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A mathematical model of iron import and
trafficking in wild-type and Mrs3/4ΔΔ yeast
cells
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Abstract

Background: Iron plays crucial roles in the metabolism of eukaryotic cells. Much iron is trafficked into mitochondria
where it is used for iron-sulfur cluster assembly and heme biosynthesis. A yeast strain in which Mrs3/4, the high-
affinity iron importers on the mitochondrial inner membrane, are deleted exhibits a slow-growth phenotype when
grown under iron-deficient conditions. However, these cells grow at WT rates under iron-sufficient conditions. The
object of this study was to develop a mathematical model that could explain this recovery on the molecular level.

Results: A multi-tiered strategy was used to solve an ordinary-differential-equations-based mathematical model of
iron import, trafficking, and regulation in growing Saccharomyces cerevisiae cells. At the simplest level of modeling,
all iron in the cell was presumed to be a single species and the cell was considered to be a single homogeneous
volume. Optimized parameters associated with the rate of iron import and the rate of dilution due to cell growth
were determined. At the next level of complexity, the cell was divided into three regions, including cytosol, mitochondria,
and vacuoles, each of which was presumed to contain a single form of iron. Optimized parameters associated with
import into these regions were determined. At the final level of complexity, nine components were assumed within the
same three cellular regions. Parameters obtained at simpler levels of complexity were used to help solve the more
complex versions of the model; this was advantageous because the data used for solving the simpler model variants
were more reliable and complete relative to those required for the more complex variants. The optimized full-complexity
model simulated the observed phenotype of WT and Mrs3/4ΔΔ cells with acceptable fidelity, and the model exhibited
some predictive power.

Conclusions: The developed model highlights the importance of an FeII mitochondrial pool and the necessary
exclusion of O2 in the mitochondrial matrix for eukaryotic iron-sulfur cluster metabolism. Similar multi-tiered strategies
could be used for any micronutrient in which concentrations and metabolic forms have been determined in different
organelles within a growing eukaryotic cell.
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Background
The complexity of biochemical processes in growing
eukaryotic cells is enormous, often rendering the corre-
sponding genetic phenotypes difficult to understand at the
chemical level. One means of analyzing such systems is to
develop ordinary-differential-equation (ODE1)-based
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kinetic models [1–3]. In principle, such models can reveal
on a quantitative basis whether observed phenotypic be-
havior could emerge from a proposed system of reacting
chemical players using a particular set of kinetic and
thermodynamic parameters. This is a huge advantage rela-
tive to the common practice of describing complex bio-
chemical processes as a cartoon or scheme. Another
advantage of math-based kinetic models is that all as-
sumptions are explicit and available for public inspection
whereas cartoons and schemes generally include hidden
assumptions. The major disadvantage of such kinetic
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models is that a complete and accurate dataset, including
rate-law expressions, rate-constants, and reactant concen-
trations, are required to solve them and to endow them
with predictive power. Rarely is all such information avail-
able, and available information is often less quantitative
than desired.
A common approach to circumventing this problem is

to employ simple models (in terms of numbers of com-
ponents and reactions) that nevertheless remain capable
of generating observed cellular behavior and of explain-
ing genetic phenotypes. Designing such models involves
deciding which species and reactions to include, which
to leave out, and which to combine into groups. Such
decisions often boil-down to whether including an add-
itional component or reaction is “worth” (in terms of
generating the desired behavior) an additional adjustable
parameter. Simple models with few adjustable parame-
ters simplify reality but they can also provide fundamen-
tal insights into reality - by penetrating through the
entangled and bewildering complexity of a highly com-
plex system.
Iron is critical for all eukaryotic cells [4, 5]. It is

present in many forms including heme centers,
iron-sulfur clusters (ISCs), nonheme mononuclear spe-
cies, and iron-oxo dimeric centers. Such centers are
commonly found in the active-sites of metalloenzymes.
Iron plays a major role in energy metabolism; e.g. there
are iron-rich respiratory complexes located on the inner
membrane of mitochondria. Mitochondria are the pri-
mary site in the cell where ISCs are assembled, and the
only site where iron is installed into porphyrins during
heme biosynthesis. For these reasons, mitochondria are
a major ‘hub’ for iron trafficking.
The cytosol also plays an important role in iron traf-

ficking, in that nutrient iron enters this region prior to
being distributed to the organelles. Most of the iron that
enters the cytosol is probably in the FeII state, but nei-
ther the oxidation state nor the concentration of cyto-
solic Fe has been established [6]. The vacuoles are
another trafficking ‘hub’ in yeast, as much of the iron
imported into these cells (when grown on iron-sufficient
media) is stored in these acidic organelles [7, 8]. Vacu-
olar iron is predominately found as a mononuclear non-
heme high spin (NHHS) FeIII species, probably
coordinated to polyphosphate ions [9].
Iron is tightly regulated in cells, and some insightful

mathematical models involving iron metabolism, traf-
ficking and regulation have been developed. Twenty
years ago, Omholt et al. designed and analyzed a model
of the IRP/IRE iron regulatory system in mammalian
cells [10]. More recently, Mobilia et al. developed a simi-
lar model that assumed scarce or unavailable data; they
also developed new methods to represent data by con-
strained inequalities [11, 12]. Chifman and coworkers
developed an ODE-based model for iron dysregulation
in cancer cells in which the roles of the IRP-based regu-
lation, the iron storage protein ferritin, the iron export
protein ferroportin, the labile iron pool, reactive oxygen
species, and the cancer-associated Ras protein were em-
phasized [13], as well as a logical-rule-based mathemat-
ical model of iron homeostasis in healthy mammalian
cells [14]. Mitchell and Mendes used ODE’s to model
iron metabolism and regulation in a liver cell and its
interaction with blood plasma [15]. They emphasized
the role of iron-regulating hormone hepcidin and the
regulatory and storage systems mentioned above, and
they simulated the effects of iron-overload disease. Their
model was complex - involving 66 adjustable parameters
many of which were not experimentally determined.
None of the above models included iron-sulfur cluster
(ISC) synthesis, the role of mitochondria (or other or-
ganelles), and none modeled growing cells. In terms of
biological emphasis, the model of Achcar et al. [16] is
most relevant to the current study. They developed a
model of iron metabolism and oxidative stress in yeast
cells using a Boolean approach using weighted reactions.
Their model included ISC assembly, as well as organelles
such as mitochondria, vacuoles, cytosol, and nucleus.
However, their model was exceedingly complicated (642
components and 1007 reactions) and was not ODE
based [16]. They modeled the development of FeIII

(phosphate) oxyhydroxide nanoparticles in mitochondria
of mutant cells lacking ISC assembly proteins (e.g. Yfh1,
the yeast frataxin homolog), similar to the emphasis of
our previous model [17]. They included a reaction in
which an unidentified species X converted nanoparticles
into free iron, and hypothesized that X might be gluta-
thione. In contrast, our model emphasized the role of
oxygen in controlling nanoparticle formation.
The iron content of yeast cells and the major organ-

elles involved in iron trafficking have been analyzed
using Mössbauer (MB) spectroscopy, the most powerful
spectroscopic tool for interrogating the iron content of
biological samples [18]. If the absolute iron concentra-
tion of 57Fe-enriched cells and organelles are known, the
absolute concentrations of major groups of
iron-containing species in such cells can be calculated
using percentages obtained by MB. Such data is used
here to develop an advanced mathematical model of iron
import and trafficking in eukaryotic cells.
In WT cells, much iron enters mitochondria through

