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Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even
when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we
carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed
aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged
between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and
down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as
concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up
and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the
observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence
of a class of ‘‘balancer’’ proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus
oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we
found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and
show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high
importance in terms of system resilience. We propose that the ‘‘elasticity’’ of the proteomic regulatory network mediated by
balancer proteins may compensate for changes that occur under diseased conditions.
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INTRODUCTION
Investigations of etiology and pathogenesis of human diseases are

frequently performed using suitable animals as a model system.

Most commonly mice are employed where a gene of particular

interest is knocked out, mutated or overexpressed. When the effect

caused by genome modification is subsequently studied in these

mice at the molecular level, usually a large number of changes are

observed on the mRNA and protein levels, in spite of the fact that

only a single gene was altered. For example, in protein patterns

obtained by two-dimensional gel electrophoresis (2-DE) of brain

proteins from a mouse model for Parkinson’s disease deficient of

the parkin protein [1] and from a transgenic mouse model for

Huntington’s disease [2], we detected 15 and 40 variant proteins,

respectively [3,4]. Using more sensitive protein detection methods,

such as the differential in-gel electrophoresis (DIGE) technique

and analyzing two different brain regions at two different age

stages, 87 quantitatively variant proteins were detected in the

parkin knock-out mouse [5]. In investigations of a transgenic

mouse model for Alzheimer’s disease that overexpressed mutated

human amyloid precursor protein (App) [6] using our large-gel 2-

DE [7,8] and DIGE technique, we detected more than one

hundred variant proteins (Hartl D. et. al., unpublished results). On

the mRNA level, Miller and colleagues observed over 600 changes

in a single gene modified Parkinson disease mouse model [9].

Similar results were also obtained in other single gene knock-out

mouse models [10].

Apparently, the molecular response to a single gene mutation is

of considerable complexity, and certainly much more complex

than detectable using current experimental approaches. We have

previously compared the protein changes detected in mouse

models for different neurodegenerative diseases and, in addition,

mouse models of non-neurodegenerative disorders [11]. We found

that up to 36% of variant proteins were shared among these

different disease models and hypothesized that these protein

alterations were not disease-specific. Unexpectedly, when we

compared wild-type mice of different inbred strains, we found that

most of these putative disease-unspecific protein alterations also

occurred as polymorphisms that distinguished strains of mice. This

suggested that some, if not most of the protein changes observed

when investigating disease models might not be genuinely

informative regarding etiology or pathogenesis of the disease

under consideration.

To investigate the significance of protein changes under disease

conditions, we have chosen a more systematic and simplified

approach by using mouse embryonic stem (ES) cells with highly
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defined modifications in a controlled environment. Six mutant cell

lines were investigated. All of them contained gene modifications

relevant to neurodegenerative diseases. Four cell lines contained

one single overexpressed gene, i.e. App (a cell surface receptor),

Snca with changes relevant to Alzheimer’s and Parkinson’s disease,

respectively [9,12] and Dyrk1a (a nuclear kinase) as well as Dopey2

(a leucine zipper-like protein) both relevant to Down syndrome

[13,14]. In two other cell lines, a segment encompassing 14 genes

relevant to Down syndrome was duplicated (trisomic) in one case

and deleted (monosomic) in the other [15]. The six mutant cell

lines were investigated by 2-DE and altered protein expression was

recorded by comparison with the respective parental lines. Many

variant proteins showing up or down-regulation were observed.

Profound quantitative analysis of protein changes led us to the

hypothesis that the cellular proteome is kept quantitatively in

balance by a particular class of proteins to which we refer as

‘‘balancer proteins’’. Accordingly, we assume that when the

quantitative arrangement of the proteome is perturbed by gene

dosage effects, it will be subjected to a rearrangement in order to

achieve a new balance. Thus, the many protein changes observed

may reflect the rearrangement of the proteome to protect the cell

from deleterious effects of gene dosage mutations.

RESULTS
Proteins expressed in ES cells were separated by large-gel 2-DE.

