivity and selectivity in glucose

sensing.82 Their electrochemical properties, high electrode catalytic

activity, low cost, strength, natural abundance, nontoxicity, and envi-

ronmentally friendly nature107–110 have made Cu and its oxides a

potential candidate for various applications such as photoelectric

devices, gas sensing devices, lithium-ion batteries, and especially as

electrochemical sensors due to their optical nature and electrical char-

acteristics.82–84 CuNPs are an effective electrode material for glucose

detection and are extremely sensitive to glucose oxidation due to

their excellent electrical conductivity.85 CuNPs have a high specific

surface area, which improves FGGS activity significantly, and their

synthesis techniques have evolved to include hydrothermal, pyrolysis,

and electrodeposition.113–117 CuO is a p-type semiconductor with a

narrow bandgap of 1.2 eV, which is more stable than simple Cu for

glucose analysis. CuO nanomaterials show excellent electrocatalytic

activity, proper redox potential, and low overpotential during electron

transfer experiments.91–93 CuO and CuS act as excellent electronic

mediators in glucose oxidation due to the redox pairs of Cu2+ and

Cu3+.94

Various CuO nanostructures have been extensively researched

and synthesized into multiple shapes with individual properties and

performance through the development of nanotechnology, such as

NPs, nanorods, nanofibers, nanospheres, flower-like structures, and

so on.95,96 In a study by Ding et al., they developed an FGGS based

on CuCo2O4 using electrospinning technology and carbonization

treatment to prepare CuCo2O4–carbon nanofibers (CNFs)118 (Fig-

ure 6). This sensor exhibited an enhanced activity with two linear

ranges of 0.01–0.5 and 0.5–1.5 mM and a high sensitivity of 2932

and 708 μA mM�1 cm�2.

F IGURE 4 (a) Glucose detection mechanism in CuO, (b) glucose
detection mechanism in Au, and (c) glucose detection mechanism in
CuO nanowires (CuO NWs)/Au nanoparticle (AuNP) structure under
applied potential. Reproduced with permission from Reference 68,
Copyright @ 2019 (The Royal Society of Chemistry)
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A simple, cost-effective microwave-based method for synthesiz-

ing a sensitive FGGS with CuO nanodisks was investigated, which

maintained its remarkable selectivity, a high sensitivity of

627.3 μA�mM�1�cm�2, and broad linear range from 2.0 M to

2.5 mM.98 Furthermore, glucose sensors showed high reproducibility

and longstanding stability with only 9% sensitivity damage in 14 days

with an interval of 2 days in the open air. The sensing ability of the

proposed electrode was evaluated in human urine samples and can be

attributed to the development of noninvasive biosensors in ambient

conditions. The shape and size of CuO nanodisks composed of tiny

TABLE 1 Comparison of the performance of different Cu-based nonenzymatic glucose sensors

Electrodes/samples/

electrocatalysts

Sensitivity

(μA mM�1 cm�2)

Applied

potential (V)

Limit of detection

(LOD) (μM) Linear range (mM)