Mrs3 and Mrs4, paralogous inner-membrane proteins
[19, 20]. These “high affinity” iron-importers contain a
small tunnel that allows a low-molecular-mass cytosolic
iron species to enter the matrix. We have recently
discovered a low-molecular-mass species in mitochon-
dria, designated Fe580, which might serve as feedstock
for ISC assembly [21]. Iron can enter mitochondria



Fig. 1 Strategy for optimizing a model of nutrient iron import,
trafficking and regulation in growing eukaryotic cells. Top panel: C1
model in which all iron in the cell is treated as a single species and
the cell is considered to be homogeneous. Middle panel: C3 model
in which the cell is divided into three regions and each region is
assumed to contain a single type of iron species. C4 model includes
the reaction forming CIA. Bottom panel: C9 model in which the cell
remains divided into 3 regions but the number of iron-containing
species is expanded to 8
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through alternative pathways, including one that in-
volves Rim2 [22].
Iron import in yeast is regulated according to the ISC

activity occurring in mitochondria [23]. When this activ-
ity is attenuated, for example by mutations in the ISC
assembly machinery, the rate of nutrient iron imported
increases. In yeast, iron regulation involves the Iron Reg-
ulon, a group of 20–30 genes whose expression is con-
trolled by transcription factors Aft1/2 [24, 25]. This
includes the Fet3/Ftr1 complex on the plasma mem-
brane through which much iron enters the cell.
Yfh1 helps catalyze ISC assembly in mitochondria [26].

This and other ISC mutant cells accumulate large quan-
tities of iron in the form of FeIII nanoparticles [27, 28].
These cells import excessive iron because the iron regu-
lon is activated in response to insufficient mitochondrial
ISCs. Excess iron (in the form of nanoparticles) accumu-
lates in mitochondria because the rate of iron import
into the organelle increases due to activation of the iron
regulon. The net rate of iron import into vacuoles is re-
duced such that these organelles contain little iron in
ISC mutants. Actually, the iron export rate is probably
increased in these mutants. The vacuolar membrane
contains an iron-export complex (Fet5/Fth1) that is
homologous to the Fet3/Ftr1 iron import complex on
the plasma membrane; both are controlled by the iron
regulon [29].
We have developed a simple model (Fig. 1, bottom

panel) to illustrate the changes in iron import and traf-
ficking that occur in ISC mutants relative to in WT cells
[17]. The core assumption of the model is that the
matrix of healthy WT mitochondria is micro-aerobic,
containing less O2 than in an aerobic state due to the
ability of the respiratory complexes on the inner mem-
brane to quickly reduce much of the O2 that would
otherwise diffuse into the matrix. Although dissolved
[O2] concentrations in the mitochondrial matrix have
not been measured directly, three lines of evidence indi-
cate that this space is micro-aerobic. Firstly, in vitro ISC
assembly assays must be performed anaerobically be-
cause some of the proteins involved are O2-sensitive
[30]. Secondly, numerous other enzymes in the matrix,
including aconitase, biotin synthase, and lipoic acid syn-
thase are O2-sensitive [31, 32]. Thirdly, the nitrogenase
iron protein which is exquisitely O2-labile remains active
when installed in the mitochondrial matrix [33]. Accord-
ing to our model, in ISC mutant mitochondria, the lack
of ISCs and heme centers cause a deficiency of respira-
tory complexes; this condition allows O2 to diffuse into
the matrix and react with a pool of FeII, forming
nanoparticles.
Relative to WT cells, Mrs3/4ΔΔ cells (to be called ΔΔ

hereafter) grow slowly under iron-deficient conditions
but at WT rates in iron-sufficient media [5, 19, 20]. The
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iron concentration of ΔΔ cells is higher than in compar-
able WT cells, indicating that the iron regulon is acti-
vated. We recently found that mitochondria from
iron-deficient ΔΔ cells are dominated by nanoparticles
whereas the iron content of mitochondria from
iron-sufficient ΔΔ cells are similar to WT mitochondria –
i.e. dominated by the ISC and heme centers that are found
in respiratory complexes. WT mitochondria also contain a
substantial amount of a NHHS FeII that probably arise from
Fe580 [34]. Fe580 is present in mitochondria from iron-
replete ΔΔ and both iron-deficient and iron-replete WT
cells. However, our previous model [17] was unable to
reproduce the ΔΔ phenotype.
In this paper, we present an improved ODE-based

model of iron trafficking and regulation in yeast, and use
a multi-tiered strategy to solve it at an expanding
steady-state. This model was able to explain both the
ΔΔ and ΔYfh1 phenotypes while requiring fewer adjust-
able parameters relative to our previous model.

Methods and results
As is typical of modeling biochemical processes within
cells, the challenge was to generate a useful and
insightful model despite sparse and imperfect data [11,
12]. Our strategy for doing this was to optimize the
model at different levels of complexity. Model variants
ranged from one that consisted of a single iron species
and no cellular compartments to one that involved nine
species in three cellular compartments. The parameters
used to optimize the simpler variants were transferrable
to the more complex models. This was an important
insight because the data needed to solve simpler systems
tend to be more reliable and complete relative to those
required to solve more complex variants. A similar strat-
egy could be applied for models involving the trafficking
of other micronutrients. The only requirements are that
the concentrations and metabolic forms of the micronu-
trient in the cell and in major organelles be known (at
some reasonable level of accuracy) for different growth
conditions and/or genetic strains.
The complete chemical model is shown in Fig. 1,

bottom panel. We initially solved it (to be referred to
as C9, the “nine-component” model, including com-
ponents C, CIA, F2, F3, VP, FM, FS, MP, and O2) at
three simpler levels of complexity called C1 (the
“one-component” model, with component Fecell), C3

(the “three-component” model, including Fecyt, Femit,
and Fevac), and C4 (the “four-component” model, in-
cluding C, CIA, Fevac, and Femit). These model vari-
ants are illustrated in Fig. 1, top and middle panels.
We solved C9 in this way because the data required
to solve the simpler versions were more reliable and
complete than those required to solve the C9 variant.
Importantly, the parameters that were optimized using
the simpler versions could be transferred to the more
complex variants. This minimized the number of ad-
justable parameters that had to be assigned using less
reliable or incomplete data. As far as we are aware,
this multi-tiered modeling strategy has not been
employed previously within the context of ODE-based
models involving the trafficking of iron or any micro-
nutrient within a growing eukaryotic cell. Code for all
model variants was written using Mathematica 10
software (wolfram.com). Initial concentrations for
each iron component was 10 μM, and initial [O2] was
0 μM. ODEs were solved to steady-state using the
NDSolve routine.