On a representative 2-DE pattern of total protein extract from ES

cells, a total of 4958 protein spots could be scored visually

(Figure 1). Using Delta2D imaging software (see Methods), over

5500 protein spots were detected. Six different transgenic cell lines

were investigated in this study. These comprised two cell lines in

which one single gene was duplicated (mES_Dyrk1a_Tris or

mES_Dopey2_Tris), and two cell lines in which one gene was

overexpressed (5.5 times more than wild-type in mES_hAPP or 1.6

times in mES_Snca). In two cell lines gene dosage was altered over

a chromosomal region that spanned 14 genes on mouse

chromosome 17. A hemizygous deletion line was monosomic for

the interval (mES_14_Mono). The other line contained an

engineered duplication of the segment, and thus was trisomic

(mES_14_Tris). No difference was observed between transgenic

and parental cell lines with respect to cellular morphology and

growth behavior. The six cell lines were compared to their

parental cell lines with regard to their protein expression profiles.

The number of proteins that showed significantly increased or

decreased expression, when compared to their expression in

parental cell lines, was in the range of 70 to 110 variants per cell

Figure 1. Representative protein expression pattern of mouse embryonic cell lines as revealed by large-gel 2D-electrophoresis. Over 5500
proteins (including protein isoforms) were resolved on a single gel. Highlighted spots correspond to spot ID of candidate balancer proteins detailed
in Table 2.
doi:10.1371/journal.pone.0001218.g001
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line (Table 1). In total, 255 distinct variant proteins were observed

in the six cell lines (Table S1). The data-adjusted modified t-test

SAM (Significance Analysis of Microarrays) was used to calculate

that the false discovery rate for obtaining a comparable result was

less than 1 %.

In the four cell lines that overexpressed a single gene, 40 to 50

proteins were up-regulated. This was always accompanied by

a similar number of down-regulated proteins. A quite different

situation was found for the two cell lines with the dosage alteration

in 14 genes: If duplicated, 60% of proteins were up-regulated and

40% were down-regulated (40%). In case of deletion, a similar

imbalance was found, but in the opposite direction, i.e. about 60%

of the variant proteins showed decreased expression, while only

about 40% were over-expressed (Figure 2A). The observations

described above were based on the number of proteins showing

altered expression profiles in the transgenic cell lines. In the next

step, we investigated the total protein amount showing altered

expression within each cell line by determining relative protein

concentrations (protein spot volumes) across all altered proteins.

This resulted in a balanced picture, i.e. no significant difference

could be detected in the protein amount undergoing up and down-

regulation (Figure 2B). Most importantly, this was even true for the

two cell lines with 14 genes altered, which showed a drastic

imbalance in the number of proteins that underwent up or down-

regulation (see above).

When we compared proteins that showed quantitative changes

among the six cell lines, we found that many of these proteins were

altered in several cell lines. Specifically, 38 proteins showed

changes in more than three cell lines. Among them, the expression

of three proteins changed in all six cell lines, eight proteins

changed in five, while 27 proteins changed in four of six different

transgenic ES cell lines. In contrast, 114 proteins were altered only

in one cell line. In order to test to which extent changes of

expression in the same proteins may occur by chance in multiple

cell lines independently, the numbers of observed co-changed

proteins in different numbers of cell lines were compared to

theoretical numbers of co-changed proteins, assuming that a total

of 800 protein spots were investigated, among which 10% were

differentially expressed in transgenic and control cell lines

(Figure 3). Our calculation showed that the occurrence of the

same protein alteration in more than three cell lines was unlikely to

be coincidental (p,0.001).

An interesting observation was made when we considered

proteins that were only altered in both mES_14_Mono and

mES_14_Tris: Two thirds of them showed the same change

tendency, i.e., either up-regulated in both cell lines, or down-

regulated in both cell lines, despite opposite gene dose alteration

(trisomy versus monosomy). This suggested that many changes

could be unrelated with respect to the gene(s) that caused the

dosage imbalance. Hence, we hypothesize that the proteins

showing changes in several cell lines (38 proteins, see above)

represent a particular class of proteins, which we propose to call

‘‘balancer’’ proteins (Table 2). Different from that, proteins that

were altered only in a single cell line are called here ‘‘cell line-

specific proteins’’ to denote protein alterations specific to a cell line

characterized by a distinct genetic alteration (114 proteins, see

above).

Among the candidate balancer proteins, seven of them were

always increased in their expression in our experiment (Table 2).

They are: Atp6v1c1, Ccdc25, Eno1, Nudt16l1, Psmb7, Ranbp5 and

S100a11. On the other hand, three balancer proteins (Bat2d, Psmb6

and Tceb2) were consistently down-regulated in their expression.

