
449

ABSTRACT

Objective: Ischemic stroke and myocardial infarction are 2 of the leading causes of mortality. 
Both conditions are caused by arterial occlusion, resulting in ischemic necrosis of the cells 
in the cortex and heart. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs 
longer than 200 nucleotides without protein-coding potential. Thousands of lncRNAs have 
been identified but their involvement in ischemic stroke and myocardial infarction has 
not been studied extensively. Therefore, this study aimed to identify the role of lncRNAs, 
particularly those that are commonly altered in these two ischemic injuries.
Methods: We combined diverse RNA sequencing data obtained from public databases and 
performed extensive bioinformatics analyses to determine reliable lncRNAs commonly 
identified from these datasets. Using sequence analysis, we also detected the lncRNAs that 
may act as microRNA (miRNA) regulators.
Results: We found several altered lncRNAs that were common in ischemic stroke and 
myocardial infarction models. Some of these lncRNAs, including zinc finger NFX1-type 
containing 1 antisense RNA 1 and small nucleolar RNA host gene 1, were previously reported 
to be involved in the pathogenesis of each of these models. Interestingly, several lncRNAs 
had binding sites for miRNAs that were previously reported to be involved in the hypoxic 
response, suggesting the possible role of these lncRNAs as regulators in ischemic responses.
Conclusion: The lncRNAs identified in this study will be useful in determining the regulatory 
networks in ischemic stroke and myocardial infarction and in identifying potential specific 
markers for each of these ischemic diseases.
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INTRODUCTION

Ischemic stroke and myocardial infarction are 2 of the most common diseases that result in 
high mortality.1,2 Although the 2 conditions mainly differ in the speed of cell death and loss 
of function, their common pathophysiology lays in the acute occlusion of arteries, resulting 
in ischemic necrosis of the affected tissues. A frequently used molecular marker to diagnose 
myocardial infarction is troponin, released into circulation as a result of myocardial necrosis.3 
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However, the molecular marker for ischemic stroke has not yet been identified. Reperfusion 
therapy is one of the most effective treatment methods for myocardial infarction, but the 
same method may cause a clinical problem during the treatment of ischemic stroke.4

Long non-coding RNAs (lncRNAs) are a large group of non-coding RNAs with transcript 
length longer than 200 nucleotides,5 and diverse genomic locations. A proportion of lncRNAs 
is situated in the intergenic region between protein-coding genes—therefore called as long 
intergenic non-coding RNAs—whereas another proportion is localized near the protein-
coding genes. The latter includes antisense lncRNAs that are positioned at the same genomic 
locus with protein-coding genes but with the opposite genomic direction. Moreover, another 
large population of lncRNAs is sited near the promoter region of protein-coding genes and 
produces transcripts in the direction opposite (divergent transcription) to that of protein-
coding genes.6 The numbers of discovered lncRNAs in humans and mice are still growing and 
a recent GENCODE annotation reported the number of lncRNA genes (≤18,000) comparable 
to that of protein-coding genes (≤20,000) in humans.7 The primary working mechanism of 
lncRNAs includes associating with transcription factors to regulate the transcription of other 
genes and binding to microRNAs (miRNAs) to block their post-transcriptional regulation.5 
Although the lncRNAs have been studied in diverse human diseases, their roles and working 
mechanism in myocardial infarction and ischemic stroke have not been investigated 
extensively. Compared to the protein-coding genes, for which many expression-profiling 
studies during the pathogenesis of these diseases have been conducted, few studies have 
been performed for the analysis of lncRNAs in the same models.

In this study, we ascertained the lncRNAs commonly altered in the 2 ischemic disease 
models: myocardial infarction and ischemic stroke. Based on publicly available data, we 
identified several lncRNAs that may function as important regulators in these diseases. 
Besides, we also showed that several lncRNAs may work as regulators of miRNAs. The 
information reported in this study will contribute to future research on the pathology of 
myocardial infarction and ischemic stroke.