Development of the C1 model
Consider a population of cells growing exponentially
on a nutrient form of iron called N which enters the
cell through a transporter on the plasma membrane
(Fig. 1, top panel, red circle). In the experimental re-
sults used here in fitting [34], N consisted of 0, 1, 10
and 40 μM ferric citrate plus 1 μM endogenous iron
as found in minimal medium. Let Vcell represent the
collective cell volume (within a culture) at time t.
When cells are growing exponentially, Vcell will in-
crease according to the relationship.

dV cell

dt
¼ αcell � Vcell ð1Þ

where αcell is the growth rate. During exponential
growth αcell is constant in time. The optical density at
600 nm of an exponentially growing culture is propor-
tional to Vcell such that the slope of the {ln(OD600) vs.
time} plot affords αcell. This parameter has been
determined for WT and ΔΔ cells grown in medium
containing [N] = 1, 2, 11, and 41 μM ([34] and Table 1).
The 8 “data-based” determinations of αcell will be called
αcell − dat.
For simulations, a continuous α function between

N = 1–41 μM was required. Plots of αcell vs. [N] ex-
hibited saturation behavior, suggesting the Michaelis-
Menten type function

αcell−sim ¼ αmax N½ �
Kα þ N½ � : ð2Þ

The desired continuous α function was obtained by
fitting (2) against the αcell − datvalues using the error
function.

ERR ¼ 1
4

X
N¼1;2;11;41

2 � αcell−sim;N − αcell−dat;N
�� ��

αcell−sim;N þ αcell−dat;N
: ð3Þ

This error function normalized absolute differences
between simulations and data to the average of simu-
lation and data values. This formulation weighed the

http://wolfram.com


Table 1 Growth rates, iron concentrations, and import rates in ΔΔ and WT cells grown under different nutrient conditions. [N] refers
to the μM concentration of iron in the respiring medium, as described [34]. The untreated medium was assumed to contain 1 μM of
endogenous iron. For each entry, the top number is datum or data-based estimates (R…-dat) and the bottom number is the
corresponding simulated value (R…-sim). Concentrations are in units of μM, rates are in units of μM/hr., and αcell is in units of hr.− 1.
Data for αcell and [Fecell] have been published [34] whereas [Fecyt], [Femit], and [Fevac] were estimated as described in the text

[N] αcell [Fecell] Rcell fcyt⋅[Fecyt] fmit ⋅[Femit] fvac ⋅[Fevac] Rcyt - Rmit - Rvac Rmit Rvac

WT

1 0.18 120 22 79 41 0 18 9.2 0

0.18 60 10 22 22 16 5.0 4.9 3.7

2 0.18 200 37 75 43 82 17 9.9 19

0.19 190 35 76 35 81 18 8.4 19

11 0.20 480 97 200 56 220 52 14 56

0.20 810 160 180 66 560 45 17 140

41 0.20 880 180 310 69 500 77 18 130

0.20 900 180 180 69 640 46 18 160

ΔΔ

1 0.06 360 22 110 69 180 8.1 5.2 14

0.05 540 27 240 74 230 13 3.9 12

2 0.068 680 46 130 69 480 11 5.9 41

0.069 1100 90 380 77 660 33 6.6 58

11 0.15 2200 320 280 72 1800 52 13 340

0.15 2300 360 280 71 1900 53 13 360

41 0.20 3900 800 230 74 3600 59 19 920

0.19 2000 390 230 61 1800 54 14 410
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error associated with each datapoint evenly without
regard to the magnitude of the point. Best-fit αmax

and Kαvalues are given in Table 2, and plots of αcell
are shown in Fig. 2a. The simulated growth rates of
WT and ΔΔ cells increased as the concentration of
iron in the medium [N] increased, mirroring the experi-
mental growth rates with acceptable fidelity (apart from
the point associated with ΔΔ cells at [N] = 41 μM). Accept-
able fidelity is a qualitative term which means that simula-
tions “trended” with the data – i.e. increasing when the
data increased, decreasing when they decreased, and
remaining flat when they remained flat. Due to the limited
amount of data and our trial-and-error method of optimiz-
ing, this term is more appropriate than other more quanti-
tative descriptors. The high iron concentration of ΔΔ cells
grown with 40 μM ferric citrate is consistent with Möss-
bauer spectra which are very high-intensity. ΔΔ cells are
iron-dysregulated and they import large amounts of iron,
and the model developed here can only account for a por-
tion of that accumulation. A more complex model could
fit the point better but we opted to keep the model simple.
In the C1 model, all iron in the cell is considered

to be a single component called Fecell. The concentra-
tion [Fecell] is a function of moles (nFecell) and volume
Vcell, namely [Fecell] = nFecell/Vcell. Since the cell is
growing as chemistry is occurring, the time-
dependent change of [Fecell] is given by the partial
derivative

d Fecell½ �
dt

¼ ∂ Fecell½ �
∂nFecell

� dnFecell
dt

����
constant V

þ ∂ Fecell½ �
∂Vcell

� dV cell

dt

����
constant n

d Fecell½ �
dt

¼ 1
Vcell

dnFecell
dt

����
constant V

−
nFecell
V cellð Þ2 �

dV cell

dt

�����
constant n

d Fecell½ �
dt

¼ d Fecell½ �
dt

����
constant V

−
1

Vcell
� dV cell

dt
Fecell½ �

����
constant n

d Fecell½ �
dt

¼ Rcell − αcell � Fecell½ �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

:

ð4Þ

The first term on the right-hand-side of the last equa-
tion of (4) describes the rate of iron import at constant

volume (N →
Rcell Fecell ) – i.e. for chemistry occurring in a

no-growth cell. The second term reflects dilution due to
the growth of cells at constant moles of Fecell - .i.e. for a
growing cell devoid of chemistry. Yeast cells lack iron ex-
porters (unlike mammalian cells that contain ferroportin)
and no export process is known. Under the expanding--
steady-state condition, as would exist for a population of
exponentially growing cells, the left-hand-side of (4)
equals zero, [Fecell] is constant and the import rate Rcell
equals the dilution rate,



Table 2 Optimized parameters used in simulations

Parameter Value (strain) units Sensitivity

fcyt 0.8 none 1.051

fmit 0.1 none 1.042

fvac 0.1 none 1.001

C1

Rcell-max 180 (WT) μMhr.−1 1.021

390 (ΔΔ) 1.049

KN 4 μM 1.062

sens 2 none 1.043

αmax 0.204 hr−1 1.068

Kα 0.13(WT) hr−1 1.047

3.9 (ΔΔ) 1.029

C3

Rcyt 230 (WT) μMhr.−1 1.011

480 (ΔΔ) 1.024

kmit(C3) 2.8(WT) hr−1 1.001

1.6 (ΔΔ) 1.000

Rvac-max 1140 μMhr.−1 1.000

Kvac 11 μM 1.001

nvac 3 none 1.001

C4

Rcia-max 56 μMhr.−1 1.001

Kcia 3.8 μM 1.000

ncia 3 none 1.000

C9

kmit 5.5(WT) hr−1 1.000

1.2 (ΔΔ) 1.000

Risu-max 180 μMhr.−1 1.005

Kisu 220 μM 1.021

nisu 2.3 none 1.106

kvp 1.10 × 10−7 (WT) μM1-nvp hr.−1 1.000

2.37 × 10− 7 (ΔΔ) 1.000

nvp 2.4 none 1.001

k23 5.2 hr−1 1.000

[FS]sp 370 μM 1.000

n23 1.6 none 1.000

kmp 0.09 μM−1 h−1 1.013

kO2 25 hr−1 1.008

kres 9 μM−1 h− 1 1.010

Fig. 2 Plots of growth rate (a), cellular iron concentration (b), and
the rate of iron import into the cell (c). Red circles and lines indicate
data-based and simulated WT cells. Blue circles and lines indicate
ΔΔ cells. Data-based values and corresponding simulation values are
given in Table 1. For data points in this figure and in Fig. 3, the
errors estimated in [34] from two determinations are within the
marks. Overall errors may be higher
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Rcell ¼ αcell � Fecell½ �: ð5Þ

