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Abstract: The circumstances of measurement have more direct significance in quantum than in
classical physics, where they can be neglected for well-performed measurements. In quantum
mechanics, the dispositions of the measuring apparatus-plus-environment of the system measured
for a property are a non-trivial part of its formalization as the quantum observable. A straightforward
formalization of context, via equivalence classes of measurements corresponding to sets of sharp
target observables, was recently given for sharp quantum observables. Here, we show that quantum
contextuality, the dependence of measurement outcomes on circumstances external to the measured
quantum system, can be manifested not only as the strict exclusivity of different measurements
of sharp observables or valuations but via quantitative differences in the property statistics across
simultaneous measurements of generalized quantum observables, by formalizing quantum context via
coexistent generalized observables rather than only its subset of compatible sharp observables. Here,
the question of whether such quantum contextuality follows from basic quantum principles is then
addressed, and it is shown that the Principle of Indeterminacy is sufficient for at least one form of
non-trivial contextuality. Contextuality is thus seen to be a natural feature of quantum mechanics
rather than something arising only from the consideration of impossible measurements, abstract
philosophical issues, hidden-variables theories, or other alternative, classical models of quantum
behavior.

Keywords: contextuality; uncertainty relations; indeterminacy relations; unsharp observable;
unsharp reality; localization; POVM; quantum mechanics; Copenhagen interpretation

1. Introduction

The dependence of measurement results on their physical circumstances, known as quantum
contextuality, and its extension beyond quantum mechanics have been of increased interest in the
foundations of quantum theory and elsewhere where measurement and information may play an
important role, including linguistics; cf., for example, References [1–5]. The first notion of contextuality
in quantum mechanics arose from the requirement of specifying the circumstances of measurements
of quantities insisted on by Niels Bohr and Werner Heisenberg, who noted the possible dependence
and, most strikingly, nonexistence of the outcome of any non-trivial measurement due to other
measurements performed or performable in principle on the measured system [1]; the specification of
such circumstances serves, de facto, as the specification of what we here consider quantum context.

Possible hidden-variables supplementing observables, considered in the 1930s by Heisenberg,
and arguments of John von Neumann against such variables have since informed explorations
of contextuality in and, especially, beyond quantum mechanics, but appear also to have obscured its
natural quantum character. A form of context natural to quantum mechanics is definable in terms of
sets of quantum observables and their characteristics. Contextuality, defined as the variability of the
statistics of measurement of a property across quantum contexts, has been considered in those terms:
Context was recently defined as the equivalence class of experimental arrangements corresponding to
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a set of measurements of compatible quantum observables O represented by mutually commuting
Hermitian operators which correspond to projection-valued measures (PVMs) and, so, to a set of such
observables [1]. This is a practical definition of context for sharp measurements, in that it does not
involve sets of observables that cannot be carried out simultaneously.

Here, a more general but still practical definition of context C is considered and defined as the
equivalence class of experimental arrangements corresponding to a set of measurements of coexistent
generalized observables, that is, a set of positive operator-valued measures E (POVMs) which can
be obtained as marginals of a single joint POVM; cf. References [6–9]. This allows the significance
of context to be quantitatively assessed rather than being viewed only as the manifestation of strict
complementarity. This class of arrangements is then used to demonstrate that quantum contextuality
can be grounded in the Principle of Indeterminacy, which is also amenable to quantitative expression,
showing that contextuality is a genuine, natural, quantitative feature of quantum mechanics rather
than being inherently qualitative or tied to hidden-variables theories or other alternative models of
quantum behavior.

2. Background: Indeterminacy as Principle

The indeterminacy first identified in quantum mechanics was most broadly expressed by
Heisenberg as the proposition that “canonically conjugate quantities can be determined simultaneously
only with a characteristic inaccuracy” (Ungenauigkeit), a statement about imprecision of value of
mechanical properties. Although the imprecision can be related to uncertainty, it does not primarily
regard a lack of knowledge [10], but regards it only secondarily. Heisenberg later recalled that, while
attempting to come to grips with this indeterminacy, Bohr “preferred to play between the particle-
and wave-pictures while I tried to use the mathematical scheme and its probabilistic interpretation”
which provides the statistics for properties in the allowed system states. Determination is generally
taken to be concomitant with strict predicability following from the existence of laws underwriting
a strict form of causation. The essence of Heisenberg’s quantum indeterminism is the idea that the
precision of simultaneous specifiability of values of some pairs of physical magnitudes can be limited
as a matter of principle, which then fundamentally limits predictability; cf., for example, Reference [11].
The extent of those fundamental limitations—in particular, those on the statistics of the quantities
symbolized by what have come to be known as sharp quantum observables—were then formulated by
him and others.