MATERIALS AND METHODS

1. Analysis of RNA sequencing data
RNA sequencing data were obtained from the Gene Expression Omnibus (GEO) database.8 
For myocardial infarction datasets, the raw FASTQ data of datasets with accession numbers 
GSE957559 and GSE10418710 were downloaded. For the GSE95755 dataset, samples from 
adult mice were used (4 control and 4 infarcted samples, respectively), and for GSE104187, 
samples prepared 3 days after their surgery were used (2 control and 2 infarcted samples, 
respectively). For ischemic stroke datasets, FASTQ datasets with accession numbers 
GSE104882 and GSE11234811 were obtained. For the GSE104882 dataset, samples derived 
from the cortical tissues of mice 3 days after their surgery were used (3 control and 4 stroke 
samples, respectively). Only mice raised on a normal diet were selected for our analysis. In 
the case of the GSE112348 dataset, samples prepared 24 hours after their surgery were used 
for our analysis (3 control and 3 stroke samples, respectively). The procedure to analyze 
FASTQ data has been described in a previous study.12 Briefly, reads with low sequencing 
quality were removed using the Trimmomatic algorithm.13 The remaining sequences were 
aligned into the mouse genome (mm10) using STAR14 and the Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM) value was calculated using Cuffnorm15 based 
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on the GENCODE annotation (version M17).7 Using the FPKM value for each gene, the fold 
change and p-value based on the t-test were calculated.

To increase the reliability of the results from the analysis algorithm, we also used another 
approach to calculate the fold ratio of gene expression between treatment and control groups 
in each dataset. Using the FASTQ reads after filtering out low-quality reads, the transcript 
level of each gene was analyzed using the Salmon algorithm16 based on the GENCODE 
annotation. Fold ratio and p-value of each gene were calculated using the edgeR software.17

Among the analyzed genes, the significantly changed lncRNAs were selected, provided 
the lncRNAs were in the top 10% groups based on p-values in both analysis workflows, i.e. 
STAR-Cuffnorm and Salmon-edgeR. We combined the results from each of the myocardial 
infarction and ischemic stroke groups as described in Fig. 1B. To select the altered lncRNAs 
common between myocardial infarction and ischemic stroke models, we intersected the 
combined data between the 2 disease datasets. For miRNA target analysis, only the lncRNAs 
with FPKM values greater than 10 in both datasets were selected.

2. Prediction of miRNA target sites in lncRNA sequences
To identify a regulatory relationship between selected lncRNAs and miRNAs, we used the 
TargetScan algorithm to predict the possible binding sites of miRNAs in lncRNA sequences.18 
We only selected target sites containing a perfect 7-mer match of the seed sequence (thus, a 
perfect match of the 2nd to the 8th nucleotide from the 5′ end of the miRNA).

To increase the reliability of the prediction, public small RNA sequencing data for myocardial 
infarction (GSE79050) and ischemic stroke (GSE104037) were obtained from the GEO 
database.19,20 Among the miRNAs, only those with a significant difference between the 
control and treatment groups (p-value<0.05) were selected. By comparing the predicted 
miRNA targets from TargetScan analysis and the differentially expressed miRNAs identified 
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A Expression of marker genes in each dataset B Analysis scheme

MI datasets MCAO datasets

Differentially expressed
in any MI dataset

Differentially expressed
in any MCAO dataset

GSE104187

MI

Common IncRNAs
between MI and MCAO

MCAO

GSE95755 GSE112348GSE104882

Fig. 1. Analysis of RNA sequencing data from MI and ischemic stroke (MCAO) models. (A) Changes in the expression of marker genes from each experimental 
model. The mRNA level change of Timp1 was used to determine the reliability of the MI model. For the MCAO model, the mRNA level of the Gfap gene, which 
encodes glial fibrillary acidic protein, was used as a marker. The p-value was calculated using Student's t-test and described as asterisks. (B) The analysis 
scheme to identify altered lncRNAs common to MI and MCAO models. Details of the analysis procedure are described in the materials and methods section. 
Timp1, tissue inhibitor of metalloproteinase 1; Gfap, glial fibrillary acidic protein; MI, myocardial infarction; MCAO, middle cerebral artery occlusion; lncRNA, 
long non-coding RNA; mRNA, messenger RNA. 
*p<0.01, †p<0.001, ‡p<0.0001.



from the analysis of public sequencing data, we shortlisted the miRNAs that had binding 
sites in lncRNAs and also showed anti-correlation in the direction of expression change to 
the same lncRNA.