[Fecell] was measured in WT and ΔΔ cells grown under
the four concentrations of [N] [34], and the product of
this and corresponding αcell − dat values afforded the
“data-based” Rcell-dat values listed in Table 1. These
values are shown as the circles in Fig. 2c. Plots of [Fecell]
vs. log2[N] are given in Fig. 2b.
We next assigned a rate-law expression to Rcell that

depended solely on [N], such that a continuous Rcell-sim

function could be generated at all [N]. The iron-
importer on the plasma membrane of yeast cells is
saturatable by nutrient iron [35], and so we assigned the
rate-law for Rcell-sim to the Hill function

Rcell−sim ¼ Rcell‐ max N½ �sens
KN

sens þ N½ �sens ð6Þ

where sens is a Hill coefficient allowing for coopera-
tive iron import. Rcell-sim was optimized by minimizing
an ERR function similar to Eq. (3). The resulting
optimized Rcell-sim simulation parameters are given in
Table 2. The Rcell-sim equation was used to generate
an ODE (based on the last equation in (4)) that could
be used in kinetic modeling (see Additional file 1:
Equation S1). However, the current study focuses on
the expanding steady-state condition, and so ODEs S1
and S2 were solved at infinitely long times for [N]
ranging from 1 to 41. Plots of steady-state Rcell-sim vs.
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log2[N] are shown in Fig. 2 bottom panel. As ex-
pected, the simulated rate of iron import increased in
both WT and ΔΔ cells as the concentration of iron in
the medium increased, with higher rates for ΔΔ cells
since they accumulate more iron. The [N]-dependent in-
crease in iron import rate is counterbalanced by the [N]-
dependent increase in cell growth rate.
Development of the C3 model
In the C3 model, cell volume was divided into mito-
chondria, vacuoles and all remaining compartments,
such that

Vcell ¼ Vcyt þ Vmit þ Vvac: ð7Þ

Here, “cyt” refers to cytosol plus all organelles besides
mitochondria and vacuoles; there is insufficient pub-
lished information to justify subdividing cyt into
additional cellular compartments. This collective com-
partment includes the iron content of the nucleus
which contains a significant number of [Fe4S4] con-
taining proteins [36]. Topologically, cyt was treated as
though it was exclusively cytosol i.e. surrounding
mitochondria and vacuoles and being surrounded by
the plasma membrane.
Each cellular compartment in the C3 model was

presumed to contain a single iron species, called Fecyt,
Femit, and Fevac. The conservation of matter requires
that

Fecell½ � ¼ f cyt � Fecyt
� �þ f mit � Femit½ � þ f vac � Fevac½ �

ð8Þ

where fcyt, fmit, and fvac are fractional volumes e.g. fmit

=Vmit/Vcell. In an expanding steady-state, these frac-
tional volumes will be constant such that

d Fecell½ �
dt

¼ f cyt �
d Fecyt
� �
dt

þ f mit �
d Femit½ �

dt
þ f vac �

d Fevac½ �
dt

:

ð9Þ

All of the derivative terms in (9) are zero in an
expanding steady state. For the C3 model, N is imported

into the cytosol forming Fecyt (N →
Rcyt

Fecyt ). Some Fecyt is

imported into mitochondria ( Fecyt →
Rmit Femit ) and some

into vacuoles ( Fecyt →
Rvac Fevac ). The rest remains in cyt.

Based on this scheme, the time-dependent changes of
the concentrations of the Fe species in each region are
d Fecyt
� �
dt

¼ Rcyt−Rmit−Rvac−
1

Vcyt

dV cyt

dt
Fecyt
� �

d Femit½ �
dt

¼ f cyt
f mit

Rmit−
1

Vmit

dVmit

dt
� Femit½ �

d Fevac½ �
dt

¼ f cyt
f vac

Rvac−
1

Vvac

dV vac

dt
� Fevac½ �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

ð10Þ
Equation (10) follows from the proposed mechanism

in which iron first flows into the cytosol and then cyto-
solic iron Fecyt flows into mitochondria and vacuoles.
Volume ratios in the second and third equations of (10)
are required to conserve mass as Fecyt moves from one
region to another. Under an expanding steady-state, the
left-hand-sides of (10) equal zero and

Rcyt ¼ Rmit þ Rvac þ 1
Vcyt

dV cyt

dt
Fecyt
� �

Rmit ¼ 1
Vcyt

dVmit

dt
� Femit½ �

Rvac ¼ 1
Vcyt

dV vac

dt
� Fevac½ �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: ð11Þ

The growth rate of each cellular region will equal the
growth rate of the cell multiplied by the fractional vol-
ume of that compartment,

dV cyt

dt
¼ f cyt

dV cell

dt
dVmit

dt
¼ f mit

dV cell

dt
dV vac

dt
¼ f vac

dV cell

dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð12Þ

Substituting (12) into (11), and using (1) and (8)
affords

Rcyt ¼ Rmit þ Rvac þ αcell � Fecyt
� �

Rmit ¼ Vmit

V cyt
αcell � Femit½ �

Rvac ¼ Vvac

V cyt
αcell � Fevac½ �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð13Þ

Published fractional volumes were used to help solve
these equations. The cellular content of fermenting ex-
ponentially growing, nonbudding S. cerevisiae was re-
constructed in 3D, and volume fractions were
determined [37]. Mitochondria and vacuoles occupied
1.7% and 5.8% of cell volume, respectively. Another
study reported that the same two organelles occupied
1.6 and 7.8%, respectively [38]. In a third study, vacuoles
in yeast strain W303 (the same as used in our studies)
accounted for 10% of cell volume [39]. And in respiring
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yeast cells, mitochondrial volume was 10%–12% of cell
volume [40]. Since the model developed here is of iron
trafficking in respiring W303 yeast cells, we assumed
fmit = 0.1, fvac = 0.1, and fcyt = 0.8.
The relationships given in (13) are connected to (5).

Substituting the last two equations of (13) into the first,
and then simplifying and comparing to (5) affords the
relationship

Rcyt ¼ 1
f cyt

Rcell: ð14Þ

This equation connects C1 and C3 models. The rate of
iron import into cyt (Rcyt) equals the data-based rate of
Fe import into the cell (Rcell) divided by the volume frac-
tion fcyt. These rates describe the change of iron concen-
trations within the cell or cytosol, not the change in the
number of moles of N imported. Since Vcyt <Vcell, [Fecyt]
will increase faster than [Fecell], in proportion to the ra-
tio Vcell/Vcyt. This is true even though the same number
of moles of iron per unit time is imported. The rate-law
expression for Rcyt-sim should also involve a Hill expres-
sion, with the same KN and sens as in (6) but with a
maximal velocity that is 1.25-times (1/fcyt) faster.
The C3 model could not be solved fully until [Fecell]

was separated into [Fecyt], [Femit], and [Fevac] compo-
nents for each of the 8 growth/strain conditions investi-
gated. To do this, we relied on the conservation-
of-matter Eq. (8), published MB spectra, and on iron
concentrations for WT and ΔΔ cells and organelles [34, 41].
The spectra were separated into contributions from the eight
iron-containing components specified by the C9 model.
Then we combined particular components into cytosol,
mitochondria, or vacuoles locations (as defined by the model
of Fig. 1). Finally, we summed the iron concentrations for all
of the components assigned to each compartment to afford
our best data-based estimates of [Fecyt], [Femit], and [Fevac].
Results are given in Table 1.

