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Abstract: Circular RNAs (circRNAs) are a novel class of regulatory RNA involved in many bio-
logical, physiological and pathological processes by functioning as a molecular sponge, transcrip-
tional/epigenetic/splicing regulator, modulator of protein–protein interactions, and a template for
encoding proteins. Cells are constantly dealing with stimuli from the microenvironment, and proper
responses rely on both the precise control of gene expression networks and protein–protein interac-
tions at the molecular level. The critical roles of circRNAs in the regulation of these processes have
been heavily studied in the past decades. However, how the microenvironmental stimulation controls
the circRNA biogenesis, cellular shuttling, translation efficiency and degradation globally and/or
individually remains largely uncharacterized. In this review, how the impact of major microenvi-
ronmental stresses on the known transcription factors, splicing modulators and epitranscriptomic
regulators, and thereby how they may contribute to the regulation of circRNAs, is discussed. These
lines of evidence will provide new insight into how the biogenesis and functions of circRNA can be
precisely controlled and targeted for treating human diseases.

Keywords: circRNA; backsplicing; DNA damage response; genotoxic stress; chemoresistance; hypoxia;
heat shock; m6A

1. Introduction

Circular RNA is a class of regulatory RNA with a circular configuration, and is
produced by backsplicing, in which the downstream splice donor reacts with the upstream
splice acceptor by canonical spliceosome machinery. Since its first discovery in mammalian
cells in 1979 [1] and the rediscovery of its molecular function and wide distribution in
various tissues in 2012 [2–5], great attention has been paid to the molecular functions of
circRNA, such as the microRNA (miRNA)/RNA-binding protein (RBP) sponge [4,6–8],
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transcriptional/epigenetic regulator [9,10], splicing regulator [11,12], modulator for protein–
protein interactions [13–15] and templates for encoding proteins [16–18].

It is known that circRNAs are transcribed from both the exonic and intronic regions of
coding or noncoding genes [19–22]. Several genome-wide analyses reported that circRNAs
originate from virtually any genomic locus, such as intergenic, intronic, coding region, 5′-
and 3′-untranslational regions (UTRs) [23,24]. Despite the diverse loci/regions of origin,
the majority of circRNAs are produced by the unique process termed ‘backsplicing’, in
which a downstream splice donor joins an upstream splice acceptor with no preference
for U2 or U12 spliceosome [5,25]. However, there are a few molecular properties/events
favoring the occurrence of backsplicing. First, the exons flanked by large introns tend
to be circularized [2,5,26,27] (Figure 1, top). Second, the repetitive sequences or any
complementary sequences in the flanking introns would bring the downstream splice
donor and upstream splice acceptor to a proximity, allowing the backsplicing to take
place [5,9,28,29] (Figure 1, left). In an analogy, RBPs antagonizing complementary pairing
hinder the efficiency of backsplicing, while RBPs favoring the interaction between flanking
introns enhance backsplicing [30] (Figure 1, middle). Lastly, the lost/masking of the splice
donor of the upstream flanking intron or splice acceptor of the downstream flanking intron
also increases the frequency of backsplicing (Figure 1, right). The cells should respond to
the external stimulation properly, and deregulated responses to cellular stresses typically
cause the development of human diseases. In this mini-review, we would like to focus
on the potential mechanisms underlying how cells modulate the process of backsplicing
in response to or during the cellular stresses. The presentation of these lines of clues
would help to bridge the external stimuli, backsplicing, and finally the biogenesis and
functions of circRNAs, shedding light on the identification of potential targets for treating
human diseases.
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DNA damage poses a significant threat to the cells, and thus it is critical for cells to 

properly respond to the DNA damage. One of the early molecular events of DNA damage 