One protein (Psme1) was down-regulated in three cell lines with

transgene overexpression (mES_14_Tris, mES_Dyrk1a_Tris and

mES_Snca), while it was up-regulated in mES_14_Mono. To

determine whether putative balancer or cell line-specific proteins

might be direct interaction partners of genes mutated in the six cell

lines, we queried all mutated genes, balancer proteins and cell line-

specific proteins in the KEGG pathway database. No overlapping

KEGG pathway entries were detected between balancers and

mutated genes. On the contrary, four KEGG pathway terms of

cell line-specific protein overlapped with that of mutated genes in

our six ES cell lines. These included methionine metabolism,

selenoamino acid metabolism, ABC transporters and purine

metabolism. Similar conclusions could be drawn from Biocarta

pathway database queries.

In order to investigate whether balancers and cell line-specific

proteins might represent two different classes of proteins with

certain biochemical and biophysical properties, we compared

these two sets according to different parameters. The spectrum of

biochemical and biophysical criteria selected for characterization

included molecular weight, isoelectric point, predicted protein

instability, aliphatic index, hydrophobicity, cellular abundance,

polymorphisms (i.e. allelic diversity) and number of direct protein

interaction partners. As summarized in Table 3, balancers and cell

line-specific proteins showed no perceivable difference in their

molecular weights and isoelectric points, neither in their instability,

nor regarding aliphatic index or hydrophobicity. However,

balancer proteins were significantly more abundant in the cell

(p = 0.008). Furthermore, cell line-specific proteins were found to

have twice as many interaction partners as balancer proteins

(p = 0.004) (Figure 4B). We then queried the Mouse Genome

Informatics Database (www.informatics.jax.org) for the occurrence

of single nucleotide polymorphisms (SNPs) in balancer and cell

line-specific proteins as a measure of their allelic diversity.

Interestingly, the potential balancers had significantly more non-

synonymous SNPs in coding regions than potential cell line-

specific proteins (Table 3), while no significant difference could be

established for other SNP evaluations (total number of SNPs,

proportion of synonymous SNPs in the coding regions and the

frequency of SNPs in the 59-UTR, 39-UTR, introns and sequences

flanking upstream and downstream of a locus).

To assign functional categories, a Gene Ontology (GO) term

enrichment analysis was performed. Tables 4 and 5 give

Table 1. Number of quantitatively variant proteins in six transgenic mouse embryonic stem cell lines.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Quantitative changes Number of variant proteins in different transgenic cell lines

mES_14_Mono* mES_14_Tris* mES_Dopey2_Tris mES_Dyrk1a_Tris mES_hAPP mES_Snca

Up-regulated 44 44 37 41 46 52

Down-regulated 62 26 45 37 47 57

Total 106 70 82 78 93 109

*The segment from mouse chromosome 17 includes 14 genes.
doi:10.1371/journal.pone.0001218.t001..
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a summary of GO-terms that occurred more frequently in

balancers or cell line-specific proteins, respectively, based on

human GOA database searches (see Methods for details). Eight

GO-terms were specifically over-represented in balancer candi-

dates. They comprise protein degradation, disulfide modification

and electron carrier processes. In contrast, over 33 GO-terms were

enriched in cell line-specific proteins. Notably, a large part of them

were involved in mRNA processing and related functions. These

two GO-term sets overlap by participating in protein chaperoning

of catabolism processes.

Next, we undertook an analysis of protein-protein interactions

that balancer and cell line-specific proteins participate in, chiefly

based on the Human Reference Protein Database (see methods for

details). The protein-protein interaction graph constructed from

our ES cell data comprised 2677 nodes (distinct proteins, indicated

by gene symbol). This interaction graph shared the common

feature of scale-free geometry with other protein interaction

networks, such as that of E. coli or Saccharomyces cerevisiae [16,17].

Among all protein nodes, 2565 (96%) of them could be linked to

a giant network component with heterogeneous degree distribu-

tion. The remaining 112 proteins formed 41 isolated components,

with the number of nodes varying from one to twelve. Figure 5

shows a subset of the protein-protein interaction network centered

around the proteasome subunits. In the entropy analysis of the

network, we focused on the giant network component, since the

network entropy is only defined for the strongly connected

components of the network. All 38 balancer proteins belonged

to the giant network component, as well as 79 out of 114 cell line-

specific proteins.