Development of the C9 model
Before explaining how MB spectra were decomposed,
we introduce the components of the C9 model. Com-
ponent C represents a NHHS FeII complex presumed
to be present in the cytosol. This component can
move into vacuoles and mitochondria, but it can also
stay in cyt and react to form component CIA (the
Cytosolic Iron Sulfur Assembly machine), a second
cytosolic iron species. CIA represents the sum of the
ISCs and low-spin FeII heme groups in this collective
compartment. Numerous ISCs are found in the cyto-
sol and nucleus [37, 42], justifying the inclusion of
CIA in the model. FM represents the pool of NHHS
FeII ions in mitochondria, FS represents ISCs and
heme centers in the organelle, and MP refers to
mitochondrial nanoparticles. Components FM, FS,
and MP have all been characterized experimentally.
F2 and F3 are NHHS FeII and FeIII species in vacu-
oles, and VP represent vacuolar nanoparticles; they
have also been characterized experimentally [9, 43].
When C enters the vacuoles, this component becomes
F2 some of which oxidizes to F3. Some F3 converts
into VP. When C enters mitochondria, it converts
into FM, which serves as feedstock for FS. FS metal
centers are viewed as being installed into the respira-
tory complexes on the inner membrane, which then
catalyze the reduction of O2 to water. FM can also
react with model component O2 in the matrix to gen-
erate MP and ROS. ROS exhibits the exact behavior
of MP so is not formally included in the model.

Decomposing Mössbauer features into modeling components
MB spectroscopy detects all of the 57Fe in samples.
However, resolution is limited so the spectra under con-
sideration were subdivided into just four groups of iron
centers, including NHHS FeIII, NHHS FeII, the central
doublet (CD), and FeIII oxyhydroxide nanoparticles. The
CD represents [Fe4S4]

2+ clusters and low-spin FeII heme
centers; the two cannot be resolved. Other minor spec-
tral features (HS FeII heme groups and [Fe2S2] clusters)
can be resolved and quantified, but we decided to bun-
dle them with the CD since they are not individually
represented in the model. The absolute concentrations
associated with each group were obtained by multiplying
the associated percentages by [Fecell]. The conservation
of mass requires that

Fecell½ � ¼ FeII cell
� �þ CDcell½ � þ NPcell½ � þ FeIII cell

� �
Femit½ � ¼ FeIImit

� �þ CDmit½ � þ NPmit½ � þ FeIIImit
� �

( )
:

ð15Þ
These MB features were assigned to the following

combinations of modeling components.

FeII cell
� � ¼ f cyt � C½ � þ f mit � FM½ � þ f vac � F2½ �
CDcell½ � ¼ f cyt � CIA½ � þ f mit � FS½ �
NPcell½ � ¼ f mit � MP½ � þ f vac � VP½ �
FeIII cell
� � ¼ f vac � F3½ �
FeIImit
� � ¼ FM½ �
CDmit½ � ¼ FS½ �
NPmit½ � þ FeIIImit

� � ¼ MP½ �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð16Þ
Then these species were organized into the three

cellular compartments by summing contributions as
described by (17).
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Fecyt ¼ C½ � þ CIA½ �
Femit½ � ¼ FM½ � þ FS½ � þ MP½ �
Fevac� ¼ F2½ � þ F3½ � þ VP½ �

><
>:

>=
>;: ð17Þ

The one component of the C9 model that could not
be determined in this way with reasonable accuracy
was component C. Thus, we relied on published reports
to estimate the concentration of cytosolic NHHS FeII.
Petrat et al. [44] used a fluorescent chelator to quantify
the concentration of labile iron in hepatocytes and liver
endothelial cells at 5–7 μM, and we assumed similar
values for iron-sufficient WT yeast cells. We further as-
sumed that the concentration of cytosolic FeII increases
with increasing nutrient iron concentrations, and that
[C] in iron-sufficient ΔΔ cells is higher than in WT
cells (because the absence of Mrs3/4 should block im-
port of C into mitochondria). Within these constraints,
we assigned the concentrations of C to those listed in
Table 3 so as to minimize the ERR function when the
other iron concentrations in the table were used. MB
spectral decompositions, along with these relationships
Table 3 Estimated concentrations (in μM) of the iron-containing
components of the C9 model. For each entry, the top number
is data-based while the bottom number is the corresponding
simulated value. The sum of these concentrations, after multiplying
each by their respective fractional volume, approximately equals
[Fecell]. The sum of the concentrations of each species located in
each compartment (cyt, mitochondria, and vacuoles) approximately
equals [Fecyt], [Femit], and [Fevac], respectively

[N] [C] [CIA] [FM] [FS] [MP] [F2] [F3] [VP]

WT

1 2.5 92 60 320 0 60 0 0

1.5 16 110 160 90 14 85 0

2 3 84 80 290 60 96 780 0

2.7 79 190 380 62 43 590 2.6

11 4 250 140 380 30 320 1900 0

5.6 210 430 730 71 250 540 320

41 5 380 210 480 0 450 4600 0

6.0 220 470 750 75 290 5200 440

ΔΔ

1 3 130 60 40 530 140 400 0

2.6 310 3.6 0.8 580 2300 57 0.6

2 4 160 60 40 530 1300 3400 170

4.3 470 100 350 140 180 4600 2000

11 8 340 85 300 300 950 11,000 6400

8.6 340 150 330 70 1200 11.000 7500

41 10 280 110 560 80 1000 22,000 13,000

9.2 280 140 260 71 1600 10,000 5700
and assumptions, were sufficient to generate concentra-
tions for all other modeling components (Table 3).

Solving the C3 model
Once [Fecyt], [Femit] and [Fevac] were determined, we deter-
mined rates of import into each compartment, Rcyt, Rmit,
and Rvac as defined by (13). Data-based import rates Rcyt-dat,
Rmit-dat, and Rvac-dat for the 8 conditions are shown as cir-
cles in Fig. 3 and are tabulated in Table 1. The rate of iron
import into “cyt” but not exported into mitochondria or
vacuoles equals Rcyt – Rmit - Rvac. According to these rates,
iron flows faster into the cyt of ΔΔ cells, and slower into
their mitochondria, relative to in WT cells. This makes
sense because the absence of Mrs3/4 in ΔΔ cells should
hinder Fecyt from entering mitochondria.
We next assigned rate-law expressions to Rmit-sim and

Rvac-sim. We considered two forms for rate-laws, namely
a mass-action form Ri = ki[C]

n and a Hill form Vi[C]
n/

{KM+[C]
n} where [C] indicates the concentration of C as

defined by the C9 model components. The latter form was
used only when the simpler mass-action form was unable
to generate reasonable simulations of the relevant
data-based rates. The simple mass-action form was ac-
ceptable for Rmit-sim whereas Rvac-sim required a Hill term.
The terms were optimized using an ERR function. The
following rate-law expressions were ultimately selected.
Fig. 3 Rates of iron import into the cytosol only (a), into the
mitochondria (b), and into vacuole (c) according to the C3 model.
Color coding is the same as in Fig. 2
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Rmit−sim ¼ kmit C½ �

Rvac−sim ¼ Rvac− max C½ �nvac
Knvac

vac þ C½ �nvac
<
:

