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Objective: The aim of the study was to investigate the different extent of inhibition of
endogenous insulin secretion by the reduction of C-peptide levels in an euglycemic clamp
study and its effects on the evaluation of pharmacokinetics, pharmacodynamics of insulin
preparations, and quality of clamp study to determine the best reduction range of
C-peptide levels.

Methods: Healthy Chinese male volunteers were enrolled and underwent a single-dose
euglycemic clamp test. Participants were subcutaneously injected with long-acting insulin
glargine (0.4 IU/kg). Blood samples were collected pretest and up to 24 h post-test to
assess pharmacokinetics (PK), pharmacodynamics (PD), and C-peptide levels.

Results:We divided the 39 volunteers enrolled in the study into three groups according to
the reduction of C-peptide levels: group A (ratio of C-peptide reduction <30%, n � 13),
group B (ratio of C-peptide reduction between ≥ 30% and <50%, n � 15), and group C
(ratio of C-peptide reduction ≥50%, n � 11); there were significant differences in the three
groups (p = 0.000). The upper and lower limits of blood glucose oscillation in group C was
statistically lower than the other groups, the range of oscillating glucose levels in group C
was −17.0 ± 6.6% to −1.1 ± 6.7%. The AUC0–24 h in groups A, B, and C were 9.7 ± 2.2,
11.0 ± 2.9, and 11.9 ± 2.1 ng/ml ×min, respectively, which indicated an increasing trend in
the three groups (Ptrend � 0.041). For quality assessment, the average glucose (p � 0.000)
and MEFTG (p � 0.001) levels in three groups were significantly different.

Conclusion: The different extent of inhibition of endogenous insulin will influence the PK/
PD of insulin preparations and the quality of the euglycemic clamp. Furthermore, the ratio
of C-peptide reduction should be above 50% to free from the interference of endogenous
insulin, and the range of blood glucose levels should be consistently maintained at −10% to
0 in the euglycemic clamp.
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INTRODUCTION

Considering the endogenous insulin and glucose self-regulatory
mechanisms, how to precisely evaluate the pharmacokinetics
(PK) and pharmacodynamics (PD) of insulin preparations has
always been a challenge. According to the EMA, the endogenous
insulin production of health volunteers can influence PK and PD
measurements (European Medicines Agency, 2015). Thus, it is
extremely important to suppress endogenous insulin during
clamping study. Four primary techniques have been
extensively applied: 1) the hyperinsulinemic-euglycemic clamp
establishes a higher plasma level insulin plateau by continuous
intravenous insulin infusion (e.g., 1.0 mU/kg/min) (DeFronzo
et al., 1979; Bokemark et al., 2000; James et al., 2020); 2) the low-
level insulin-infusion euglycemic clamp allows continuous
intravenous insulin infusion below the basal level (e.g.,
0.10–0.15 mU/min/kg) to suppress endogenous insulin
secretion (Starke et al., 1989; Heinemann et al., 1999; Cernea
et al., 2004); 3) the somatostatin-infused euglycemic clamp
establishes an euinsulinemic-euglycemic clamp by infusing
somatostatin to inhibit endogenous insulin secretion (Mergler
et al., 2008; Heise et al., 2016); and 4) the euglycemic clamp
without exogenous insulin inhibits endogenous insulin by
clamping blood glucose levels below the subject’s fasting
glucose level (Scholtz et al., 2005; Sørensen et al., 2010; Heise
et al., 2015a; Linnebjerg et al., 2015).

The hyperinsulinemic-euglycemic clamp technique has been
widely used in previous studies, although it overestimates the
effects of insulin preparations, especially long-acting preparations
(Soop et al., 2000; Kim, 2009; James et al., 2020). The euglycemic
clamp without exogenous insulin is a method of controlling blood
glucose levels below the subject’s fasting glucose to suppress
endogenous insulin secretion. A previous study using both
techniques evaluating the pharmacokinetics of insulin
preparations has indicated that artificially established non-
physiological hyperinsulinemia interferes with the PK/PD
parameters of insulin preparations (Liu et al., 2019). However,
the euglycemic clamp without exogenous insulin was superior,
which is currently used to evaluate the PK/PD of insulin
preparations.