Heisenberg began by considering limitations on position and momentum in the formalism of
quantum mechanics in light of the question, “Is it perhaps true that only such situations occur in
nature or in experiments which can be represented in the mathematical scheme of quantum mechanics?
That meant: there was not a real path of the electron in the cloud chamber. There was a sequence of
water droplets. Each droplet determined inaccurately the position of the electron, and the velocity
could be determined inaccurately from the sequence of droplets. “. . . the calculation gave a lower limit
for the product of the inaccuracies of position and momentum. It remained to be demonstrated that
the result of any well defined observation would obey this relation of uncertainty. Many experiments
were discussed . . . The results confirmed the validity of the relations . . . that the way in which quantum
theory was used in the analysis of observations, was compatible with the mathematical scheme . . . ” [12],
p. 5. Ultimately, Heisenberg concluded that “in the sharp formulation of the law of causality, ‘If we
know the present exactly, we can calculate the future,’ it is not the consequent that is wrong, but the
antecedent. We cannot in principle get to know the present in all determining data” ([13], p. 197).
Such inherent unsharpness, considered here, has only relatively recently been well formalized in
general, similarly to the initially formalized, sharp quantities [6].

The fundamental imprecision of quantities appearing in quantum mechanics contradicts the
classical Principle of Determinacy attributed to Isaac Newton, that is, the thesis that the values of
physical properties—for him, the positions and velocities of all the particles in the world—at some
initial instant, in the absence of interventions, determine all their future and their past values; cf.,
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for example, Reference [14], p. 68. The quantum limitation of physical specification was quickly
considered a principle, and became known as the (Heisenberg) Principle of Indeterminacy (HPI),
or Uncertainty Principle that suggested to him a specific interpretation of quantum mechanics that
came to be associated with Copenhagen; cf. Reference [15]. For Heisenberg, “The main point in this
new interpretation of quantum theory was the limitation in the applicability of the classical concepts.
This limitation is in fact general and well defined; it applies to . . . position, velocity, energy, as well as
amplitude, wavelength, density” ([12], pp. 5–6), which are considered intuitive (anschaulich).

3. Background: Indeterminacy Relations

The identified trade-off between the precision of simultaneous specification of position and of
momentum, which Heisenberg discovered through the analysis of state measurement, was taken as an
immediately generalizable example with which to infer both a principle and corresponding precise
mathematical relations. The first instance of the expressions at which he arrived was

q1 p1 ∼ h , (1)

where q1 = δq, p1 = δp correspond to measurement accuracies, but it was immediately generalized
beyond this pair of conjugate properties in the same paper [13]. Heisenberg also gave the relation for
simultaneous measurement (in)accuracies ∆x, ∆p of position and momentum as the inequality

∆px∆x ≥ h , (2)

where px indicates the component of momentum in the spatial x-direction [10], p. 14.
To arrive at these relations, Heisenberg had specifically considered as his archetype an

experimental situation involving the optical probing of an electron. “At the instant of time when
the position is determined, that is, at the instant when the photon is scattered by the electron, the
electron undergoes a discontinuous change in momentum. This change is the greater the smaller the
wavelength of the light employed, that is, the more exact the determination of the position. At the
instant at which the position of the electron is known, its momentum therefore can be known only up
to magnitudes which correspond to that discontinuous change;” [13], pp. 174–175.

Heisenberg arrived at the mathematical expression of his new principle after considering this
together with Compton scattering within his theory of matrix mechanics, arguing “Thus, the more
precisely the position is determined, the less precisely the momentum is known, and conversely. In this
circumstance, we see a direct physical interpretation of the equation

QP− PQ = ih̄, ” (3)

namely, that the measurement inaccuracies “stand in the relation” of Equation (1), which is
“a straightforward mathematical consequence of the rule" of non-commutativity, Equation (3). He
argued that this move also provides a demonstration of the Anschaulichkeit of this matrix (operator)
relation; cf., for example, References [16,17]. This understanding of the limitations on theoretical
notions was viewed as reinforced purely empirically (rein erfahrungsgemäß), in that experiments
measuring pairs of such quantities are found to have such indeterminacies precluding their joint sharp
observation.