As network entropy is a measure of system homeostasis, we may

expect high-ranking proteins to be affected more frequently as the

cell responds to various stimuli. Through a direct comparison of

balancers to cell line-specific proteins using their entropic

Figure 2. Proteins that showed altered expression in transgenic ES cell lines. (A) Number of altered proteins in each transgenic cell line, expressed
as percentile of total number of altered proteins. (B) Amount of proteins that underwent altered expression in each cell line, represented as percent
of total spot volume that was up or down-regulated in transgenic cell lines. Dose alteration of 14 genes could no longer be balanced by an equivalent
number of variant proteins. However, a balance remained at the level of protein concentration.
doi:10.1371/journal.pone.0001218.g002

Figure 3. Comparison of observed number of co-changed proteins
against a theoretical calculation of co-changed proteins across six
different transgenic cell lines. It was assumed that a total of 800
protein spots were investigated, among which 10% of the proteins
change in their expression profile. This comparison shows that the
occurrence of the same protein alteration in more than three cell lines is
unlikely to be coincidental.
doi:10.1371/journal.pone.0001218.g003
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contribution, we found that balancers, on average, possess

significantly higher values of entropic contribution than cell line-

specific proteins (p = 0.02, Wilcoxon rank test, Figure 4). Alterna-

tively, we ask to what extent the entropic measurement can

distinguish between cell line-specific proteins and balancers within

the background of all proteins in the giant component. To this

end, we took the same number of top-ranking proteins based on

their entropic contribution and studied their overlap with our 38

balancers or 79 cell line-specific proteins, respectively. Assuming

a hypergeometric distribution over a total of 2526 proteins, this

corresponds to p = 0.018 and p = 0.094 for balancers and cell line-

specific proteins, respectively. This illustrates that the entropic

ranking of proteins selects balancers preferentially, thus it validates

our previous observation that proteins with high contribution to

network entropy are enriched in the set of balancer proteins.

DISCUSSION
We investigated the effect of gene dosage alterations on the

proteome of mouse embryonic stem (ES) cells. Using our large-gel

2-DE, extraordinary in its high resolution and reproducibility [7],

total protein extracts from six different ES cell lines were analyzed.

In four of them, one single gene was overexpressed either by gene

duplication (Dyrk1a, Dopey2) or by conventional stable gene

Table 2. Proteins changed in more than three transgenic ES cell lines (proposed balancer proteins).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spot ID Protein Name Gene Symbol Behavior

B125 aminolevulinate, delta-, dehydratase Alad 3 q, 2Q

S37 albumin Alb 1 q, 3Q

B40 ATPase, H+ transporting, lysosomal V1 subunit C1 Atp6v1c1 always up

S34 BAT2 domain containing 1 Bat2d always down

B96 carbonic anhydrase 2 Car2 1 q, 3Q

B476 calcium response factor Carf 2 q,2Q

B72 coiled-coil domain containing 25 Ccdc25 always up

B178 eukaryotic translation elongation factor 1 alpha 1 Eef1a1 1 q, 3Q

B70 enolase 1, alpha non-neuron Eno1 always up

S10 fatty acid binding protein 3, muscle and heart Fabp3 2 q, 4Q

B110 guanine nucleotide binding protein (G protein), beta polypeptide 2 like 1 Gnb2l1 1 q, 3Q

S98 golgi autoantigen, golgin subfamily b, macrogolgin 1 Golgb1 1 q, 4Q

B175 glutamate oxaloacetate transaminase 2, mitochondrial Got2 3 q, 1Q

B121 glyoxylate reductase/hydroxypyruvate reductase Grhpr 3 q, 2Q

S160 histone cell cycle regulation defective interacting protein 5 Nfu1 2 q, 2Q

B154 heterogeneous nuclear ribonucleoprotein A2/B1 Hnrpa2b1 4 q, 1Q

B134 LIM and SH3 protein 1 Lasp1 2 q, 4Q

B123 mitochondrial ribosomal protein L39 Mrpl39 3 q, 2Q

S38 nucleophosmin 1 Npm1 1 q, 3Q

B62 nudix (nucleoside diphosphate linked moiety X)-type motif 16-like 1 Nudt16l1 always up

B475 polyribonucleotide nucleotidyltransferase 1 Pnpt1 1 q, 3Q

S238 pyrophosphatase (inorganic) 1 Ppa1 2 q, 2Q

B45 PPAR-alpha interacting complex protein 285 Pric285 4 q, 1Q

S557 proteasome (prosome, macropain) subunit, beta type 6 Psmb6 always down

B77 proteasome (prosome, macropain) subunit, beta type 7 Psmb7 always up

S90 proteasome (prosome, macropain) 28 subunit, alpha Psme1 1 q, 3Q

B43 RAN binding protein 5 Ranbp5 always up

S6 S100 calcium binding protein A11 (calgizzarin) S100a11 always up

B203 serine (or cysteine) peptidase inhibitor, clade H, member 1 Serpinh1 1 q, 3Q