Figure 1. Different models controlling backsplicing. The given pre-spliced RNA (top) consists of
introns (thin lines; blue ones for flanking long introns), circularizable exons (blue boxes) and the
exons for linear splicing (grey boxes), and may undergo the following processes for backsplicing.
The left panel shows the sequence-pairing dependent mechanism. A pair of arrows indicates the
complementary sequences in the flanking long introns for circularizable exons. The red curved arrow
indicates where the backsplicing takes place. Similarly, the interaction between flanking introns can
be mediated by RBPs (middle panel, purple spheres). Alternatively, the splicing modulators (right
panel, red or purple ovals) occupy the splicing signals (SS) and decrease the availability of splice
donors in the upstream intron and/or the availability of splice acceptors in the downstream intron,
inhibiting linear splicing and thereby favoring backsplicing.
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2. Roles of CircRNAs in Cellular Stress
2.1. Roles and Regulation of CircRNAs in Response to Genotoxic Stress

DNA damage poses a significant threat to the cells, and thus it is critical for cells to
properly respond to the DNA damage. One of the early molecular events of DNA damage
is mediated by phosphatidylinositol 3-kinase-related kinase (PI3KK) activation. In addition
to DNA repair, the activation of PI3KK coordinates global transcriptional repression [31–34].
DExH-Box helicase 9 (DHX9), also known as RNA helicase A, is associated with active
transcription machinery and is involved in resolving the secondary structure during active
transcription [35,36] (Figure 2A, left), while its helicase activity negatively regulates the for-
mation of circRNA [36]. Interestingly, DHX9 also plays important roles during DNA dam-
age response and is associated with factors related to DNA damage [37,38] (Figure 2A, top).
It was shown that the depletion of DHX9 using small interfering RNA decreases the levels
of a few circRNAs [36], and thus, factors inhibiting DHX9 activity may potentially facilitate
circRNA backsplicing. Intriguingly, DHX9 was post-translationally regulated by DNA
damage-induced ATM/ATR activation [39,40] (Figure 2A, top and right), and the phospho-
rylation sites located adjacent to the RNA binding motif. This suppressive phosphorylation
promotes the level of an oncogenic circRNA, CCDC66, which governs a subset of onco-
genes contributing to the development of chemoresistance [7,40]. The aberrant induction
of circRNAs is a feature of chemo-/radio-resistant colorectal cancer (CRC). It has been
reported that a group of circRNAs was upregulated in fluorouracil/radio-resistant CRC
consistent with the observation in oxaliplatin-resistant CRC [40,41]. In both platinum-based
chemo-resistant gastrointestinal tract-derived tumors, the patients with higher levels of
these circRNAs had a poorer prognosis, and the induction of the chemoresistance-regulated
circRNAs contributed to the metastatic features of the tumors [7,40,42]. In agreement with
the role of DHX9 in DNA damage response, DHX9 interacting partners, splicing factor
proline/glutamine rich (SFPQ) and non-POU domain-containing octamer binding protein
(NONO), were also recruited to the DNA damage site in an ATM-dependent manner [43]
(Figure 2B). Functionally, SFPQ hinders the activity of the cryptic splicing signal, regulating
the availability of the splicing signal for backsplicing [44]. The change of the subnuclear
localization of SFPQ and NONO may alter their availability for regulating splicing. It has
been reported that the absence/unavailability of SFPQ in the upstream intron of circulariz-
able exons promoted the backsplicing efficiency of a particular circRNA with a long intron,
but no proximal inverted Alu elements [44], implying that SFPQ may be involved in the
regulation of genotoxic stress-induced circRNA biogenesis.