=
;: ð18Þ

One potentially confusing aspect of solving this system
was that we used C (a component of the C4 and C9

models) rather than Fecyt (a component of the C3 model)
as substrate for these processes. This was done so that the
resulting rate-constant kmit and Rvac-max would not change
when solving the C9 model. Had we used Fecyt instead of
C as substrate in the C3 model, kmit and Rvac-max would
have been too small for the C4 and C9 models in which
[Fecyt] = [C] + [CIA]. The rate of iron flowing into mito-
chondria depends only on [C], not on [C] + [CIA]. Opti-
mized Rmit-sim and Rvac-sim values were used along with
Rcyt-sim (obtained from the C1 model), to construct a full
set of ODEs (Additional file 1: Equations S3–S5) describ-
ing the C3 model. Once combined in this way, all of the
parameters associated with the three rates Rcyt-sim, Rmit-sim,
and Rvac-sim were re-optimized against data-based rates
using an ERR function. To do this, each parameter was in-
creased and decreased by 10% as all other parameters
were fixed; candidate values that lowered ERR were then
fixed as the next parameter on the list was varied. The
process was repeated for a second round except that each
parameter was adjusted ±5%. In the third and final round,
each parameter was adjusted ±1%. The final plots are
shown in Fig. 3.

The C4 model
We next solved the C4 model which was identical to C3

except that [Fecyt] was separated into [CIA] and [C]
components. To obtain [CIA], we subtracted the values
of [C] given in Table 3 from [Fecyt], resulting in the CIA
concentrations listed in Table 3. These values were
multiplied by αcell to generate Rcia-dat. We assumed a
Hill expression to generate an Rcia-sim function that min-
imized differences with Rcia-dat with acceptable fidelity.

Solving the C9 model
At this point, the C9 model could be solved. The deriva-
tive of (17) is

d Fecyt
� �
dt

¼ d C½ �
dt

þ d CIA½ �
dt

d Femit½ �
dt

¼ d FM½ �
dt

þ d FS½ �
dt

þ d MP½ �
dt

d Fevac½ �
dt

¼ d F3½ �
dt

þ d VP½ �
dt

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: ð19Þ

According to the mechanism of Fig. 1, bottom panel,
the rates of change in the concentrations of the two cyt
iron species are
d C½ �
dt

¼ Rcyt−Rmit−Rvac−Rcia−αcell C½ �
d CIA½ �
dt

¼ Rcia−αcell CIA½ �

8>><
>>:

9>>=
>>;: ð20Þ

Adding the two equations of (20) affords the first
equations of (19) and (10). The rate of change of the
concentrations of the iron-containing species in the
mitochondria is given by (21),

d FM½ �
dt

¼ Vcyt

Vmit
Rmit−Risu−Rmp−αcell FM½ �

d FS½ �
dt

¼ Risu−αcell FS½ �
d MP½ �
dt

¼ Rmp−αcell MP½ �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: ð21Þ

Summing the equations of (21) affords the second
equations of (19) and (10). Similarly for vacuoles,

d F2½ �
dt

¼ Vcyt

V vac
Rvac−R23−αcell F2½ �

d F3½ �
dt

¼ R23−Rvp−αcell F3½ �
d VP½ �
dt

¼ Rvp−αcell VP½ �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð22Þ

Summing the equations of (22) affords the third equa-
tions of (19) and (10). Thus, the ODE system for the
iron-components of the C9 model “collapses” down to
that of the C3 model when the components of the three
regions are summed appropriately. In an expanding
steady state, the left-hand-sides of (20), (21), and (22)
equal zero such that

Rcyt ¼ Rmit þ Rvac þ Rcia þ αcell C½ �

Rmit ¼ Vmit

V cyt
Risu þ Rmp þ αcell FM½ �� �

Rvac ¼ Vvac

V cyt
R23 þ αcell F2½ �ð Þ

Rcia ¼ αcell CIA½ �
Risu ¼ αcell FS½ �
Rvp ¼ αcell VP½ �
R23 ¼ Rvp þ αcell F3½ �
Rmp ¼ αcell MP½ �

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

: ð23Þ

Data-based and simulation-based values of Rcyt, Rmit,
Rvac, and Rcia have already been obtained. Using the ex-
perimental values of αcell and the values of
model-component concentrations listed in Table 3, we
constructed data-based rates for the formation of each
C9 component using data from the 4 nutrient conditions
in WT and ΔΔ cells (Table 4). Rvp-dat was then used
along with αcell and [F3] to generate R23-dat as defined in



Table 4 Rates of formation of each component of the C9
model, for different strains and nutrient concentrations.
Data-based rates are the top entries; simulated rates are
bottom entries

[N] RC RCIA Risu RF3 RVP RFM RFS RMP

WT

1 0.45 17 52 0 0 11 58 0

0.26 3.0 29 15 0 19 29 16

2 0.55 15 53 140 0 15 53 11

0.52 15 73 110 0.5 36 73 12

11 0.81 50 78 390 0 29 78 6.1

1.1 43 150 910 65 87 150 14

41 1.0 76 97 930 0 42 91 0

1.2 44 150 1000 89 95 150 15

ΔΔ

1 0.12 8.0 2.4 24 0 3.6 2.4 32

0.11 13 0.014 0.75 0 0.13 0.01 24

2 0.28 11 2.7 230 12 4.1 2.7 36

0.29 33 27 320 140 7.2 27 7.1

11 1.2 51 45 1600 960 13 45 45

1.3 52 50 1600 1100 22 50 11

41 1.9 57 110 4500 2600 22 110 15

1.7 52 48 2000 1100 27 48 13
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(23). The next step was to assign a rate-law expression
to each of the remaining rates associated with the C9

model as listed in (23) – expressions that depended
solely on other C9 components. Once assigned, a system
of ODEs could be defined in these terms (Additional file
1: Equations S6–S14) and integrated numerically to af-
ford our final simulations.
We first assigned rate-law expressions for the

remaining C9 components that did not involve O2,
namely Rvp and Risu. The expressions kvp⋅[F3] and
kisu⋅[FM] were sufficient to simulate Rvp-dat and Risu--

dat with acceptable fidelity. The simple rate-law
R23-sim = k23⋅[F2] was unable to simulate the data. The
problem was that cells grown under low-iron condi-
tions have an unusually high concentration of NHHS
FeII, only a small percentage of which can be assigned
to FM in mitochondria. Under these conditions, it
seemed unlikely that this FeII could be cytosolic, as
there should be low concentrations of [C] (as given
in Table 3). The only remaining option (in our
model) that could account for the extra FeII was com-
ponent F2 in vacuoles. As cells become iron-
sufficient, this effect disappears as [F3] increases. We
presumed that the extra F2 converted into F3 under
these conditions. To coordinate this behavior with in-
creasing cellular iron-sufficiency, we incorporated a
Reg+FS function into the R23-sim rate-law expression,
as we have done previously [17]. In summary, the
following rate-law expressions were used in solving
the C9 model.

Rcia ¼ Rcia− max C½ �ncia
Kncia

cia þ C½ �ncia

Risu ¼ Risu− max FM½ �nisu
Knisu

isu þ FM½ �nisu

Rvp ¼ kvp F3½ �nvp

R23 ¼ k23 F2½ � 1

1þ FS½ �sp
FS½ �

� �n23

0
B@

1
CA

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

: ð24Þ

The Reg+FS function is the parenthetical term asso-
ciated with R23 in Eq. (24). It may be viewed as a
valve that regulates the rate by which F2 converts to
F3. The valve is almost fully open (value near to 1)
when [FS] is much greater than the set-point concen-
tration [FS]sp, and is nearly closed (value near to 0)
when [FS] is much less than [FS]sp.