B422 single-stranded DNA binding protein 1 Ssbp1 2 q, 2Q

B50 transgelin Tagln 1 q, 3Q

B124 transaldolase 1 Taldo1 3 q, 2Q

S32 transcription elongation factor B (SIII), polypeptide 2 Tceb2 always down

S204 thimet oligopeptidase 1 Thop1 1 q, 3Q

S100 tropomyosin 1, alpha Tpm1 1 q, 4Q

S395 Thioredoxin-like 2 Txn1 2 q, 2Q

S4 Thioredoxin 1 Txn1 2 q, 2Q

S99 Thioredoxin-related protein Txnl1 2 q, 2Q

doi:10.1371/journal.pone.0001218.t002..
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transfection (App, Snca). In two other cell lines, the dosage of

a whole set of 14 genes was altered so that the segment was either

duplicated (trisomic) or deleted (monosomic). According to our

observations, dose alteration of a single gene led to quantitative

changes in a large number of proteins. Surprisingly however, altering

the dosage of 14 genes instead of one gene did not increase the

number of altered proteins accordingly. In effect, the frequency of

protein variations induced by one or 14 altered gene dosages was in

a similar range. Hence, we propose that the protein changes

observed might not completely reflect reactions of proteins

functionally linked with the genes whose dosage was altered. Rather,

these changes may at least be partially explained as a global response

of the cellular proteome to the gene dosage defect.

Considering the protein changes observed in our ES cell lines in

more detail, we found that in all cases where a single gene was

overexpressed, the number of proteins which were up-regulated

was always in equilibrium with the number of down-regulated

proteins (Figure 2A). Moreover, when we measured up and down-

regulation of proteins in terms of protein amount instead of

number of proteins, a balance in up and down-regulation was also

observed. The situation was different in the two cell lines carrying

alterations in 14 genes. Here, the number of proteins up or down-

regulated was no longer in equilibrium: In mES_14_Tris, about

60% of the altered proteins were up-regulated, whereas about

40% of the proteins were down-regulated. The changes in the

mES_14_Mono showed the same ratio, but in reversed direction

(ca. 60% down, 40% up). However, regarding the protein

variations at the level of protein amount, a balance reoccurred

even in cell lines with 14 genes altered (Figure 2B).

We therefore hypothesize the existence of a proteome-wide

acting regulatory mechanism that leads to a compensation of an

imbalance in the quantitative arrangement of the cellular

proteome. Within the proteome of a cell, the relative concentra-

tion of each particular protein should be precisely arranged and

well balanced. In consequence, aberrant quantitative changes,

even in a single protein, may alter the relative concentration of

many other proteins, thereby disturbing the overall proteomic

balance. In this situation, the first response of the cell could be

towards restoring the balance in the cellular proteome in order to

maintain normal cellular operations. As a result, below certain

thresholds, a rebuild of system homeostasis by quantitative

rearrangement of the proteome may be achieved.

Several considerations that originate from theoretical biology

and experimental model systems are in line with our hypothesis

outlined above: The theory of protein minimization [18] states

that all protein levels within a cell are maintained at the minimum

level compatible with function, while metabolic pathway fluxes are

maintained at the maximum. This is explained as a consequence

of an increasing number of proteins occurring in the course of

evolution, e.g. by gene duplication, that needed to be accommo-

dated in the cells. Since the resources of a cell (such as space,

energy, metabolites e.g. amino acids and unbound water to allow

diffusion) did not increase accordingly, the occurrence of new

proteins in evolution was always accompanied by a concentration

reduction of proteins that already present. In order to keep cellular

functions intact in spite of protein concentration reduction, the

functional efficiency of the already established proteins (e.g. the

specific activity of enzymes) had to increase. Another theory, the

excluded volume theory established by A.P. Minton [19,20] deals

with the high degree of macromolecular crowding in cells. If

a protein is overexpressed in a cell, movement of this and

surrounding proteins becomes restricted due to excluded volume.

Thus the distance between protein molecules becomes smaller

than the diameter of moving protein molecules. Proteins react to

this situation with conformational changes and tend to aggregate

and to lose their function. Apparently, active or passive regulatory

mechanisms exist that keep the cellular protein concentrations

within a physiologically buffered range.