Response

time (s) References

Green synthesis of Cu

spherical NPs

1065.21 — 0.046 1–7.2 <3 119

CuO PN 3072 0.6 V Ag/AgCl 0.41 0.005–0.225 and

0.225–0.825
�0.8 120

CuO-flower 2062 0.5 V Ag/AgCl 0.25 0.001–1 1.6 121

Cu2O/Cu/CC 6952 0.60 V Hg/HgO 0.06 0.001–1.555 <2 124

Cu-MOF/MWNTs/GCE) 3878 — 0.4 0.0005–11.84 0.3 126

Au NPs-modified CuO NWs 4398.8 0.6 V Ag/AgCl 0.5 0.0005–5.9 Approx. 5 68

CuO-ZnO NRs/FTO 2961.8 — 0.40 0.001–8.45 <2 122

CuxO nanosheets/Cu 1541 0.60 V Ag/Agl 0.57 4 �3 152

Cu3(BTC)2-derived CuO

nanorod

1523.5 0.6 V Ag/AgCl 1 Up to 1.25 5 153

Cu/Ni/Au nanoporous film 4135

2972

— 0.1 0.0005–3
3–7

— 154

Cu+2/PANI/rGO/FR4

nanocomposite

4168.37

525.4

0.66 V Ag/AgCl 4.93 0.0028–0.0222
0–4

<5 155

CuS nanosheets/Cu2O/CuO

NWAs/Cu foil

4262 0.60 V Ag/AgCl 0.89 0.002–4.1 350–800 156

Copper oxide/CPE 1183.59 — 672.8 1.6–62.5 120 157

MWCNT-CuBTC 14,949 0.6 10 0.2–1 — 158

MOF-derived CuO

architectures

10–120 — 0.1 0.01–0.12 �6 159

CuO/CuBi2O4 330 — 0.7 0.000001–100 — 160

CuS microflowers 1007 0.5 — 0.2–5.4 �4 161

Cu2O-c/SPCE 2376.7 �1.0 to 1.2 V.

Ag/AgCl

0.003 0.000031–1.42 — 162

Cu2+/MWCNT-COOH 1732 — 0.02 0.00002–8.0 �2 163

CuO NPs/PEDOT:PSS/PGE 663.2 +0.70 V — 10 — 164

CuO hollow sphere 25.0 ± 0.8 — — 0.001–3 — 165

CuO hollow sphere 13.6 ± 0.3 — — 3–11.5 — 165

CuO microspheres 26.59 — 20.6 2–9 — 166

Cu-GNE — 0.5 0.12 1 �2 167

Cu NWs/PANI/rGO 843.06 0.64 1600 0–4 — 168

CuO-C-dots 110 and 63.3 +0.50 200 0.5–2 and 2–5 — 169

CuxO/Cu 1210 ± 124 �0.2 and +0.6 10 0.01–7 �1 133

CuO nanoleaves 1467.32 +0.6 0.012 0.005–5.89 �3.5 104

CuNPs/PoPD/GCE — 0.5 0.25 0.005–1.6 �1 170

CoNiCu alloy nanotubes 791 — 0.5 0.05–1.551 — 106

Abbreviations: BTC, benzene tricarboxylate; CC, carbon cloth; CuBTC, copper-1,3,5-benzenetricarboxylic acid; Cu-GNE, Cu nanoparticles on a linear

graphene edge nanoelectrode; Cu-MOF, Cu-metal–organic frameworks; CPE, carbon paste electrode; FTO, fluorine doped tin oxide; GCE, glassy carbon

electrode; MWCNT, multiwall carbon nanotubes; MWNTs, multiwalled carbon nanotubes; NPs, nanoparticles; NRs, nanorods; NWAs, nanowire arrays;

PANI, polyaniline; PN, porous nanostructure; rGO, reduced graphene oxide.
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nanorods are confirmed by transmission electron microscopy (TEM)

while their high crystalline nature is determined from selected area

electron diffraction patterns.

Dayakar et al. fabricated FGGS with pristine CuNPs on glassy car-

bon electrode (GCE). They prepared this sensor by the simple green

method using leaf extract of Ocimum tenuiflorum.99,119 Less toxic,

smooth surface, and small-sized NPs synthesized via this green

method outperformed the catalytic activity toward glucose oxidation

than other synthesized nanostructures. Furthermore, the modified

Cu/GCE electrode exhibited the current response, which remained at

F IGURE 5 X-ray diffraction (XRD)
characterization of copper particles used in
nonenzymatic glucose (NEGS). (a) XRD
pattern of carbon quantum dots loaded
with copper oxide nanoparticles (CQDs/
Cu2O NPs). Adapted with permission from
Reference 103, Copyright @ 2016 (MDPI).
(b) XRD pattern of CuO nanoleaves.
Adapted with permission from Reference