C-peptide is a polypeptide originating from proinsulin, which
releases insulin and C-peptide in equimolar amounts into the
circulation (Yaribeygi et al., 2019). However, before reaching the
peripheral circulation, the liver extracts a part of insulin
(approximately 50%), while only a minority of C-peptide is
extracted. Moreover, the half-life of the C-peptide is longer
than that of insulin (20–30 min vs. 3–5 min) (Hoekstra et al.,
1982; Jones and Hattersley, 2013). In conclusion, peripheral
C-peptide is a more appropriate and accurate marker for
assessing endogenous insulin secretion (Alieva et al., 1985;
Jones and Hattersley, 2013). A previous study indicated that a
C-peptide suppression of over 50% would have been more
powerful for indicating adequate restriction of endogenous
insulin (Liu et al., 2021).

Blood glucose oscillations should be controlled within a
specific range by infusion of glucose. According to the EMA,
in healthy subjects, the target blood glucose value should be set

below the subjects fasting glucose (e.g., 0.3 mmol/L or 10%); the
closer the blood glucose concentration to the target, the more
successful the clamp is in achieving its goal of maintaining the
desired glycemic plateau (Benesch et al., 2015; European
Medicines Agency, 2015). However, the blood glucose
concentration is oscillating if it is unclamped, which will result
in insufficient suppression of endogenous insulin and affect the
accuracy of pharmacodynamics data (Benesch et al., 2015; Heise
et al., 2016). There are some quality assessment indices used in
glucose clamping such as the coefficient of variation in blood
glucose (CVBG), percentage of the glucose excursion from target
range (GEFTR), and the mean excursion from target glucose
(MEFTG) (Benesch et al., 2015). The EMA suggests that the
calculation of mean values, root mean square deviation, and CV
of blood glucose concentrations should be provided to estimate
the performance of the clamp study (European Medicines
Agency, 2015). Controlling of glucose oscillations is of great
importance to inhibit endogenous insulin secretion (Benesch
et al., 2015). However, it is unknown whether a different
degree of inhibition of endogenous insulin secretion is
associated with glucose oscillations, PK/PD assessment, and
the quality of clamp study.

In this study, healthy male volunteers were enrolled and
underwent a 24-h euglycemic clamp study. Our objective was
to investigate the different extent of inhibition of endogenous
insulin secretion, which is reflected by the ratio of C-peptide
reduction, and its effects on the PK and PD of long-acting insulin
preparations, thus determining the best reduction range of
C-peptide and exploring the way to improve the quality of
clamp study, which could provide a theoretical basis for future
empirical research.

MATERIALS AND METHODS

Research Design
The volunteers were screened and qualified for the entry
standard. A 24-h euglycemic glucose clamp study was
conducted in healthy male subjects after 0.4 iu/kg insulin
glargine injection. During the trial, volunteers were requested
to avoid strenuous exercises, smoking, drinking alcohol, or
caffeinated drinks (e.g., tea and coffee). In order to investigate
the best reduction extent of C-peptide, we divided the subjects
into three groups according to the ratio of C-peptide reduction by
using the empirical and quantile classification method, based on
the values of 33.3% quantile, that is, group A: C-peptide reduction
rate <30%; group B: C-peptide reduction rate between ≥30% and
<50%; and group C: C-peptide reduction rate ≥50%. The trial was
carried out in accordance with the principles of the Declaration of
Helsinki. This study was approved by the Ethics Committee of the
First Affiliated Hospital of ChongQing Medical University (No.
20190101).