When the relative cellular proteome composition is disturbed,

probably not all proteins are changed in their quantitative

Table 3. Comparison of protein properties of balancer and cell line-specific proteins.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protein properties Balancers Cell line-specific proteins p-value

Molecular weight (kD) 47.2642.5 48.3647.3 0.906

Isoelectric point 6.5261.68 6.9861.71 0.14

Instability 41.3612.8 41.8611.2 0.81

Aliphatic index 79.7614.2 77.7616.8 0.51

Gravy score 20.44960.337 20.44460.357 0.94

Cellular abundance (% volume of protein spot) 0.15860.169 0.11860.116 0.0082

No. of interaction partners(3) 4.9 7.8 0.0048

Total No. of SNPs per locus 29.5640.1 30.6658.7 0.46

No. of upstream SNPs (1) 2.764.7 1.964.9 0.53

No. of SNPs in 59-UTR 1.062.3 1.964.9 0.76

No. of SNPs in introns 18.8631.3 20.5648.1 0.43

No. of synonymous SNPs in ORF 1.363.1 1.460.5 0.12

No. of nonsynonymous SNPs in ORF 2.861.83 0.761.8 0.026

No. of SNPs in 39-UTR 2.164.6 1.163.2 0.0855

No. of SNPs downstream (2) 2.665.4 3.265.3 0.89

Entropic contribution(3) 1.51 0.97 0.02

Values in bold indicate significant difference between balancer and cell line-specific proteins
(1)Interval up to a position 2000 bp upstream of the transcription start site
(2)Interval from polyadenylation site to a position 2000 bp downstream
(3)Standard errors not shown since the distributions are tend to be screwed.
doi:10.1371/journal.pone.0001218.t003..
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occurrence to the same extent. Regarding our hypothesis, we

suggest the existence of a special class of proteins that are

particularly effective in such rebalancing approaches. This led us

to propose discrimination between balancer and cell line-specific

proteins. We hypothesize that balancers are proteins that buffer or

cushion a cellular system by common properties, i.e., properties

not necessarily related to their specific functions. Accordingly, the

same proteins may change when different system disturbances

have caused protein imbalance. In line with these definitions, we

found no considerable overlapping functions between balancer

proteins and the transgenes. In contrast, the expression alterations

of cell line-specific proteins could more likely have been directly

induced by gene dosage modifications. This finding further

supports the notion that the changes of balancer proteins represent

more peripheral cellular affairs.

To find out whether balancer proteins might have further

distinct properties, we analyzed them using multiple categories

outlined in tables 3, 4 and 5. We found that potential balancers

seem to be of high cellular abundance. This is plausible as very low

abundance proteins (e.g. regulatory proteins, transcription factors

and receptors) are possibly present only in a few copies per cell and

thus have no real buffer capacity to compensate imbalance at the

proteomic scale. In retrospect, it is known that all proteins visible

on 2-DE patterns are relatively abundant [21]. Still, even under

these preconditions, balancer proteins seem to be more abundant

than cell line-specific proteins. Moreover, potential balancers

turned out to be more polymorphic in their coding regions than

cell line-specific proteins. Protein polymorphisms indicate proteins

which became less constrained in the course of evolution [22]. As

a consequence, proteins bearing a higher degree of polymorphisms

(including balancers) may tend to be more flexible in quantitative

changes, whereas cell line-specific proteins may require a stronger

connection between expression level and function.

Another trait of our candidates for balancer proteins was found

by screening a protein-protein interaction database available online

(HPRD). Here, balancers possessed less direct interaction partners

than cell line-specific proteins. Interestingly, in the protein in-

teraction network published by Stelzl et al. for human proteins [23],

disease-related proteins annotated in the Online Mendelian Inheritance in

Man database (OMIM) were located almost exclusively in the area of

low connective level. This correlation may indicate a particular role

of balancer proteins in diseases conditions, but at the same time

raises our suspicion that balancer proteins are more likely to be

identified as disease-associated proteins partially due to their

frequent and reproducible alterations.