These relations were immediately generalized to include time-energy and action-angle relations
analogous to those for the position-momentum pair, by exploiting corresponding commutation
relations and contemplating the methods for their observation. “The experiments which provide
a [quantum] definition themselves suffer an indeterminacy introduced purely by the observational
procedures we use when we ask of them the simultaneous determination of two canonically conjugate
quantities. The magnitude of this indeterminacy is given by relation (1) (generalized to any canonically
conjugate quantities whatsoever)” [13]. Heisenberg also noted that the indeterminacy relation (1)
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“can be derived from the Dirac-Jordan formulation by a slight generalization” involving translating
quantum probabilities with corresponding Gaussian spreads, whereby one arrives at saturated versions
of inequalities like Equation (2), for example, the equality

δq1δp1 = h̄, (4)

that is, Equation (6) of Reference [13].
Quantum mechanics was soon more fully formalized in work of Paul Dirac [18] and von

Neumann [19–21], wherein Heisenberg’s relations can be expressed in terms of the variances of
Hermitian operators on Hilbert-space evaluated for particular quantum states, ρ. The variance
(dispersion) of an operator A, given in a general quantum state, is Varρ A ≡ 〈(A− 〈A〉I)2〉ρ = 〈A2〉ρ −
〈A〉2ρ. The square root of the variance, the standard deviation, is the ‘uncertainty’ ∆A ≡

√
Varρ A of A

in state ρ; in the three-dimensional setting, Equation (2) is

∆Pi∆Qi ≥
h̄
2

δij, (5)

where the indices are spatial components of these vectorial quantities for a massive particle such as the
electron. In the general case, as Robertson showed shortly thereafter, “The uncertainty principle for
two [Hermitian operators] whose commutator AB− BA = hC/2πi is

∆A∆B ≥ h|C0|/4π, ” (6)

where the values of the constants “if the two variables are conjugate, for then C, and consequently C0

are ±1.” [22]. In the case of position and momentum, one has (in the modern formalism) then for the
product of their variances

〈(∆x)2〉ρ〈(∆px)
2〉ρ ≥ h̄2/4. (7)

It is possible to axiomatize quantum mechanics consistently with the approach of the
above-mentioned workers by taking the set of observables O represented by Hermitian operators on
complex Hilbert space H, that is, sharp observables, as basic axiomatic elements ; cf. Reference [23],
pp. 248–249. In this axiomatic approach, the state ψ of a quantum system can be considered a complete
description of it; cf. Reference [23], pp. 248–249. The state is determined by the set of expectation
values {s(Ai)} for all Ai ∈ O, which are always well defined so long as the observables of O are
bounded. Expectation values are required to be such that s(I) = 1, where I is the identity operator,
and that s(αA + βB) = αs(A) + βs(B)), for A, B ∈ O, for all real α, β, whenever A and B commute,
with the additional imposition of a continuity condition, namely, that a sequence of bounded operators
Ai converges strongly to a bounded operator A if Aiψ→ Aψ for all vectors ψ ∈ H of the observables
when prepared in it, that is, via the expectation functionals S on O. Then, for any two quantum (sharp)
observables A and B and a generic state ρ, the general indeterminacy relation

〈(∆A)2〉ρ〈(∆B)2〉ρ ≥
1
4
|〈[A, B]〉ρ|2, (8)

which is now referred to as the Heisenberg–Robertson relation, also follows Reference [22]. (For a
straightforward contemporary derivation of this expression in bra-ket notation, see Reference [24],
pp. 35–36.) Sharp observables of two canonically conjugate quantities, which provide a simple example
of contextuality, discussed further in the next section, do not commute and the right hand side is
non-zero as, for example, Equation (5) for i = j, and their joint measurement is impossible.

HPI, given in precise form such as Equation (6) or (8), expresses quantitively the in-principle
limitations on the precision of joint determination of physical quantities, whatever might be the
means of their measurement, and is connected with ψ as part of Heisenberg’s answer to the question
“How can we translate the result of an observation into the mathematical scheme” incorporating
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Equation (3). This is the manner in which the Newtonian Principle of Determinacy is contradicted
by HPI. A contemporary discussion of uncertainty relations in regard to measurement noise and
disturbance can be found in Reference [25]. One may note that Heisenberg considered light in the
form of a gamma-ray pulse as a tool for determining the position and momentum of an electron, but
in his initial discussions pertinent here [10,13], his subject of interest was the question of the joint
measurement of the properties of an electron rather than of the light pulse itself; however, uncertainty
relations relating to light were to become of great interest later—a detailed discussion of its application
in relation to photons and coherent states that involves the modern mathematical techniques of POVMs
used here can be found in Reference [8].