RESULTS

1. Selection of altered lncRNAs common in myocardial infarction and 
ischemic stroke models
To identify the altered lncRNAs common in the injured heart from myocardial infarction and 
the injured cortex from ischemic stroke, we collected public RNA sequencing data available 
in the GEO database. For myocardial infarction data, we first selected GSE95755.9 In this 
dataset, myocardial infarction was induced by the permanent ligation of the left anterior 
descending coronary artery, and 3 days later, cardiomyocytes and fibroblasts were isolated for 
RNA sequencing. GSE104187 was the other dataset that we used for myocardial infarction.10 
The samples used to make this dataset was also prepared 3 days after the ligation of the left 
anterior descending artery, but the RNA sequencing was performed for total heart tissue. In 
the case of the ischemic stroke model, GSE104882 and GSE11234811 were used, wherein the 
RNA sequencing was performed using mouse cortex samples 3 days (GSE104882) and 1 day 
(GSE112348) after the middle cerebral artery occlusion (MCAO) operation, respectively.

After the initial quality check of RNA sequencing data and quantitation of both protein-
coding and non-coding genes, we checked whether the datasets that we chose were 
reliable, using marker gene levels. For the myocardial infarction model, tissue inhibitor of 
metalloproteinase 1 (Timp1) was selected as the marker gene. It was previously reported that 
Timp1 was significantly increased in myocardial infarction.21 In the case of the ischemic 
stroke model, we selected glial fibrillary acidic protein, that was reported as a reliable marker 
in stroke model.22 In the RNA sequencing data, these 2 marker genes were significantly 
increased, confirming the reliability of the datasets that we selected (Fig. 1A).

We selected differentially expressed lncRNAs in each dataset and combined the list of lncRNAs 
from the 2 myocardial infarction datasets and the 2 ischemic stroke datasets (Fig. 1B). The 
list of differentially expressed lncRNAs is included in Supplementary Table 1. By merging the 
combined myocardial infarction and ischemic stroke datasets, the altered lncRNAs common to 
both the experimental models were selected. These analyses resulted in the identification of one 
commonly decreased and 8 commonly increased lncRNAs in the 2 ischemic models (Fig. 2).

2. Genomic analysis of selected lncRNAs
The expression of the lncRNA RP23-445K23.4 was decreased significantly in both, 
myocardial infarction and ischemic stroke models (Fig. 2A). Interestingly, one of the isoforms 
of RP23-445K23.4 includes the sequence of miRNAs miR-29b-2 and miR-29c, suggesting this 
lncRNA works as the primary transcript to produce these miRNAs. A previous report showed 
that miR-29 family members were downregulated after myocardial infarction,24 and miR-29b 
levels were decreased following acute ischemic stroke.25 Thus, it is plausible that RP23-
445K23.4 is involved in the progression of both these diseases by decreasing the production 
of miR-29 family miRNAs.

The lncRNA RP23-234K24.8 (also annotated as Lrrc75-as1)—significantly increased in both 
the ischemic models—is located downstream of the Lrrc75a gene with the opposite direction 
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A Genomic structure of RP23-445K23.4 (Chr. 1)

B Genomic structure of RP23-234K24.8 (Chr. 11)

C Genomic structure of Gas5 (Chr. 1)

D Genomic structure of Zhas1 (Chr. 2)

E Genomic structure of Snhg1 (Chr. 19)

F Genomic structure of RP23-349B4.7 (Chr. 17)

G Genomic structure of RP23-110C17.2 (Chr. 5)

H Genomic structure of Snhg5 (Chr. 9)

I Genomic structure of H19 (Chr. 7)

Fig. 2. Genomic information near the identified lncRNAs. For each lncRNA and its neighboring genes (A-I), the gene structures and genomic coordinates were 
obtained from the UCSC genome browser (http://genome.ucsc.edu/).23 For the datasets where significant changes in expression of lncRNA were observed, 
the level of expression change is depicted on the right. The p-value was calculated using Student's t-test and described as asterisks. Each exon and intron is 
indicated with a filled box and solid line, respectively, and the gene orientation is indicated with an arrowhead. Genes written in blue indicate protein-coding 
genes, whereas genes written in green and red designate lncRNAs and small non-coding RNAs, respectively. 
MI, myocardial infarction; MCAO, middle cerebral artery occlusion; lncRNA, long non-coding RNA; Zfas1, zinc finger NFX1-type containing 1 antisense RNA 1; 
Snhg, small nucleolar RNA host gene. 
*p<0.05, †p<0.005, ‡p<0.0005.
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of transcription (Fig. 2B). This lncRNA contains the sequences of several small nucleolar 
RNAs (snoRNAs) including snord49b, snord49a, and snord65. Our previous study showed 
that Lrrc75-as1 regulates vascular calcification in vascular smooth muscle cells.26 Another 
lncRNA Gas5 was also increased in both the models and contains several snoRNAs as its 
intronic sequences (Fig. 2C). It has been reported that Gas5 regulates myocardial infarction 
and ischemic stroke by targeting miR-525-5p and miR-137, respectively.27,28