Towards understanding how balancer proteins in their

functional properties may impart elasticity to the proteomic

Figure 4. Cumulative fraction plots of ‘‘balancer’’-‘‘cell line-specific
protein’’ comparison. (A) Entropic contribution.; (B) Number of direct
protein interaction partners. Compared to cell line-specific proteins,
balancers possess significantly higher values of entropic contribution
and a low number of direct interaction partners.
doi:10.1371/journal.pone.0001218.g004

Table 4. GO-terms enriched among balancer proteins detected in the proteome of mouse ES cells.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GO-ID Count1 Total# p-Value GO-term Category*

GO:0009056 7 877 0.002 catabolism BP

GO:0006091 7 1028 0.003 generation of precursor metabolites and energy BP

GO:0030508 2 5 0.001 thiol-disulfide exchange intermediate activity MF

GO:0015035 3 73 0.003 protein disulfide oxidoreductase activity MF

GO:0016836 3 81 0.003 hydro-lyase activity MF

GO:0016835 3 92 0.004 carbon-oxygen lyase activity MF

GO:0015036 3 96 0.004 disulfide oxidoreductase activity MF

GO:0009055 4 289 0.007 electron carrier activity MF

1Number of balancer proteins bearing this GO-term.
#Total number of proteins in the human GOA database annotated with this GO-term.
*BP: biological process; MF: Molecular function.
doi:10.1371/journal.pone.0001218.t004..
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system, we queried what kind of shared functional categories these

proteins may possess (biological process and molecular function

GO terms). Compared to the candidate balancers, cell line-specific

proteins were associated with a much broader spectrum of GO-

categories (Table 4 and 5). In addition, cell line-specific proteins

but not balancers were highly involved in mRNA-related

processes. This is in line with the fact that these processes are

tightly regulated. Proteins involved therein are thus prone to

concentration alteration, a property incompatible with a role as

balancers. Moreover, our set of putative balancer proteins was

enriched in stress and metabolic proteins compared to the

remaining proteins altered. The physiological activity of a signif-

icant subset of cellular proteins is modified by the redox state of

regulatory thiol groups. The cellular redox homeostasis depends

on the balance between oxidation of thiols through oxygen and

reactive oxygen species and reduction by thiol-disulfide transfer

reactions. In this respect, it would make sense that potential

balancer proteins are enriched in GO categories implicated in

disulfide oxidoreductase and thiol disulfide exchange.

One particularly important feature of a living system is its

resilience against external and internal changes, which, at the

molecular level, amounts to perturbations in network parameters.

In an attempt to analyze this robustness of the cellular system, we

applied a network analysis, which is motivated by concepts from

statistical mechanics and dynamical systems theory. Our approach

is based on the assumption that biological processes often operate

at steady state, which corresponds to the observed phenotype [24].

It has been shown that changes in network entropy, a fundamental

statistical property, are positively correlated with system robust-

ness. In turn, the entropic contribution of a protein describes its

impact on network integrity. Removal of nodes with high entropic

contribution more often result in lethal phenotypes from yeast and

Table 5. Enriched GO-terms among cell line-specific proteins detected in the proteome of mouse embryonic stem cells.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GO-ID Count1 Total# p-Value GO-term Category*

GO:0043170 41 7475 7.85E-07 macromolecule metabolism BP

GO:0006396 11 503 3.49E-06 RNA processing BP

GO:0044238 53 11859 3.83E-06 primary metabolism BP

GO:0016070 12 662 4.71E-06 RNA metabolism BP

GO:0008152 57 13425 4.76E-06 metabolism BP

GO:0008614 2 2 1.72E-04 pyridoxine metabolism BP

GO:0008615 2 2 1.72E-04 pyridoxine biosynthesis BP

GO:0042816 2 2 1.72E-04 vitamin B6 metabolism BP

GO:0042819 2 2 1.72E-04 vitamin B6 biosynthesis BP

GO:0043283 24 4377 0.001 biopolymer metabolism BP

GO:0006139 27 5422 0.002 nucleobase, nucleoside, nucleotide and nucleic acid metabolism BP