104, Copyright @ 2021 (IOP Science). (c)
XRD patterns of Ti substrate, CuO film on
Ti substrate, and CuO powder. Adapted
with permission from Reference 105,
Copyright @ 2014 (Hindawi). (d) XRD
patterns of prepared CoNiCu alloy
nanotubes arrays transferred on indium tin
oxide. Adapted with permission from
Reference 106, Copyright @ 2019
(Frontiers)

F IGURE 6 (a) Schematic diagram for the preparation of CuCo2O4–carbon nanofibers (CNFs) and (b) the representation of the proposed
mechanism for electrocatalytic oxidation of glucose based on poly(thiophene-3-boronic acid) (PTBA)/CuCo2O4–CNFs/glassy carbon electrode
(GCE). Reproduced with permission from Reference 118, Copyright @ 2019 (MDPI)
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93.2% of its original value when stored for 10 days at room tempera-

ture, reflecting its long-term stability toward glucose oxidation. The

proposed electrode presented outstanding analytical sensing proper-

ties such as reproducibility, limited interference, and a sensitivity of

1065.21 μA mM�1 cm�2, with a detection limit of 0.038 μM (S/

N = 3), and linear response ranges from 1 to 7.2 mM with a fast

response of 3 s.

CuO porous nanostructure (CuO PN) electrodes have been

shown to enhance glucose detection capabilities, showing a linear

range of 0.005–0.225 mM, a high sensitivity of about

3072 μA mM�1 cm�2, and a low detection limit of about 0.41 μM.100

Furthermore, the proposed sensor maintained its high stability over a

month of monitoring, recording a 17% loss in current density under

regular measurements. Thus, this cost-effective and highly stable

porous CuO FGGS was used for detecting glucose in human saliva

with a high sensitivity of �2299 μA mM�1 cm�2.

Ashok and colleagues synthesized CuNPs using three methods,

the colloidal method with NaBH4 as a reducing agent producing the

best homogeneous phase of CuO NPs (Cu-colloids).121 Simulta-

neously, combustion-based techniques, which were exploring glycine

(Cu-gly) and hydrazine (Cu-hyd), did not yield any satisfactory

results.101,102 Flower-shaped Cu-colloidal particles showed a maximum

electro-oxidation current of glucose, with a low detection limit of

0.25 μM, a high sensitivity of 2062 μAmM�1 cm�2 for glucose, in a wide

linear range of 1–850 μM. The Cu-colloid particles' excellent

electrocatalytic activity is related to their unique blossomed flower-

shaped morphology and the pointed tips of opened mesoporous or

microporous petals.121 This structure provided more active sites with a

large surface area, promoting chemisorption of oxygen and charge trans-

portation. The scanning electron microscopy (SEM) analysis demon-

strates the morphology and composition of the Cu particles (Figure 7).

Most Cu or Ni-based NEGS are synthesized by modifying the

substrate with NPs, scattered structures, or metal-carbon hybrids.103

In addition to CuO, nanostructures of cuprous oxide (Cu2O) have also

been investigated to study their electrocatalytic properties to fabri-

cate FGGS. Zhang et al. synthesized a self-supported Cu2O/Cu/CC

(carbon cloth) using a single step, simple potentiostatic electrochemi-

cal deposition on CC.104,105 The flexible glucose sensor (Cu2O/Cu/

CC) demonstrated a superior sensitivity of 6952 μA mM�1 cm�2,

reproducibility (relative standard difference [RSD] = 2.74%) with an

extremely low detection limit of 0.6 μM with a fast response time of

less than 2 s. Moreover, 90.2% of the original sensitivity of the elec-

trode was maintained during a 1-month stability test.