The exact roles of circRNA have not been thoroughly explored. However, some
pioneer studies of noncoding RNA may point out the direction. For example, a group of
small non-coding RNAs, termed DNA damage-response RNA (DDRNA), were produced
by DICER and DROSHA in response to DNA damage, and contributed to the accumulation
of MDC1 and 53BP1 in the late stage of the DNA damage response [45]. lncRNA in
nonhomologous end joining (NHEJ) pathway 1 (LINP1) served as a platform for Ku80
and DNA-dependent protein kinase catalytic subunits (DNA-PKcs), promoting the activity
of NHEJ [46]. In contrast, small Cajal body-specific RNA 2 (scaRNA2) constrained the
activity of DNA-PK through binding to the catalytic subunit, and thus, scaRNA2 weakens
its interaction with the Ku70/80 subunits, as well as with the LINP1 lncRNA [47]. Whether
circRNA is involved in this fine regulation warrants further investigation.
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Figure 2. DNA damage response controls the function and availability of RBP for regulation of
backsplicing. (A) In the absence of DNA damage, DHX9 works with transcription machinery for
resolving the secondary structure of nascent RNA, and thereby keeps a low frequency of backsplicing
(bottom left). Upon double-stranded DNA breaks (top), the PI3KKs (ATM for example) are recruited
to the damage sites, accumulated and autophosphorylated for its maximal kinase activity and for
recruiting other DDR proteins. DHX9 is recruited to the damage site and becomes phosphorylated
near to its double-stranded RNA binding domain, hindering its binding to the double-stranded
RNA substrate. The unresolved pairing between upstream and downstream introns allows the
backsplicing to take place (bottom right). (B) In a similar fashion, SFPQ forms a complex with
DHX9 upon genotoxic stress. When SFPQ sits on the cryptic splice site in the upstream intron of
circularizable exons (orange boxes), SFPQ suppresses the linear splicing, which uses the cryptic site
(bottom left). However, when SFPQ becomes unavailable due to genotoxic stress-induced relocation
to DNA damage sites, the splicing uses up the splice signal, making backsplicing the only option for
the rest of the molecule (bottom right).

2.2. Modulation of CircRNA under Hypoxic Stress
2.2.1. Hypoxia-Regulated CircRNAs

Hypoxia, a condition in which cells are deprived of an adequate oxygen supply, is one
of the most challenging stresses to tissues, and plays vital roles in both physiological and
pathological processes such as tumorigenesis and diseases in various tissues/organs [48–52].
The post-translational and transcriptional regulation of hypoxia-inducible factor (HIF) have
been extensively investigated [53], but the roles of circRNA in response to hypoxia is yet to
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be explored. Hypoxia-regulated circRNAs were identified through transcriptomic analyses
in a handful pioneer studies [54,55]. Several hypoxia-induced circR-

NAs such as cireZNF292, circAFF1 and circDENND4C have been identified (Figure 3,
left). The upregulation of these genes is prone to result from the transcriptional activation,
but not the alteration of backsplicing efficiency. Among these circRNAs, circZNF292 was
shown to promote endothelial cell proliferation and sprouting through a non-miRNA
sponging activity. An independent study using models of breast cancer also reported
that the level of circDENND4C was upregulated by hypoxic stress, and was positively
correlated to the HIF-1α mRNA level and tumor size [28], implying the importance of
transcriptional activation by HIF-1α under hypoxia for circDENND4C induction. In spite
of the uncharacterized molecular functions of these hypoxia-regulated circRNAs, a cardiac-
necroptosis-associated circRNA (CNEACR) originating from exon 2 to 5 of Fbxw4 was
identified from a mouse model of ischemia/reperfusion [56] (Figure 3, right). The level of
CNEACR was downregulated by ischemia/reperfusion in mice, and the same pattern was
confirmed in the cell culture system. The expression of CNEACR was specific to myocytes
compared to fibroblasts, and resided more in cytoplasm than nuclei. The overexpression
of CNEAR attenuated hypoxia/reoxygenation-induced cell death. It was observed that
CNEAR interacts with histone deacetylase 7 (HDAC7) by using biotin pulldown assay and
trapping HDAC7 in cytoplasm. Mechanically, the trapping of HDAC7, a transcriptional
co-repressor, in cytoplasm relieved the suppression of Foxa2 and facilitated the induction
of Foxa2-regulated receptor-interacting protein kinase 3 (RIPK3). This particularly widened
the horizon regarding how circRNA may function in addition to miRNA sponges in phys-
iological and pathological conditions. Nevertheless, it has been reported that circRNA
may be used for inter-cellular communication by incorporation into exosomes [57,58].
Among these exosomal circRNAs, the level of circZNF91 was elevated by HIF-1α-mediated
transcriptional activation, and was shown to antagonize the activity of miR-23b-3p, pro-
tecting SIRT1 mRNA from degradation and contributing the development of gemcitabine
resistance [59].
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Figure 3. HIF-mediated transcriptional regulation of circRNAs. The majority of circRNA expression in
response to hypoxia is mediated through HIF-1α, which is stabilized by hypoxic stress (top). Through
binding to the promoter of target genes, HIF-1α either activates or suppresses the transcription. A
group of circRNA is upregulated via transcriptional activation, and mainly functions as a miRNA
sponge. CircZNF91 is incorporated into exosomes and delivered to remote sites where it exerts its
activity as an miRNA sponge. Nevertheless, CNEACR binds and sequesters HDAC7 in cytoplasm
in normoxia, while HIF-1α-inhibited CNEACR expression allows HDAC7 to be released and to
translocate to nuclei in hypoxia. HDAC7 represses the expression of Foxa2, relieving the expression
of Foxa2-inhibited target genes.
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2.2.2. Players Regulate Function and Abundance of CircRNAs in Hypoxia