The lncRNA zinc finger NFX1-type containing 1 (Znfx1) antisense RNA 1 (Zfas1) was increased 
in both the models (Fig. 2D). The first exon of Zfas1 overlaps with that of protein-coding 
gene Znfx1. Zfas1 was reported to be increased in a mouse myocardial infarction model and 
operates as a Serca2a inhibitor by binding to this protein.29 In contrast, this lncRNA was 
downregulated in the blood leukocytes of patients with ischemic stroke,30 requiring the 
measurement of its levels in the cortex from the ischemic stroke model. Small nucleolar 
RNA host gene (Snhg) 1 is the host gene of many snoRNAs and was increased in both the 
models (Fig. 2E). This lncRNA has been reported to regulate cerebrovascular pathology in 
the ischemic stroke model by regulating HIF-1α/VEGF signaling,31 although there is no report 
indicating the role of Snhg1 in myocardial infarction until now.

The lncRNAs RP23-349B4.7, RP23-110C17.2, and Snhg5 were increased in myocardial 
infarction and ischemic stroke models (Fig. 2F-H). Among them, RP23-349B4.7 and Snhg5 
contain snoRNA in their intronic sequences (Fig. 2F and H). H19 is a well-known lncRNA that 
contains miR-675 in its sequence (Fig. 2I). The expression of this lncRNA is dysregulated in 
diverse cancers and its working mechanism had been extensively studied in cancer models.32 
Compared to the many studies in cancer, few studies have been reported in myocardial 
infarction and ischemic stroke for H19 lncRNA. There is a report that H19 was increased in 
the rat model of cerebral ischemia, and it promoted neuroinflammation by driving histone 
deacetylase 1-dependent M1 microglial polarization.33 However, another study reported that 
H19 was decreased in infarcted myocardium.34 In our analysis, the expression of H19 was 
increased in both the models (Fig. 2I). Because myocardial infarction and ischemic stroke 
have many common phenotypes including hypoxic responses, the expression of H19 is 
expected to show the same trend between 2 models. Thus, we support the data that H19 is 
increased in both ischemic models.

3. Identification of miRNA targets of lncRNAs
To predict the functions of the common lncRNAs, we selected the lncRNAs with high 
expression in samples from both the models. One of the main working mechanisms of 
lncRNAs is the inhibition of miRNA function through sequence-specific binding.5 To operate 
as an efficient miRNA suppressor, the lncRNAs need to be expressed at a high level as 
described previously.35 We arbitrary selected the expression cutoff value of FPKM as 10, and 
the selected lncRNAs based on this cutoff included RP23-234K24.8, Gas5, Zfas1, Snhg1, and 
RP23-349B4.7, all of which were upregulated in both the models. To select the miRNAs that 
can base-pair with the lncRNAs, we used the TargetScan algorithm to predict the binding 
between miRNAs and lncRNAs18 and organized miRNA-lncRNA pairs (Fig. 3A).

LncRNAs and miRNAs suppress each other, thereby showing anti-correlation in their 
expression. To select reliable lncRNA-miRNA pairs, we obtained the small RNA sequencing 
data from public databases. The dataset with the accession number GSE79050 represents 
data from a myocardial infarction model, while GSE104037 denotes data from an MCAO 
model.19,20 After choosing the miRNAs that were differentially expressed between untreated 
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and treated samples, the miRNAs with expression change in the direction opposite to that of 
each lncRNA were selected. Among the selected miRNA-lncRNA pairs, those that contained 
base-pairing sequences predicted by TargetScan were chosen (Fig. 3A). The resultant lncRNA-
miRNA pairs included Zfas1-miR-136-5p, Snhg1-let-7i-5p, Snhg1-miR-141-3p, Snhg5-miR-448-
3p, and Snhg5-miR-141-3p (Fig. 3B-D). The expression of these miRNAs was decreased in the 
treatment samples in each dataset, as shown in Fig. 3E.