The sensitivity and conductivity of the purest Cu electrode can

be easily contaminated by oxidation; thus, researchers are focused on

improving their efficiency by incorporating other components.125 Wu

et al. manufactured a high-performance multilayer composite film-

based FGGS through a layer-by-layer method, employing Cu-metal

organic frameworks (Cu-MOF), multiwalled carbon NTs (MWNTs)

modified GCE, given in Scheme 1.107,126 The glucose sensor showed

an excellent sensitivity of 3878 μA mM�1 cm�2, a more comprehen-

sive linear range of 0.5 μM–11.84 mM, with a low LOD of 0.4 μM and

was free of interference. Researchers found that the hybrid compos-

ite's enhanced catalytic properties were due to its large surface area,

multiple active sites, accounting for its excellent electrical conductivity

of MWNTs and good selectivity of Cu-MOF. The glucose detection

F IGURE 7 Scanning electron
microscopy (SEM) characterization of
copper particles used in NEGS. (a,b)
Products deposited on CoNiCu alloy
nanotubes with anodic aluminum oxide
template. Adapted with permission from
Reference 106, Copyright @ 2019
(Frontiers). (c) MWCNT-copper-1,3,5-
benzentricarboxylic acid (CuBTC)

composite electrode. Adapted with
permission from Reference 158,
Copyright @ 2020 (MDPI). (d) CuO film
on Ti substrate. Adapted with permission
from Reference 105, Copyright 2014
(Hindawi)
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efficiency of the developed sensor was tested in actual blood samples,

yielding satisfactory and feasible results. However, due to the high

alkaline conditions, its practical application was hindered.

3.2 | Advantages and challenges of copper-
based FGGS

FGGS have received widespread attention in recent times because of

their ability to deliver reproducible results with higher stability than

traditional EGS. This, therefore, increases the practicability of FGGS in

clinical applications and several recent studies support this advan-

tage.57,123,127–129 Furthermore, these NEGS remain functional even

after 1 month and monitor glucose levels in undiluted whole blood

after sterilization and thus exhibit long-term stability.24,130,131 This

was previously not feasible with traditional glucose monitors that are

active only for 7–14 days and get inactivated due to biofouling. In

addition, NEGS show low detection time and rapid response rate,

which adds to the advantage of these sensors over EGS. This was

seen in the work by Yan et al., who demonstrated the practical clinical

application of an FGGS based on copper sulfide nanoflakes-reduced

graphene oxide that showed a rapid response rate as low as 6 s and a

low detection limit of 0.19 μM in human blood and urine samples.132

Hence, recently the scientific focus has shifted toward developing

nanomaterials-based NEGS that provide better linear range and ease

in operation. Nanomaterials also possess sizes equivalent to enzyme

molecules that aid in their functionalization. Highly conductive

carbon-based nanomaterials are the best choice for electro-oxidation

of glucose; however, their stability is a significant concern. As a result,

researchers have concluded that copper and its bimetallic

nanomaterials have a promising potential for fostering and promoting

FGGS in mass production. Because of its unusual electrocatalytic

activity and use in many electrochemical devices, copper-based FGGS

have gained widespread popularity in recent decades. Copper is abun-

dantly available in nature, low cost, and environmentally friendly and

shows high catalytic activity.113,114 Moreover, copper-based FGGS

with other metals in combination have displayed excellent sensing

properties. In research carried out by Suneesh and colleagues, an

FGGS based on Co–Cu alloy NPs was developed, which served as

an excellent sensing device for quantifying glucose levels.113

Despite the innumerable research done on FGGS and the use of

nanomaterials in their construction, there are still a few challenges

that need to be tackled before these sensors can be availed. The

major obstacles that need to be addressed include miniaturization of

the sensor, reduction in the sample required during sensing, and quick

delivery of results. Furthermore, more work is necessary to improve

the shelf life and reduce the cost of such test strips based on NEGS.

The application of nanomaterials in the development of FGGS has also

gained widespread attention, especially to create sweat based plat-

forms and in vivo implantable glucose sensors for glucose measure-

ments. However, such sensors to detect glucose concentrations in

these fluids would require greater sensitivity of copper-based FGGS.