Effect of O2

Oxygen plays a critical role in the C9 model as it reacts
with FM to generate MP. O2 is constantly diffusing into
the matrix (in accordance with rate RO2) and is reduced
to H2O by cytochrome c oxidase on the inner mem-
brane. We used [FS] as a proxy for oxidase activity such
that the rate of respiration (Rres) was assumed to be pro-
portional to both [FS] and [O2]. Collectively, these
processes determine the dissolved O2 concentration in
the matrix, as described by

d O2½ �
dt

¼ RO2−Rmp−Rres−αcell O2½ �: ð25Þ

Under an expanded steady-state condition

RO2 ¼ Rmp þ Rres þ αcell O2½ �: ð26Þ

RO2 was presumed to be proportional to the difference
in the O2 concentration in the cytosol (called [O2]cyt –
assumed to be fixed at 100 μM) and the concentration of
O2 in the matrix ([O2]). With rate-law expressions in-
cluded, (26) becomes

kO2 O2½ �cyt− O2½ �
� �

¼ kmp FM½ � O2½ � þ kres FS½ � O2½ �

þ αcell O2½ �:
ð27Þ

Rearrangement yields
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O2½ � ¼ O2½ �cyt
kO2

kO2 þ kmp FM½ � þ kres FS½ � þ αcell
: ð28Þ

Since all numbers in (28) are positive, the term in
the numerator serves to increase [O2] while those of
the denominator serve to decrease it. [FM], [FS], and
αcell are controlled by other aspects of the model, and
so those parameters were not altered in order to gen-
erate the behavior desired for [O2] vs [N] in WT vs.
ΔΔ cells. This behavior was essentially controlled by
the three unassigned parameters, kO2, kres, and kmp

contained in Eq. (28).
One major objective for this study was to explain how

ΔΔ mitochondria transition from a diseased state (domi-
nated by nanoparticles, MP in the model) when cells are
grown in low-iron media, to a healthy state (dominated
by ISCs and heme centers, FS in the model) when they
are grown in high-iron media. We also wanted WT
mitochondria to be healthy regardless of the iron con-
centration in the growth medium. The major molecular-
level differences between WT and ΔΔ cells are the rates
at which iron enters mitochondria (Rmit) and cells (Rcyt),
and the growth rates – all of which have been set by
solving the simpler versions of the model. The key to
achieving the desired behavior, according to our model,
was to vary the concentration of O2 in the matrix. In
WT mitochondria, [O2] should be low at all [N] whereas
in ΔΔ mitochondria, [O2] should be high at low [N] and
low at high [N]. We needed to generate an abrupt de-
cline of [O2] in ΔΔ mitochondria as [N] increases while
keeping [O2] low in WT mitochondria at all [N]. And
we needed to make this happen only by adjusting kO2,
kres, and kmp.
The [O2] concentration in the matrix has not been

measured directly. We estimated [O2] to be in the ball-
park of 1–10 μM for iron-sufficient WT mitochondria as
this value is similar to the KM for O2 reduction by cyto-
chrome c oxidase [45]. We had [MP] vs. [N] data that
could be used to help optimize these parameters (espe-
cially kmp), but they were insufficient.
We also considered the known behavior of Yfh1Δ

cells, which we have explained using a similar model
[17]. Yfh1Δ mitochondria contain excessive levels of
nanoparticles. The previous model explained the exces-
sive nanoparticles as being due to a lack of FS (respira-
tory complexes), which allows for O2 to diffuse into the
matrix, react with FM, and generate MP. This behavior
(obtained by setting Risu = 0) provided another constraint
on possible solutions for the current problem. Another
consideration was that respiring WT cells grown at all
[N] do not accumulate MP in their mitochondria.
After extensive trials, we obtained values of kO2, kres,

and kmp (listed in Table 2) that generated the best overall
behavior. However, despite our efforts to satisfy all of
these constraints, we could not completely eliminate the
formation of MP in WT mitochondria while also having
MP accumulate at high levels in Yfh1Δ mitochondria.
Two additional changes were required to do this, namely
increasing kmit of WT cells 2-fold and decreasing kmit of
ΔΔ cells 1.3-fold, both relative to the values obtained by
solving the simpler C3 model. The adjustment of kmit in
ΔΔ cells was minor whereas the adjustment for WT cells
implies that the concentration of iron in WT mitochon-
dria is actually 2-fold higher than given by the data used
for simulations.
In summary, solving the C9 model while achieving the

desired behavior with O2 required that we increase kmit

of WT cells 2-fold and decrease kmit of ΔΔ cells 1.3-fold
relative to values obtained in the C3/C4 models. This ex-
plains the different values of kmit in Table 2. The faster
import rate from cytosol into the mitochondria for the
C9 model also caused a slight decline of cytosolic iron
([C] and [CIA]).
Final optimization and sensitivity analysis
Once each parameter was optimized individually as de-
scribed above, we re-optimized the entire system by
changing one component at a time while holding the
others fixed, as described above. For the C1, C3/C4, and
C9 model variants, the best-fit ERR values were 0.32,
0.39, and 0.72, respectively. A sensitivity analysis was
performed for each parameter by taking the average of
the ±1% ERR values, and normalizing the average to the
optimal ERR for that parameter [17]. This procedure is
calculated using the equation

ERRoptþ1% þ ERRopt−1%

2 � ERRopt
: ð29Þ

Highest sensitivity values (Table 2) indicate parameters
with the greatest impact on the overall fit of the model;
nisu (Hill coefficient for ISC assembly), αmax (growth
rate), KN (the Michaelis-Menten constant for nutrient
iron import), and fcyt (fractional cytosol volume) were
the most sensitive.
Simulation plots showing the concentrations of each

iron-containing component of the C9 model (except for
nanoparticles) is shown in Fig. 4. As expected, simulated
concentrations of most components increased as the
nutrient iron concentration increased. Simulated con-
centrations of cytosolic and vacuolar components in ΔΔ
cells were higher than in WT cells, whereas the simu-
lated concentrations of mitochondrial components FS
and FM in ΔΔ cells were lower than in WT cells.
Vacuolar iron is dominated by F2 under iron-deficient
conditions and by F3 under iron-sufficient ones.