4. Contextuality from Indeterminacy

With the background, origins, and senses of the HPI now in mind, our main result—that a form
of quantitatively assessible contextuality is implied by the quantitative formulations of HPI—can be
demonstrated which ultimately follows from the quantum characteristic that measurement at the
atomic scale is such that “individual atomic processes. . . , due to their very nature, are determined by
the interaction between the objects in question and the measurement instruments necessary for the
definition of the experimental arrangement” [26]. This characteristic was to some extent indicated
early on by the well-established results of von Neumann regarding the joint measurability of sharp
observables. Recall that a set of measurements represented by commuting sharp observables, that is,
Hermitian Hilbert-space operators A and B is compatible if [A, B] = 0̂ and incompatible if [A, B] 6= 0̂,
that is, if two observables commute then they can be simultaneously measured, and cannot be if they
do not commute; cf. Reference [19–21], Section III.3.

However, measurability per se is not part of the standard axiomatics of quantum theory nor of its
general principles which are, by constrast, algebraic and statistical. (However, Schwinger’s abductive
represents a sensible approach for going about this; cf. Reference [27], wherein the word “abduction"
was changed to “induction” in typesetting, in error.) Because quantitative expressions of HPI, which is
a general principle following from (at least one of) its axiomatization(s) and arrived at by Heisenberg
from consideration of the statistics of measurements of the kind suggested by Equation (1), it is the
natural place to locate the origin of the corresponding form of quantum contextuality.

Let us, therefore, define a (general) quantum context, C, as an equivalence class of physical
arrangements for the measurement of a set of properties, symbolized by a set of observables, whether
sharp or unsharp, where the statistics of outcomes of coexistent joint measurements of these observables
are unaffected by the measurement of the others of that set. The definition of context provided
here is a straightforward generalization of that given in Reference [1], which considered only sharp
observables, that also involves the generalization from compatible to coexistent observables. The
general class of observables includes both the traditional sharp observables as well as the other,
unsharp observables. The maximally specified state of a quantum system relative to an observable
O can be given as a projector, corresponding to a projection-valued measure, ρpure ≡ Po = |ψ〉〈ψ|
appearing in the spectral decomposition of an observable O; cf. Reference [6], Section 2. Those
observables representable as projectors are the sharp observables.

In addition to measurements corresponding to such operators, unsharp observables are the class
of quantum operations that are described by (normalized) positive-operator-valued measures, POVMs;
the POVMs are the natural correspondents in the operator space of quantum mechanics of standard
probability measures and are defined as follows. Given a nonempty set S and a σ-algebra Σ of its subsets
Xm, a POVM E is a collection of operators {E(Xm)} satisfying three conditions: (i) Positivity—E(Xm) ≥
E(∅), for all Xm ∈ Σ; (ii) Additivity—for all countable sequences of disjoint sets Xm in Σ, E(∪mXm) =

∑m E(Xm); (iii) Completeness—E(S) = I. If the value space (S, Σ) of a POVM E is a subspace of the real
Borel space (R,B(R)), then E provides a unique Hermitian operator onH, namely

∫
R Id dE, where Id

is the identity map. It is the unsharp observables that allow us to consider contextuality more broadly
as we do here.
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The positive operators E(Xm) in the range of a POVM are referred to as effects E(H) = {A ∈
L(H) : O ≤ A ≤ I}, the expectation values of which provide the quantum probabilities. Given an
effect A, properties are definable by the following set of conditions. (i) There exists a property A⊥,
where A⊥ = I− A is the orthocomplementation of A; (ii) There exist states ρ and ρ′ such that both
tr(Aρ) > 1

2 and tr(Aρ′) > 1
2 ; (iii) If A is regular, for any effect B below A and A⊥, 2B ≤ A + A⊥ = I,

where a regular effect is an effect with spectrum both above and below 1
2 . Thus, the set of properties is

Ep(H) = {A ∈ E(H)|A � 1
2I, A � 1

2I} ∪ {O, I}; the set of unsharp properties is Eu(H) ≡ E(H)p/L(H).
A POVM is an unsharp observable if there exists an unsharp property in its range [7].