Also, these sensors show a highly accurate correlation between glu-

cose levels measured in interstitial fluids and blood when measured

using the commercially available blood-glucose meter. This correlation

has been observed in several recent studies,134–138 and thus, such

sensors can be potentially used in clinical applications for glucose

measurements.

In addition, the biocompatibility and shelf life of copper-based

FGGS depend on the morphology of the copper architectures and the

attached functional groups.138 This is especially true in the case of

implantable sensors made using NPs. Immune reaction against NPs is

SCHEME 1 Schematic illustration of the Cu-metal organic frameworks (Cu-MOF) and multilayer films of Cu-MOF/multiwalled carbon
nanotubes (MWNTs)/glassy carbon electrode (GCE). Reproduced from Reference 126, Copyright 2019 (Elsevier)
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inevitable; hence, such reactions can be controlled by monitoring the

size and shape of the NPs that indirectly influence the attachment of

neutrophils or macrophages to them.139–141 For example, particles

that are not spherical and are over 6 μm in diameter may exhibit

lowered macrophage adhesions and, therefore, will have better func-

tional viability within the system.138 Hence, the physical features of

the NPs, their chemical nature, like their surface chemistry, influence

their biocompatibility and enhance the sensor's overall life.139

Furthermore, there is no sophisticated control over the protective

sheath, thickness, and pore size of the nanoporous layer that would

allow FGGS to work on plasma, human serum, and blood when

undiluted. Moreover, disturbances caused by various electro-active

and electro-inactive chemical species must still be adjusted.61 There-

fore, although these sensors offer promising alternatives to traditional,

invasive blood glucose monitoring; further works need to be done

produce better electrode protective films in FGGS, before these sen-

sors are made available commercially on a large scale.

3.3 | Comparison of FGGS composed of Cu
nanostructures with EGS

The current glucose-sensing devices available are based on EGS. A

few studies have also demonstrated the catalytic effect of copper

oxide in enzymatic glucose oxidation and hydrogen peroxide detec-

tion with good stability and ultra-sensitive response. Umar et al., for

example, established a reproducible glucose biosensor based on well-

crystallized flower-shaped CuO nanostructures formed of thin

nanosheets.142 The designed biosensor showed a response time of

less than 5 s, a high sensitivity of 47.19 μA mM�1 cm�2, and a LOD

of 1.37 M. Several studies have shown that combining graphene with

CuO NPs will produce more synergistic results and hence improve

glucose detection. For instance, Qian et al. suggested a simple and

straightforward method for depositing Cu2O NPs on graphene sheets

(Cu2O@CRG) using sodium citrate as a reluctant agent,143 demon-

strating better sensitivity and selectivity in alkaline media than Cu2O

or CRG. However, these sensors possess several drawbacks related to

the inherent nature of the enzymes, like their minimal reproducibility

and decreased stability when used for long durations. Also, the cata-

lytic function of enzymes is easily affected by the external pH, tem-

perature, absence or presence of humid conditions, and other

chemicals in the vicinity.144

To reduce the drawbacks incurred by these EGS and the volatile

nature of enzymes, the NEGS were introduced (Figure 8). As dis-

cussed earlier, these sensors involve direct electrocatalytic oxidation

of glucose molecules on their electrodes' surface. Because of their

high electrocatalytic activity and advantages like inexpensive availabil-

ity, nontoxic nature, ability to be quickly processed, and readily stored,

copper, copper oxides-based nanomaterials, and their hybrids have

sparked significant interest for FGGS, too.145 For example, Zhang

et al. developed a nonenzymatic glucose-sensing platform based

on one-dimensional Cu NWs, both sensitive and selective.146

Wang et al. created a sensitive FGGS using CuO flowers and

nanorods as the sensing material.147 Moreover, significant efforts

have been made to combine copper or copper oxides with carbon-

based nanomaterials to enhance their catalytic activity.148,149 Luo

et al. designed an FGGS based on Cu–graphene nanocomposites,

which demonstrated a significantly higher current and a lower neg-

ative onset potential for glucose oxidation than Cu NPs.148 Field

emission SEM (FESEM) analysis of copper particles helps analyze

the arrangement of the physical features of the crystalline particles

(Figure 9).