Subjects
Healthy Chinese male volunteers aged 18–45 years were enrolled.
We selected individuals with a body mass index (BMI) of
19–24 kg/m2 without diabetes, insulin resistance, or a family
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history of diabetes, who did not have insulin resistance, and who
did not have cardiovascular disease. The volunteers were non-
smokers and non-alcohol users. Subjects had no abnormalities on
routine OGTT (oral glucose tolerance test), insulin releasing test
(IRT), blood and urine examinations, liver and kidney function
tests, and electrocardiograms. All volunteers provided written
informed consent prior to the start of the study.

Euglycemic Clamp Procedures
All recruited volunteers underwent a single-dose euglycemic
clamp test. Participants arrived at the ward on the day prior
to the clamp test to ensure a 10-h fasting condition and to
maintain fasting during euglycemic clamping. Insulin glargine
was injected into a lifted abdominal skinfold (0.4 IU/kg).
Intravenous access was obtained in one arm for a 20% glucose
infusion and in the other for blood drawing. The arm for blood
drawing was heated using a warming blanket to arterialize venous
blood (55–65°C). Blood samples were collected before dosing and
up to 24 h post-dosing to analyze glargine and C-peptide levels at
the following time points: −30 min, −20 min, −10 min, and 0 min,
and 0.5 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 21, and 24 h. PD variables
were evaluated during euglycemic clamping lasting up to 24 h,
which included blood samples drawn for biochemical analysis at
10-min intervals at 30 min before injection and up to 8 h after
injection, at 20-min intervals from 8 to 16 h, and at 30-min
intervals from 16 to 24 h.

Basal glucose (BG) was defined as the average blood glucose
level before injection; the target glucose (TG) level was defined as
the BGminus 0.28 mmol/L (Heise et al., 2012; Heise et al., 2015b);
and we controlled the blood glucose concentration as close as
possible to the TG level. The glucose infusion rate (GIR) was
manually adjusted by investigators to maintain blood glucose at
the target value. The euglycemic clamp was used to inhibit
endogenous insulin secretion and to maintain blood glucose
concentrations constant; the GIR profile over time represented
the activity of the insulin preparations.

Bioanalytical Methods
Blood glucose concentration was immediately analyzed using an
automatic glucose oxidase analyzer Biosen C-line GP+(Germany)
during clamping, whose qualification range was 0.5–50 mmol/L.
The glargine and C-peptide samples were transferred to Covance
Laboratories after processing and centrifugation. Insulin glargine
is rapidly metabolized to its active metabolites M1 and M2;
therefore, the glargine prototype drug and the concentrations
of the metabolites M1 and M2 were used for pharmacokinetic
analysis, which were evaluated by a validated liquid
chromatography–tandem mass spectrometry (LC-MS/MS),
whose qualification range was 0.07–2.5 ng/ml. The C-peptide
concentration was analyzed by ELISA, the qualification range
of which was 20–3,000 pmol/L.

Statistical Methods
SPSS 22.0 and WinNonlin 8.1 were used for statistical analysis.
C-peptide concentration was quantified to monitor endogenous
insulin secretion, and the C-peptide reduction rate was calculated
as 1-mean CPt/CP0. The oscillation of glucose was calculated

with formula 1-Gt (glucose at time t)/Gd (desired glucose).
Parameter estimates were computed by non-compartmental
analysis (NCA) of the total insulin glargine concentration
versus time profiles and glucose infusion rate versus time
profiles, and the pharmacokinetic parameters were area under
the glargine concentration versus time curve (AUC0–24), peak
glargine concentration (Cmax), and time to Cmax (Tmax). The
pharmacodynamic parameters were area under the glucose
infusion rate versus time curve (AUCGIR0–24 h), peak of
glucose infusion rate (GIRmax), and time to GIRmax (TGIRmax).

For quality evaluation indicators, CVBG was calculated as the
SD of the blood glucose/mean value of blood glucose. The GEFTR
was calculated as the degree of glucose excursion from target
range/total blood glucose at specific time points. TheMEFTGwas
calculated as the mean excursion of target glucose.