The probability of a given outcome m upon a (generalized) measurement on a system in a pure
state P(|ψ〉) is

p(m) = 〈ψ|E(Xm)|ψ〉 = tr
(
(|ψ〉〈ψ|)E(Xm)

)
; (9)

cf. Equation (1), which holds for the case of sharp measurement. The effects form a convex subset of
the space of linear operators on L(H) on the system Hilbert space, the extremal elements of this subset
being the projectors {Pi} which, again, are those corresponding to the sharp observables.

A collection of effects is coexistent if the union of their ranges is contained within the range
of a POVM. Any two quantum observables E1 and E2 are representable as sharp measures on (R,B(R))
exactly when [E1, E2] = O, following from Reference [19–21]. Coexistent observables are thus those
that can be measured simultaneously in a common measurement arrangement, and when two observables
are coexistent, there exists an observable the statistics of which contain those of both observables, the
joint observable. Typically, the two observables are recoverable as marginals of a joint distribution on
the product of the corresponding two outcome spaces.

Although the fullest measurement of state possible can be given by a complete set of commuting
operators, corresponding to a context {E1, E2, . . .} [1], the measurement of a set of coexistent unsharp
observables may provide equally good state specifications, that is, be informationally complete; the
latter are generalized observables corresponding to unsharp measurements which can be performed of
two properties whose sharp observables are incompatible. Thus, the Ei of a context are required here
to be coexistent rather than commuting, as befits comeasurability for generalized observables. Along
the lines similar to Reference [4], let us then take contextuality to be defined as follows. If a measurement
of two or more properties is such that, for any system state, the joint measurement of two of them,
AB, does not provide the same measurement statistics for A and B as those found when they are
measured separately, then contextuality is present. This contextuality is readily found in the case of
sharp observables. For example, consider the following quantities: position and momentum along
the x-direction. Each quantity has a corresponding sharp observable, position X and momentum PX ,
respectively, and, when measured separately (in different contexts), these quantities are each found to be
determined as precisely as desired. When a system, say, an electron, prepared in the same state, say,
centered on the origin of coordinates, separate measurements of these quantities in the two contexts
C1 = {PX, Y} (for measurement of x-direction momentum and y-axis position) and C2 = {X, Py}
(for measurement of x-axis position and y-direction momentum) will each yield a well-defined value
(and, hence, expectation and variance statistics). On the other hand, x-axis position and x-direction
momentum cannot be jointly sharply determined—indeed, there is no sharp joint observable for their
product; the product of their Hermitian operators, XPX , is not itself Hermitian. Concomitantly, there
exists no quantum context, in our sense, for the simultaneous measurement of the corresponding sharp
observables. One sees that the measurement of these quantities is contextual in the above sense.

The HPI in the realm of generalized observables implies a more non-trivial contextuality, in
that simultaneously measurements of the same quantities in different contexts can have different
but existent statistics, in particular, the standard deviation of values for two quantities, A and B,
across contexts involving the measurement of coexistent unsharp observables of properties, the sharp
observables for which are incompatible.

In the general quantum setting, each context is identified by the circumstances of measurement,
such as the coupling strengths of detection systems for the observables involved, for example,
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in conformance with the Arthurs–Kelly model (cf. Reference [8], Section II.2.3, pp. 152–153). For
position and momentum, these are reflected in the (coexistent) unsharp observables Ee and F f

generalizing the projection-valued measures E and F, obtained by the convolution of E and F with
(confidence) functions e and f —for example, corresponding to couplings and providing weights over
E and F respectively (see Equations (10) and (11) below)—for the (incompatible) sharp measurements
of position and momentum (here considered in one dimension); [8], pp. 59–65. For the corresponding
indeterminacy relations to hold, it is sufficient for the unsharp observables Ee and F f to be a Fourier
couple. In particular, the confidence functions e, f are taken such that ∆(e)∆( f ) ≥ 1/2; cf. Reference [8],
p. 108, Reference [28]. This (Fourier) dispersion property of the confidence functions is a basis for
the pair Ee, F f to be referred to as a “Fourier couple.” (An extended exposition of the mathematical
properties of Fourier couples, their dispersion, appearance in the theory of joint distributions initiated
by Wigner and Gabor, and other applications can be found in, for example, Reference [28]. Here, the
(bounded) confidence functions are of the form e(q) = S0(q, q), f (p) = Ŝ0(p, p), where “ˆ” indicates
the momentum representation, and S0(·, ·) is the matrix element of the phase space density S0, which
is a positive trace-class operator of unit trace.)