F IGURE 8 Nonenzymatic glucose (NEGS) with copper-based electrodes. (a) Fabrication and application of NEGS for glucose detection.
Adapted with permission from Reference 122, Copyright @ 2017 (Nature). (b) Hydrogen bubble template-based electrodeposition process of the
Cu foam and the SEM images of the resultant Cu Foam electrodeposits. Adapted with permission from Reference 171, Copyright @ 2019
(American Chemical Society)
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Nanozymes have also gained popularity in recent decades. These

nanozymes are nanomaterials that possess properties akin to enzymes

and have been extensively studied for sensing purposes.150 Wei and

Wang were the first to equate catalytic NPs with artificial enzymes.151

However, like EGS, NEGS face a few setbacks that hinder their practi-

cal application at a clinical level. This includes their lowered selectivity

because of the lack of a prominent recognition element in the device,

and their ability to function correctly under highly alkaline conditions,

which means that these sensors will not show their best function

within physiological pH. Also, most recent studies have focused on

improving the material structure of nanomaterials used in NEGS and

less work has been done to enhance targeted and highly sensitive glu-

cose detection. EGS, on the contrary, have shown to give better

glucose detection results. Therefore, the scientific focus must steer

toward a better understanding of the mechanisms involved in the cat-

alytic processes. Also, further works need to be done to explore other

ways to develop nanomaterials that mimic enzymes like in EGS, and

possess versatile 3D structures and have better application in the

sensing process.

4 | CONCLUSION AND FUTURE
PERSPECTIVE

Recent advances in the fabrication of FGGS have significantly

improved. However, the practical application of these devices con-

tinues to face significant challenges and hurdles. Efforts are being

made to investigate Cu as a competing electrode for FGGS by

improving the surface area, shape, and size to volume ratio, enhancing

catalytic properties and stability, and detection capability. Reduced

stability, shorter shelf life, and enzyme denaturation have limited the

application of EGS, focusing researchers toward the tremendously

growing field of FGGS. Even though numerous articles have been

published demonstrating the efficacy of transition elements as

electrocatalytic nanostructures for FGGS advancement, enzyme-

based glucose sensors still outperform the former category for their

sensitivity and biocompatibility. To commercially enlist the FGGS,

copper-based characteristics such as low cost, stability, simplicity, and

natural abundance can be leveraged to achieve the central goal. When

exposed to air, Cu-based biosensors are easily oxidized, reducing their

stability. This can be improved by incorporating other nanomaterials

within them, but this complicates FGGS fabrication.

Cu-based electrodes perform best in alkaline media that operate

in a synergistic environment, though the exact mechanism remains

unknown. The researchers hope to develop FGGS to detect low glu-

cose levels in blood samples and other bodily fluids. These significant

challenges in making Cu-based glucose sensors stable, reproducible,

competitive, and commercially available with EGS are within reach,

but the field remains exciting. Cu and its oxides are among the best

electrocatalytic nanostructures for manufacturing glucose biosensors,

but complete dedication is required to eliminate the shortcomings

mentioned above. These efforts should be taken seriously to over-

come the difficulties associated with maintaining optimal glucose

levels in the blood. These findings contribute to the investigation of

future research for the development of advanced versions of Cu-

based FGGS.

F IGURE 9 Field emission scanning
electron microscopy (FESEM)
characterization of copper particles used
in nonenzymatic glucose (NEGS). (a) Bare
Cu(II)/GO modified SPCE. Adapted with
permission from Reference 172,
Copyright @ 2021 (Nature). (b)
Engineered hierarchical CuO nanoleaves.
Adapted with permission from Reference

104, Copyright @ 2021 (IOP Science). (c,
d) Copper nanoparticles electrochemically
deposited on the PRG sheets. Adapted
with permission from Reference 173,
Copyright @ 2015 (PLos One)
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