Fig. 4 Simulated concentrations of the iron-containing components
in the C9 version of the model as a function of nutrient iron
concentration (in μM). Blue, ΔΔ cells; Red, WT cells. a, [C]; b, [CIA], c,
[FM], d, [FS], e, [F2], f, [F3], g, [VP]. Components [O2] and [MP] are
shown in Fig. 5

Fig. 5 Dependence of nutrient iron on the O2 and nanoparticle
concentrations (in μM). Optimized simulated [O2] (in Panel a) and
[MP] (in Panel b) in mitochondria of ΔΔ (solid blue line) and WT
(solid red line) cells, plotted against the nutrient iron concentration
(Log2[N]). This is the central plot. Other plots in Panel a, on either
side of the optimized plot, show that only certain parameters affect
curve shape and position. For the other traces, the color-coded
parameters shown on the side were altered ±10% of their optimized
values while holding all other parameters fixed. Changing other
parameters yields traces (e.g. k23 in the white dashed line) that had
no effect on the plots and so the trace overlaid the optimal trace in
the center. Panel c is a plot of [MP] vs. Risu-max, the maximum rate of
FS formation. Low Risu-max values simulate the slow rate of ISC
assembly in yfh1Δ cells, while higher values reflect WT conditions
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Effect on O2 on mitochondrial nanoparticles
Simulations of mitochondrial O2 and nanoparticle con-
centrations are shown in Fig. 5. There is a nonlinear ef-
fect that simulates the observed behavior of ΔΔ
mitochondria. Mitochondria from iron-deficient ΔΔ cells
contain mostly nanoparticles and are responsible for the
slow-growth defect. However, mitochondria from these
cells recover when ΔΔ cells are grown in iron-sufficient
medium. The plot simulates this recovery. As [N] in-
creases, [O2] levels decline because increasing concen-
trations of respiratory complexes FS prevent O2 from
diffusing into the matrix and reacting with FM. This al-
lows more FS to be made which allows even less O2 into
the matrix. This vicious cycle leads to the observed non-
linear behavior. The same behavior is observed for the
formation of nanoparticles (Fig. 5, panel b). Other traces
to either side of the best-fit [O2] trace represent the ef-
fect of increasing/decreasing one parameter while keep-
ing all others fixed. Since the percentage change for each
parameter was the same, the parameters that influence
the shape of the plot more dramatically are located on
the extremes; those that have little influence on the plot
are located near the central optimized curve. A similar
effect is obtained by lowering Risu (Fig. 5, panel c) which
simulates the effect of lowering the Yfh1 concentration
in yeast mitochondria (or the frataxin concentration in
human mitochondria). WT mitochondria do not exhibit
this nonlinear effect because they can exclude O2 from
the matrix at all [N] considered.

Conclusions
Comparison to previous model
The model developed here represents a major advance
relative to our previous model [17]. Both simulate iron
import and trafficking in a growing yeast cell, both in-
clude three regions (cytosol, mitochondria, and vacu-
oles), and both import a single nutrient iron form N.
The major difference between the two is their level of
complexity, method of optimization, and predictive
power. The previous model included ~ 38 adjustable pa-
rameters (Table S2 of [17]) whereas the current C9

model includes only 25 (Table 2). The previous model
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was optimized by guessing an initial set of values and
minimizing an error function. The current model was
optimized using the multi-tiered approach detailed
above. Perhaps the most important difference is that the
current model predicts the nonlinear O2-dependent be-
havior described above while the previous model does
not. Our current model was solved at different levels of
complexity. We solved the simpler variants first, and dis-
covered that the parameters obtained could be trans-
ferred to the more complex variants. This multi-tiered
strategy was helpful because the parameters obtained by
fitting the simpler models used more reliable data.
Although the heuristics used to find optimal parameter
sets do not mathematically guarantee that they globally
minimize the error function, our approach yielded an ac-
ceptable solution that is compatible with known biology.
Another strategic difference in modeling approaches

was that we excluded all but one Reg function in the
current model. This made the current model more re-
sponsive to changing parameters and allowed better
comprehension of inherent behavior.
In the end, only four parameters differed between ΔΔ

and WT simulations, namely Rcyt-max, kmit, kvp, and Kα. All
other assigned parameter values were identical between
the two genetic strains. The ability of the model to repro-
duce ΔΔ and WT behavior with such few differences in
terms of modeling parameters is remarkable. Moreover,
we can easily rationalize why at least half of these parame-
ters should be different. A 4.6-fold reduction of kmit for
ΔΔ cells makes sense because Mrs3/4, the high-affinity
importers into mitochondria, are deleted in this strain.
Rcyt-max is 2-times higher for ΔΔ cells because iron is dys-
regulated in these cells so expression of the Ftr1/Fet3
complex on the plasma membrane should be higher.
Explaining why Kα should be 30-times higher in ΔΔ cells
is more difficult. Kα is a KM-like parameter which reflects
the sensitivity of the growth rate to changes in the nutri-
ent iron concentration [N]. For some reason, the growth
of iron-deficient ΔΔ cells is 30 times less sensitive to in-
creases in [N] than are comparable WT cells. Perhaps this
reflects difficulties in flowing sufficient iron into
iron-deficient ΔΔ mitochondria to support robust respira-
tory cell growth. Why kvp is 2-fold higher in ΔΔ cells is
even more difficult to explain; it implies that the rate of
vacuolar nanoparticle formation is faster in ΔΔ cells than
in WT cells. The actual mechanism of vacuolar nanoparti-
cle formation is undoubtedly more complicated than is
represented in our current model. However, it is a tribute
to the model that it has the ability to highlight this effect.

Predictive power of the model
Mathematical models might have predictive power, but
this is not guaranteed. This ability is related to how
closely the assumed mechanism and assigned kinetic
parameters correspond to reality. We have attempted to
make our model predictive by keeping it simple and
well-grounded experimentally. This was a challenge
given the complexity of the process under investigation
and the limited amount of relevant data available.
Our model can be used to predict the effect of O2 on

iron metabolism in yeast cells. It predicts that the iron
in mitochondria of Yfh1-deficient cells that have been
grown under micro-aerobic (low O2) conditions should
predominantly be FM (i.e. NHHS FeII). We are currently
examining a Yfh1-deficient strain of yeast, and found
that NHHS FeII rather than nanoparticles are indeed ob-
served in these cells (data not shown). Our model also
predicts that O2 should not affect vacuolar iron (it
should still be present mainly as F3 (FeIII) under
micro-aerobic conditions). However, this prediction is
not realized by our current experiments (data not
shown), highlighting a deficiency in this particular aspect
of the model. We believe that this iterative approach of
prediction→testing→remodeling will gradually yield
major new insights in understanding iron import, traf-
ficking, and regulation in eukaryotic cells. We are
currently using this approach in our studies of the
Yfh1-deficient strain.
The same strategy could be applied to model the im-

port and trafficking of any micronutrient within any
growing eukaryotic cell, from yeast to human cells. The
concentration of the nutrient (or its derivatives) in whole
cells and in various organelles and cytosol should be
known as should exponential growth rates. Obvious
candidates include other metals such as Cu, Mn, Zn,
Mo, Co. The same approach could be used to examine
the import and trafficking of Pt anticancer drugs into
growing human cells. A better understanding of how
such drugs are trafficked intracellularly might provide
new insights for treating cancer.
Endnotes
1The abbreviations used are: CD, central doublet; CIA,

cytosolic iron-sulfur assembly complex; ISC, iron-sulfur
cluster; MB, Mössbauer; NHHS, nonheme high-spin;
ODE, ordinary differential equation; ROS, reactive oxy-
gen species; WT, wild-type. C1, C3, C4, and C9 refer to
model variants; C1 includes one component called FeCell;
C3 contains three components called Fecyt, Femit, and
Fevac; C4 contains four components called C, CIA, Femit

and Fevac; C9 contains nine components called C, CIA,
F2, F3,VP, FM, FS, MP, and O2. Parameters fcyt, fmit, and
fvac are volume fractions representing the ratios Vcyt/
Vcell, Vmit/Vcell, and Vvac/Vcell, respectively. ΔΔ is the
Mrs3Δ/Mrs4Δ double-deletion strain. αcell is the growth
rate of the cell, and N is the nutrient iron species that is
imported into the cell.
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