Quantitative data were expressed as mean ± standard
deviation (SD) or median values with interquartile ranges
(25–75%). Normality was examined, and some data were
natural log transformed prior to analysis. Statistical analysis
was performed using the analysis of variance (ANOVA) or the
Kruskal–Wallis test. The relationship between the ratio of
C-peptide reduction and blood glucose was assessed using
Pearson correlation coefficients. p < 0.05 (two sided) was
considered statistically significant.

RESULTS

Demographics and Clinical Characteristics
Thirty-nine volunteers were enrolled after screening for
eligibility. The demographics and clinical characteristics of the
subjects in the three groups are summarized in Table 1. The
mean ± SD of the ratio of C-peptide reduction was 39 ± 14%.
There were significant differences in the ratio of C-peptide
reduction among the groups (Table 1).

Volunteers were 27.6 ± 5.2 years old and had a BMI of 22.1 ±
1.2. There were no significant differences in the prevalence of risk
factors for metabolic syndrome or cardiometabolic disease,
including BMI, SBP (systolic blood pressure), DBP (diastolic
blood pressure), HR (heart rate), fasting serum insulin, fasting
glucose, and HOMA-IR. The doses of glargine in groups A, B,
and C were 25.7 ± 2.4, 25.4 ± 1.6, and 25.1 ± 2.3 IU, respectively;
there were no significant differences in administered doses
(p � 0.783).

C-Peptide Profiles
Endogenous insulin secretion was restrained by euglycemic
clamps, and the serum C-peptide levels were used to reflect
the degree of restriction. The basal C-peptide levels were
484.6 ± 207.1 pmol/L in group A, 514.0 ± 184.4 pmol/L in
group B, and 455.4 ± 154.6 pmol/L in group C. The profiles of
C-peptide changes over time were shown in Figure 1; C-peptide
showed a descending trend in all groups, which means that
the endogenous insulin secretion was restrained to different
degrees. Results showed that there were significant differences
in the ratio of C-peptides reduction among the three groups
(p � 0.000).
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TABLE 1 | Demographics and clinical characteristics of the subjects.

Group A (n = 13) Group B (n = 15) Group C (n = 11) p-value

Age (y) 26.9 ± 5.2 29.3 ± 5.9 26.0 ± 4.0 0.238
BMI (kg/m2) 22.5 ± 1.2 22.0 ± 1.0 21.9 ± 1.5 0.346
SBP (mmHg) 120.2 ± 10.2 123.1 ± 9.4 117.7 ± 7.2 0.346
DBP (mmHg) 72.0 ± 8.7 78.6 ± 7.5 73.7 ± 6.8 0.078
HR (times/min) 73.2 ± 10.8 75.5 ± 11.7 72.7 ± 9.1 0.77
Fasting serum insulin (mmol/L) 4.4 ± 2.3 4.3 ± 4.5 4.8 ± 3.5 0.887
Fasting glucose (mmol/L) 5.3 ± 0.3 5.3 ± 0.3 5.0 ± 0.3 0.093
HOMA-IR 0.9 ± 0.7 1.1 ± 1.3 1.0 ± 1.1 0.736
Dose (IU) 25.7 ± 2.4 25.4 ± 1.6 25.1 ± 2.3 0.783
Ratio of C-peptide reduction (%) 22.7 ± 5.4 39.8 ± 5.3 55.6 ± 3.9 0.000

Data are expressed as mean ± SD or medians (25–75%). Statistical analysis was performed using analysis of variance (ANOVA) or the Kruskal–Wallis test, p < 0.05.

FIGURE 1 | Mean C-peptide concentration versus time profiles after
0.4 IU/kg doses of glargine insulin in healthy volunteers. The error bars
represent the 95% confidence intervals. The extent of C-peptide reduction in
group C was apparently higher than that in the others, and there were
statistically significant differences among groups.

FIGURE 2 | Blood glucose versus time after 0.4 IU/kg doses of glargine
insulin in healthy volunteers. The error bars represent the 95% confidence
intervals. The blood glucose in group C was obviously lower than that in the
others, and significances were found in three groups.