Although the mechanisms underlying hypoxia-regulated circRNA biogenesis and
functions have not yet been fully explored, there are a few studies that have attempted to
demonstrate potential mechanisms. A comprehensive transcriptomic study indicated that
the binding motifs of heterogeneous nuclear ribonucleoprotein C (hnRNPC), human antigen
R (HuR) and poly(A)-binding protein 4 are enriched in the flanking introns of hypoxia-
regulated circRNAs [55]. Although none of these RBPs are readily linked to circRNA
biogenesis, there are some clues linking the regulation of backsplicing and hypoxia. For
example, the interaction of hnRNPC with DHX9 and competition with splicing factor
U2AF 65 kDa subunit (U2AF65) in Alu element make hnRNPC a potential regulator for
circRNA biogenesis under hypoxia [36,60]. The role of hnRNPC in controlling intron
pairing and backsplicing is supported by a study showing that the knockdown of hnRNPC
increased the abundance of double-stranded RNA regions [61]. This suppressive role
of hnRNPC on double-stranded RNA formation may be partially contributed to by the
ability of hnRNPC to interact with DHX9 [36]. In addition to resolving the RNA pairing,
completion between hnRNPC and U2AF65 for U tract within Alu elements suppresses the
splicing activity [60], and thus potentially inhibits backsplicing in the context of circRNA
biogenesis. In addition, it has been reported that the level of HuR is modulated by hypoxic
stress [62], and recognizes RNA motifs via the formation of homodimer [63], implying
that the backsplicing efficiency may be potentially modulated by the hypoxia-regulated
availability of HuR.