The functions e(q), f (p) provide weights over the family of associated projections E, F appearing
in the convolutions over position and momentum associated with the phase space, yielding the
unsharp observables:

Ee(x) =
∫

e(q)E(x + q)dq (10)

and
F f (y) =

∫
f (p)F(y + p)dp. (11)

Each pair of such unsharp observables Ee, F f then provides a context Ce, f = {Ee, F f } corresponding to
the joint determination of unsharp position and momentum by an equivalence class of measurement
arrangements. Taking confidence functions with vanishing first and finite second moments, one has∫

qdEe(q) =
∫

qdE(q) = X (12)

∫
pdF f (p) =

∫
pdF(p) = P (13)

and
Var(Ee, ψ) = Var(E, ψ) + Var(e) (14)

Var(F f , ψ) = Var(F, ψ) + Var( f ), (15)

where ψ is the (pure) system state and Var(Oo, ψ) indicates the variance of the probability measure
pOo

ψ for its observable O and confidence function o [8], p. 60. The following theorem (Busch et al. [8],
p. 63) then expresses the HPI for unsharp position and momentum that implies contextuality for any
quantum state T.

A pair Ee, F f of unsharp position and momentum observables are jointly measurable (by
means of a continuous phase space observable) if they are a Fourier couple, where e and f are
confidence functions. In this case the standard deviations of Ee and F f satisfy the uncertainty
relation

Var(Ee, T)Var(F f , T) ≥ 1, (16)

for any quantum state T.

One sees that there can be different deviation statistics and, so, contextuality for the position
and momentum in any state T depending on the nature of the apparatus and its couplings for the
joint measurements simultaneously performed, that is, the context, the entire range of possible values
of which can be taken as expressed by e, f : Ee and F f have, in general, differing standard deviations
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across the set of contexts {Ce, f }. Most evidently, consider a pair of confidence functions e0, f0 for
which the inequality of Equation (16) is saturated and another pair, e, f , for which it is not; then,
either Var(Ee, T) 6= Var(Ee0 , T), Var(F f , T) 6= Var(F f0 , T), or both, exhibiting a difference of variance
statistics. Thus, contextuality is implied directly by the HPI.

5. Conclusions

In quantitative form, Heisenberg’s Principle of Indeterminism is expressible via a product of
variances, that is, indeterminacy relations. Here, the HPI is shown to be sufficient for the existence of
natural quantum contextuality in quantum mechanics in the setting of generalized observables. This is
done by demonstrating the dependence of position and momentum statistics on measurement context
using the HPI for simultaneously measurable, coexistent unsharp-observable counterparts of those
observables considered in early stages of the theory’s development, when the HPI was first stated.
A quantitative form of contextuality is thereby seen to be an inherent feature of quantum mechanics,
rather than one imported via some alternative mechanical model or purely philosophical notion.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Jaeger, G. Quantum Contextuality in the Copenhagen Approach. Philos. Trans. R. Soc. A 2019, 377, 20190025.
[CrossRef] [PubMed]

2. Haven, E.; Khrennikov, A. Quantum Social Science; Cambridge University Press: Cambridge, UK, 2013.
3. Cervantes, V.H.; Dzhafarov, E.N. Snow Queen is Evil and Beautiful: Experimental evidence for probabilistic

contextuality in human choices. Decision 2018, 5, 193. [CrossRef]
4. Cabello, A. Experimentally Testable State-Independent Quantum Contextuality. Phys. Rev. Lett. 2008, 101, 210401.

[CrossRef] [PubMed]
5. Kitto, K.; Ramm, B.; Sitbon, L. Quantum Theory Beyond the Physical: Information in Context. Axiomathes

2011, 21, 331. [CrossRef]
6. Busch, P.; Grabowski, M.; Lahti, P. The Quantum Theory of Measurement, 2nd Revised ed.; Springer:

Berlin/Heidelberg, Germany, 1996.
7. Busch, P.; Grabowski, M.; Lahti, P. Repeatable Measurements in Quantum Theory: Their role and Feasibility.