FIGURE 3 | Glucose infusion rate (GIR) versus time profiles after
0.4 IU/kg doses of glargine insulin in healthy volunteers. The error bars
represent the 95% confidence intervals. GIR in group C was lower than that in
the others, but there were no statistical differences among groups.

FIGURE 4 | Relationship between the ratio of C-peptide reduction and
blood glucose, in which revealed a negative correlation.
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Variations in PD and PK Parameters During
Euglycemic Clamping
The average glucose target level achieved in groups A, B, and C
were 4.99, 4.98, and 4.90 mmol/L, respectively. The GIR was
adjusted in accordance with glucose values during the clamping
procedure. The profiles of the oscillations of glucose and GIR over
time were shown in Figures 2, 3. According to the figures, it was
obvious that group C achieved lower glucose levels and had a
lower glucose infusion rate than groups A and B. The ratio of
C-peptide reduction was related to blood glucose (r � −0.552 p �
0.000, Figure 4). The oscillation ranges of glucose in all groups
were reported in Table 2, ranges of which were [−10.7 ± 7.9%,
10.2 ± 5.5%] in group A [−11.4 ± 6.3%, 7.1 ± 5.1%] in group B,
and [−17.0 ± 6.6%, −1.1 ± 6.7%] in group C; there were significant
differences in group C compared to the others. As shown in

Table 3, although there was no significant difference in PD
parameters, the GIRmax in group C was obviously lower than
that in the other groups; TGIRmax in group C showed an increase,
which was more prolonged than that in the other groups; and
AUCGIR0–24 h in group C was lower than that in the other
groups.

The profile of plasma glargine insulin concentrations following
the 0.4 IU/kg injection over time was shown in Figure 5, and the
curves fitted well. There were no significant differences in the PK
parameters; however, Tmax and AUC0–24 h in group C were higher
than those in the other groups. Furthermore, AUC0–24 h revealed
an increasing trend in three groups (Ptrend � 0.041).

Indexes of Euglycemic Clamp Quality
Assessment
We evaluated the quality of the euglycemic clamp by assessing
mean glucose levels, SD, CVBG, MEFTG, and GEFTR (Table 4).
There was a significant difference in average glucose levels across
the three groups (p � 0.000): Group C had lower mean glucose
than groups A and B, revealing a decreasing trend in all groups
(Ptrend � 0.000). MEFTG was significantly different across all
three groups (p � 0.001), and the mean excursion of target glucose
was lower in groups A and B than in group C, which revealed a
decreasing trend in groups (Ptrend � 0.000). Although there were
no statistical differences in CVBG and GEFTR, the values of
group C were markedly lower than those of the other groups
(Table 4).

Safety Evaluation
There were nine AEs observed in six subjects. Mild elevation of
serum bilirubin (N � 3), urine ketone body positive (N � 3),
urinary protein positive (N � 1), elevation of creatinine (N � 1),
and hypokalemia (N � 1) were observed with no action required.
No notable hypoglycemia, allergic reaction, and adverse reactions
at the injection site were observed.

TABLE 2 | Oscillating range of blood glucose.

Group A Group B Group C p-value p trend

Lower limit (%) −10.7 ± 7.9 −11.4 ± 6.3 −17.0 ± 6.6 0.070 0.035
Upper limit (%) 10.2 ± 5.5 7.1 ± 5.1 −1.1 ± 6.7* 0.000 0.000

Data are expressed as means ± SD, p＜0.05. “*” means differences between group C and groups A and B.

TABLE 3 | Pharmacokinetics (PK) and pharmacodynamics (PD) parameters in three groups.

Group A Group B Group C p-value p trend

PD
GIRmax (mg/kg/min) 3.5 ± 1.3 3.4 ± 1.4 3.0 ± 1.5 0.586 0.326
TGIRmax (min) 593.1 ± 198.1 584.0 ± 199.1 756.4 ± 228.0 0.088 0.062
AUCGIR0–24 h (mg/kg) 3175.9 ± 1135.2 2862.9 ± 1176.0 2526.1 ± 1222.0 0.411 0.186

PK
Cmax (ng/ml) 0.6 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 0.293 0.120
Tmax (h) 11.7 ± 4.0 10.4 ± 3.1 12.8 ± 2.2 0.182 0.403
AUC0–24 h (ng/ml × min) 9.7 ± 2.2 11.0 ± 2.9 11.9 ± 2.1 0.112 0.041

Data are expressed as means ± SD, p < 0.05.