N6-methyladenosine (m6A), one of the most prevalent, abundant and conserved
modifications identified in eukaryotic RNAs, was recently identified on circRNA [64,65]
and serves as another link to hypoxia-regulated circRNA functions and homeostasis.
The abundance of m6A is dynamically regulated by a dozen m6A methyltransferases,
such as methyltransferase-like 3/14/16 [66–68], zinc finger CCCH-type containing 3 [69],
RNA binding motif protein 15 [70], WT1-associated protein [71,72] and vir-like m6A
methyltransferase-associated [72], and demethylases, fat mass and obesity-associated (FTO)
and AlkB homolog 5 (ALKBH5) [73,74]. Different effectors/readers include YTH domain-
containing family 1/2/3 (YTHDF1/2/3), YTH domain-containing 1/2 (YTHDC1/2), insulin-
like growth factor 2 mRNA-binding protein 1/2/3 (IGF2BP1/2/3) and hnRNPA2B1 grant
m6A multiple cellular/molecular functions. The deposition of m6A on circRNA differen-
tially controls various molecular events such as nuclear export, degradation, biogenesis and
translation by a distinct m6A reader [64,75–78]. For example, the deposition of m6A in exon
followed by the recognition of YTHDC1 promotes the backsplicing of circZNF609 and nu-
clear export of circNSUN2 in nuclei, while recognition by YTHDF3 in cytoplasm increases
translation [75,77] (Figure 4, top). Through recognition by a distinct m6A reader, YTHDF2,
which works with heat-responsive protein 12 and RNase P, a subset of m6A-containg
circRNAs, was destabilized [76]. Intriguingly, the expression of many m6A regulators was
regulated by hypoxic stress. The expression of m6A demethylase, FTO, was suppressed by
hypoxia [79], while the levels of ALKBH5, YTHDC1, YTHDF1 and YTHDF2 were upreg-
ulated [80–84] (Figure 4, indicated by (+) or (−)). Most of these cases were direct targets
of the hypoxia-inducible factor, while YTHDF1 was post-transcription-ally regulated by
hypoxia-induced miR-16-5p. These lines of evidence suggest that the hypoxia-regulated
m6A dynamics may control functions of a subset of circRNAs. Along with the hypoxia-
m6A-circRNA regulatory axis, circRNA also controls the level of HIF-1α. For example, it
was reported that circERBIN promotes the expression of HIF-1α through upregulation of
the cap-independent translation of HIF-1α by suppressing miRNAs targeting 4EBP-1 [85].
Taken together, this evidence highlights the critical roles of circRNA during hypoxic stress.
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Figure 4. Potential roles of hypoxia-responsive m6A effectors in regulation of circRNA functions.
The deposition of m6A on exons by m6A writers (such as ALKBH5) allows the binding of YTHDC1
(DC1), which promotes the backsplicing of circZNF609. In addition, YTHDC1 also helps the nuclear
export of circRNA. In cytoplasm, the m6A-harboring circRNA is recognized by YTHDF3 (DF3) and
proceeded to translation, or alternatively bound by YTHDF2 (DF2) and targeted for degradation. The
m6A eraser, FTO, eventually removes the modification. (+): reported to be upregulated by hypoxic
stress; (−): suppressed by hypoxia.

3. Heat Shock Stress

The heat shock response is well studied in aspects of both transcriptional and transla-
tional regulation. However, whether the functions or expression of circRNA are controlled
under such circumstances remains largely unknown. Recently, the coding potential of
circRNA has begun to receive more attention. One of the cap-independent translations
of circRNA is mediated by m6A [77] (Figure 5). It has been reported that m6A reader—
YTHDF2—translocates to the nuclei and protects the m6A within 5′-UTR of mRNA from
FTO-mediated demethylation and promotes translation through the recruitment of eukary-
otic initiation factor 3 (eIF3) in response to heat shock [86,87]. Consistent with the role of
the m6A-stimulating cap-independent translation of mRNA, the m6A-mediated translation
of circRNA is enhanced by heat shock [17,64], implying that YTHDF2 and/or eIF3 may be
potential players for regulating the coding activity of circRNA under heat shock stress.
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Figure 5. Potential roles of m6A in regulation of circRNA translation in response to heat shock. Upon
heat stress, YTHDF2 (DF2) binds m6A-modified circRNA, and prevents FTO-mediated demethylation.
The ribosomes are recruited to circRNA through eIF3/YTHDF2.

4. Closing Remarks

The regulation of circRNA under genotoxic stress, hypoxia and heat shock stress
is discussed in the current article. Although many progressions have been made in the
last decade since the re-discovery of circRNA regarding its functions and distribution in
2012 [2–5], the diverse mechanisms underlying the regulation of backsplicing still remain
largely uncharacterized. In this mini-review, how the known effectors under three of
the major cellular stresses potentially link to backsplicing modulators were outlined and
discussed. These materials should prompt researchers to identify the current gaps in
circRNA regulation, and hopefully stimulate the investigation for paving new roads for the
development of novel strategies to treat human diseases.
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