Found. Phys. 1995, 25, 1239. [CrossRef]
8. Busch, P.; Grabowski, M.; Lahti, P. Operational Quantum Physics; Sections VII.3–VII.4; Springer:

Berlin/Heidelberg, Germany, 1997.
9. Busch, P.; Jaeger, G. Unsharp Quantum Reality. Found. Phys. 2010, 40, 1341. [CrossRef]
10. Heisenberg, W. The Physical Principles of Quantum Theory; University of Chicago Press: Chicago, IL, USA, 1930.
11. Jaeger, G. Quantum randomness and Unpredictability. Fortschr. Phys. 2017, 65, 1600053. [CrossRef]
12. Heisenberg, W. Remarks on the Origin of the Relations of Uncertainty. In The Uncertainty Principle and

Foundations of Quantum Mechanics: A Fifty-Year Survey; Price, W.C., Chissick, S.S., Eds.; John Wiley and Sons:
London, UK, 1977.

13. Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys.
1927, 43, 172. [CrossRef]

14. Arnold, V.I. Huygens and Barrow, Newton and Hooke; Birkhäuser Basel: Basel, Switzerland, 1990.
15. Price, W.C.; Chissick, S.S. The Uncertainty Principle and Foundations of Quantum Mechanics: A Fifty-Year Survey;

John Wiley and Sons: London, UK, 1977.
16. Beller, M. Quantum Dialogue: The Making of a Revolution; University of Chicago Press: Chicago, IL, USA, 1999;

pp. 113–114.
17. Hilgevoord, J.; Uffink, J. The Uncertainty Principle. In The Stanford Encyclopedia of Philosophy; Winter 2016 ed.;

Zalta, E.N., Ed.; Stanford, CA, USA 2016. Available online: https://plato.stanford.edu/archives/win2016/
entries/qt-uncertainty/ (accessed on 15 July 2020).

18. Dirac, P.A.M. The Principles of Quantum Mechanics; Clarendon Press: Oxford, UK, 1930.

http://dx.doi.org/10.1098/rsta.2019.0025
http://www.ncbi.nlm.nih.gov/pubmed/31522644
http://dx.doi.org/10.1037/dec0000095
http://dx.doi.org/10.1103/PhysRevLett.101.210401
http://www.ncbi.nlm.nih.gov/pubmed/19113394
http://dx.doi.org/10.1007/s10516-010-9144-6
http://dx.doi.org/10.1007/BF02055331
http://dx.doi.org/10.1007/s10701-010-9497-0
http://dx.doi.org/10.1002/prop.201600053
http://dx.doi.org/10.1007/BF01397280
https://plato.stanford.edu/archives/win2016/entries/qt-uncertainty/
https://plato.stanford.edu/archives/win2016/entries/qt-uncertainty/


Entropy 2020, 22, 867 9 of 9

19. Von Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin, Germany, 1932.
20. Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ,

USA, 1955.
21. Beyer, R.T. (Ed.) Mathematische Grundlagen der Quantenmechanik; English translation of Von Neumann, J.;

Springer: Berlin, Germany, 1932.
22. Robertson, H. P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163. [CrossRef]
23. Gudder, S. Four Approaches to Axiomatic Quantum Mechanics. In The Uncertainty Principle and Foundations

of Quantum Mechanics: A Fifty-Year Survey; Price, W.C., Chissick, S.S., Eds.; John Wiley and Sons: London,
UK, 1977.

24. Sakurai, J. J. Modern Quantum Mechanics; Addison-Wesley: Reading, MA, USA, 1994.
25. Ozawa, M. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance

in measurement. Phys. Rev. A 2003, 67, 42105. [CrossRef]
26. Bohr, N. Natural Philosophy and Human Cultures. Nature 1938, 143, 268. [CrossRef]
27. Jaeger, G. Grounding the Randomness of Quantum Measurement. Philos. Trans. R. Soc. A 2016, 374, 20150238.

[CrossRef] [PubMed]
28. Roy, S.; Kundu, M. K.; Granlund, G. H. Uncertainty Relations and Time-Frequency Distributions for Unsharp

Observables. Inf. Sci. 1996, 89, 193. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRev.34.163
http://dx.doi.org/10.1103/PhysRevA.67.042105
http://dx.doi.org/10.1038/143268a0
http://dx.doi.org/10.1098/rsta.2015.0238
http://www.ncbi.nlm.nih.gov/pubmed/27091162
http://dx.doi.org/10.1016/0020-0255(95)00232-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background: Indeterminacy as Principle
	Background: Indeterminacy Relations
	Contextuality from Indeterminacy
	Conclusions
	References