FIGURE 5 |Mean insulin glargine concentration versus time profiles after
0.4 IU/kg doses of glargine insulin in healthy volunteers. The error bars
represent the 95% confidence intervals. Glargine concentration was higher
than that in the others, but there were no statistical differences among
groups.
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DISCUSSION

Insulin analogs and their biosimilars are commonly used for the
treatment of patients with diabetes; therefore, their safety and
efficacy should be noticed (Owens et al., 2012). The euglycemic
clamp, an acknowledged method for evaluating PK/PD of insulin
preparations, should be applied before new insulin preparations, and
their analogs are launched into the market (Østerberg et al., 2003;
Becker et al., 2011). The key of the euglycemic clamp is to maintain
glucose within a certain range by regulating exogenous glucose
infusion (Heise et al., 2016). We manually adjusted exogenous
glucose infusion rates according to target glucose levels to ensure
a higher clamp quality (Heinemann and Ampudia-Blasco, 1994;
Home, 2015); however, there were some factors that affected timely
glucose adjustment, such as individualmetabolic differences, delayed
blood drawing time, and infusion pump variability, which involved a
delay in converting the infusion rate in milliliters per minute to the
correct final dial setting (DeFronzo et al., 1979; Bequette, 2009; Heise
et al., 2016). These factors increased the difficulty of maintenance
of glucose levels. If the blood glucose level sustained above the
baseline level, this will lead to increased endogenous insulin
secretion, which will overestimate the PD properties of the
insulin preparation. Hence, adequate inhibition of endogenous
insulin secretion is crucial during the euglycemic clamp procedure,
which could be monitored by the reduction in C-peptide after
dosing (Liljenquist et al., 1978; DeFronzo et al., 1979; Kaga et al.,
2019). PK and PD are the essential indices for evaluation of insulin
preparation, and furthermore, clamp quality assessment is of great
importance (Benesch et al., 2015). In this study, we divided
volunteers into three groups according to the ratio of C-peptide
reduction; explored whether the different extent of inhibition of
endogenous insulin would influence PK and PD assessment and
the quality of the euglycemic clamp; and determined the superior
range of glucose regulating.

Healthy volunteers were enrolled in this study, who presented
homogenous characteristics and insulin sensitivity. Healthy
volunteers exhibit lower intra-individual variability than
patients with type 1 diabetes mellitus (T1DM). Furthermore,
insulin secretion in women may vary during the menstrual cycle,
although it is unclear whether this may influence study results
(European Medicines Agency, 2015). According to the EMA
guidelines, commonly used insulin doses in the clamp study
should range from 0.3 to 0.4 IU/kg bodyweight for intermediate-
acting insulin (European Medicines Agency, 2015), and
considering previous studies and instruction on glargine
administration (Heise et al., 2012; Heise et al., 2015a; Bhatia
et al., 2018), we decided to use a dose of 0.4 IU/kg.

Endogenous insulin secretion should be strictly controlled by
the euglycemic clamp technique as endogenous insulin secretion
interferes with PK and PD properties (Porcellati et al., 2015).
Endogenous insulin and C-peptide are also released from islet
β-cells; therefore, the C-peptide could be applied as a marker to
measure the suppression of endogenous insulin secretion (Alieva
et al., 1985; Jones and Hattersley, 2013; Leighton et al., 2017;
Yaribeygi et al., 2019). We observed that the C-peptide in the
three groups fluctuated below the baseline levels, which indicated
that endogenous insulin was restricted in all three groups.
However, the ratio of C-peptide reduction was significantly
decreased in the three groups.