455https://doi.org/10.12997/jla.2020.9.3.449

LncRNAs in Ischemic Stroke and Myocardial Infarction

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

A Identification of miRNA targets of lncRNAs E Expression change of selected miRNAs

Selection of five lncRNAs
(average FPKM>10)

Selection of differentially
expressed miRNAs (p<0.05)

miRNA of anti-correlated
expression against lncRNAs

Public RNA-seq data

TargetScan analysis of
lncRNA sequences

(7-mer perfect match)

List of predicted
miRNA target

GSE79050 (MI dataset)
GSE104037 (MCAO dataset)

Sham MCAO
0

2,000
4,000
6,000
8,000

10,000 p=0.035

let-7i-5p

Sham MCAO
0

200
400
600
800

1,000
p=0.030

miR-136-5p

Sham MI
0

2

4

6

8 p=0.018

miR-378b

Sham MI
0
4
8

12
16
18 p=0.028

miR-141-3p

Sham MCAO
0

20

10

30 p=0.020
miR-448-3pB miRNA targets of Zfas1

C miRNA targets of Snhg1

D miRNA targets of Snhg5
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of MI and ischemic stroke (MCAO) models. The detailed procedure is described in the Materials and Methods section. (B-D) The position and sequence of the 
miRNA-binding region in the lncRNA (B) Zfas1, (C) Snhg1, and (D) Snhg5. The sequence matches between miRNA and lncRNA were predicted using the mfold 
web server (http://unafold.rna.albany.edu/?q=mfold).36 (E) The expression levels of selected miRNAs in (B-D). In each dataset of MI and MCAO, the normalized 
counts of each miRNA between sham and treated groups are shown. p-value calculated using Student's t-test is shown. 
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DISCUSSION

In this study, we identified altered lncRNAs common between 2 ischemic disease models: 
myocardial infarction and ischemic stroke. Among the selected lncRNAs in this study, several 
lncRNAs including Gas5 were reported to be involved in myocardial infarction or ischemic 
stroke as described above. Because the expression of these lncRNAs showed the same pattern 
of expression change, it can be expected that they may be involved in physiological processes 
such as hypoxic response or cell death, common to these diseases. Moreover, 8 out of 9 
selected lncRNAs are conserved in the human genome, suggesting they could have regulatory 
roles during the pathogenesis of human diseases (Fig. 2 and Supplementary Fig. 1). It will be 
interesting to uncover the detailed working mechanisms of these lncRNAs.

Although the lncRNAs common to both, myocardial infarction and ischemic stroke models 
were the primary targets of our analysis, many lncRNAs were altered in just one disease 
model exclusively (Supplementary Table 1). Thus, it is possible that these lncRNAs are 
involved in the processes occurring in only one disease model. The list of these lncRNAs will 
be a valuable resource for researchers aiming to determine the working mechanism of each of 
these ischemic diseases. However, we also note that the expression changes of lncRNAs after 
cerebral or myocardial ischemia could be affected by the selection of time points after the 
surgery. Thus, the measurement of selected lncRNAs at diverse time points after the surgery 
will be an appropriate starting point before analyzing the lncRNAs function.

For the lncRNAs, including Zfas1, Snhg1, and Snhg5, we identified several miRNAs that may 
be in a regulatory relationship with lncRNAs. Among those miRNAs, miR-141-3p has been 
shown to regulate hypoxia-induced apoptosis in cardiomyocytes.37 Because miR-141-3p was 
decreased in myocardial infarction-induced samples, and miR-141-3p-targeting lncRNAs—
Snhg1 and Snhg5—were increased in myocardial infarction cases from our analyses, further 
studies are required to verify whether these lncRNAs are also involved in hypoxia-related 
processes via regulation of miR-141-3p.

Along with the research to elucidate the working mechanisms of lncRNAs or their-
related miRNAs selected above, studies to discover molecular markers of these diseases 
are also essential. The list of overlapping or specifically changed lncRNAs in our study 
(Supplementary Table 1) is expected to be beneficial for studies aiming to discover the 
markers of myocardial infarction and ischemic stroke.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
List of differentially expressed long non-coding RNAs in each dataset. The average signal 
means the average value of Fragments Per Kilobase of transcript per Million mapped reads of 
analyzed samples in each dataset. The fold change and p-value based on the t-test are included.

Click here to view
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Supplementary Fig. 1
Genomic information near the human lncRNAs homologous to the selected mouse lncRNAs. 
For the lncRNAs in Fig. 2 except for RP23-110C17.2, which is not conserved in humans, their 
human homologs (hg19) were identified and depicted.

Click here to view
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