Factors that influence clamping include the metabolic activity
of the subject, sensitivity to insulin, the dosage of the insulin
preparation, and glucose regulation during clamping (Porcellati
et al., 2015). We recruited volunteers with strict entry criteria.
Results displayed that there were no differences in demographics,
clinical characteristics, and dosage levels achieved in the three
groups, which indicated that demographics and clinical
characteristics would not affect the euglycemic clamp test
when the volunteers strictly adhered to the enrollment criteria.

The results indicated that the ratio of C-peptide reduction in
group C is the highest; thus, the contribution from the secretion
of endogenous insulin was inhibited more thoroughly, and the
PD could best reflect the real effect of exogenous administered
insulin. According to the oscillating range of glucose, the ceiling
and floor limits of glucose oscillation in group C were
significantly lower than those in the other groups. In order to
control the coefficient of variation, based on the results of this
study, we suggest that the glucose regulating range should be
maintained in −10% to 0. GIRmax and AUCGIR0–24 h in group C
were lower than those in the other groups, and TGIRmax was more
prolonged in group C than in the other groups. Although there
were no significant differences in the PD parameters, values
differed across the three groups. For PK parameters, Cmax,
Tmax, and AUC0–24 h in group C were higher than those in the
other groups. Thus, the extent of the reduction in the C-peptide
influences the assessment of PD and PK properties, and adequate
suppression of endogenous insulin secretion is crucial for
successful clamping. Consequently, we suggest that the ratio of
C-peptide reduction should be higher than 50%, with which the
clamp study immunes to the disturbance of endogenous insulin,
and this conclusion was consistent with previous studies (Bhatia
et al., 2018).

There is currently no gold standard for evaluating euglycemic
quality; the CVBG is commonly used as a quality indicator in
euglycemic clamp studies, and a CVBG value ≤ 5% is considered

TABLE 4 | Indexes of the quality assessment of euglycemic clamp in three groups.

Group A Group B Group C p-value p trend

Average glucose (mmol)/l 5.2 5.1 4.8 0.000** 0.000
standard deviation SD (mmol/l) 0.2 0.2 0.2 0.148 0.053
CVBG (%) 4.4 ± 1.5 3.7 ± 1.2 3.6 ± 0.6 0.182 0.097
MEFTG (mmol/l) −0.01 ± 0.25 −0.08 ± 0.26 −0.45 ± 0.31 0.001* 0.000
GEFTR (%) 2.1 ± 3.2 1.8 ± 2.8 1.0 ± 1.3 0.592 0.316

Data are expressed asmeans ±SD; SD of average glucosewas listed separately, p < 0.05. “*”means differences between groupC and groups A andB. “**”means differences in three groups.
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superior (Heinemann and Ampudia-Blasco, 1994). However, the
CVBG only reflects blood glucose oscillations, and the accuracy of
maintaining glucose level at a specific target is ignored. In this
study, we comprehensively evaluated mean glucose levels, SD,
CVBG, MEFTG, and GEFTR as quality evaluation indicators
(Benesch et al., 2015; European Medicines Agency, 2015). In the
light of our findings, group C was superior to the other groups,
indicating that different inhibition extent of endogenous insulin
could influence the quality of the euglycemic clamp study: the
better the inhibition of endogenous insulin, that is, the greater the
reduction of C-peptide, the better the clamp quality is.
Consequently, the level of C-peptide reduction should be
recommended as a quality assessment indicator.

CONCLUSION

Based on our findings, we propose that C-peptide levels should be
below those of baseline values during the clamp, and the extent of
the reduction in C-peptide levels will influence the PK/PD of
insulin preparations and the quality of euglycemic clamps.
Furthermore, the C-peptide reduction ratio should be greater
than 50% to ensure better inhibition of endogenous insulin
secretion. For glucose regulation, the oscillating glucose
ranging from −10% to 0 is recommended. Finally, the ratio of
C-peptide reduction should be considered a quality evaluation
indicator of euglycemic clamp tests.
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