GO:0016071 6 292 0.002 mRNA metabolism BP

GO:0006397 5 243 0.006 mRNA processing BP

GO:0006511 5 248 0.006 ubiquitin-dependent protein catabolism BP

GO:0019941 5 248 0.006 modification-dependent protein catabolism BP

GO:0043632 5 248 0.006 modification-dependent macromolecule catabolism BP

GO:0044260 25 5232 0.007 cellular macromolecule metabolism BP

GO:0019538 26 5543 0.007 protein metabolism BP

GO:0000375 4 148 0.007 RNA splicing, via transesterification reactions BP

GO:0000377 4 148 0.007 RNA splicing, via transesterification BP

GO:0000398 4 148 0.007 nuclear mRNA splicing, via spliceosome BP

GO:0006564 2 16 0.009 L-serine biosynthesis BP

GO:0030530 2 16 0.009 heterogeneous nuclear ribonucleoprotein BP

GO:0044257 5 288 0.009 cellular protein catabolism BP

GO:0051603 5 287 0.009 proteolysis during cellular protein catabolism BP

GO:0003723 14 930 3.83E-06 RNA binding MF

GO:0008266 2 2 1.72E-04 poly(U) binding MF

GO:0016018 2 6 0.002 cyclosporin A binding MF

GO:0050662 5 193 0.002 coenzyme binding MF

GO:0000166 21 3851 0.003 nucleotide binding MF

GO:0048037 5 220 0.004 cofactor binding MF

GO:0003727 2 12 0.006 single-stranded RNA binding MF

GO:0008144 2 17 0.010 drug binding MF

1Number of cell line-specific proteins bearing this GO-term.
#Total number of proteins in the human GOA database annotated with this GO-term.
*BP: biological process; MF: Molecular function.
doi:10.1371/journal.pone.0001218.t005..
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C. elegans [25]. Our ranking analysis shows that there is a difference

between balancers and cell line-specific proteins: Compared to cell

line-specific proteins, balancers possessed a higher entropic

contribution. This structural property suggests that balancers

might be able to attenuate system disturbance more efficiently.

The existence of balancer proteins could therefore be responsible

for the elasticity of a cellular system.

For example, a number of proteins representing proteasome

subunits showed altered expression in our transgenic cell lines.

Five of them belong to balancer candidates, while three other

proteasome subunits belong to cell line-specific proteins. Consid-

ering the proteasome sub-interaction network in detail (Figure 5),

we noticed that Psma2 and Psma3, which are local hubs in the

subgraph, both belong to candidate cell line-specific proteins. On

the other hand, Psmb6 is a candidate balancer protein connecting

between two different nodes of a higher order. This example

supports our assumption that balancer proteins could be

connective hubs between different modules. Such ‘‘bridges’’ are

probably heavily utilized during balancing processes. It is worth

noting that the concept of ‘‘bridges’’ discussed here resembles that

of ‘‘high betweenness’’ of previous studies on protein interaction

networks using graph theory [26,27]. If two clusters of interacting

proteins are joined together only through a mutual interacting

protein, this protein would have a ‘‘high betweeness’’ measure.

‘‘High betweeness’’ thus indicates the importance of a node within

the wider context of the holistic network [27]. Here, the entropic

contribution captures this property not in terms of shortest pats (as

betweenness), but in terms of random walks inside the network. In

this sense, network entropy and entropic contribution provide

a conceptual framework to understand the role of the heuristic

centrality indices, such as node degree and betweenness.

We are aware that our conclusion provides only one qualitative

interpretation of the experimental observations. Under the

assumption that gene dosage modifications in the ES cell lines

represent small perturbations to the cellular system, more detailed

theoretical interpretations can also be sought. For example,

previous studies have described that cellular fates such as

differentiation, growth, quiescence, or apoptosis may represent

the convergence of stochastic cellular program onto a small set of

common self-stabilizing ‘‘attractors’’ states [28–30]. These attrac-

tor states, which are robust to small perturbations, may also

explain our observation that the transgenic ES cells remained in

their original steady state as undifferentiated ES cells. However,

we are cautious with respect to such a general conclusion,

considering that our sample set is very limited, both in terms of

sample dimension and its representative nature. Importantly, most

of the current network data is of purely structural character, and

does not allow for a more detailed understanding of the underlying

dynamics, or even its logical abstraction. Moreover, the protein

property information was obtained from current protein database

entries that are incomplete and may be biased towards intensively

studied proteins. Furthermore, due to our small sample sizes, the

p-value estimations are not very robust, and may affect our

assignment of significance for observed differences. Possible future

experiments to test our hypothesis could be, for example, to

analyze transgenic cell lines overexpressing one of the candidate

balancer proteins in the same in vitro system.

In summary, based on our results we hypothesize that the large

number of variant proteins detected in mutant ES cells does not

necessarily reflect disease-related dysfunctions of these proteins,

but rather a quantitative rearrangement of the proteome in

response to a disturbance induced by gene dosage alterations. We

postulated a regulatory mechanism established in a cell that

protects it from deleterious effects of mutations by keeping the

macromolecular composition of a cell quantitatively in balance.

MATERIALS AND METHODS

Transgenic ES cell line construction
Pluripotent mouse ES cells were genetically manipulated on single

or a set of genes involved in neurodegenerative diseases. A

plasmid-mediated gene insertion protocol was used to generate

App and Snca-overexpressing cell lines (mES_hAPP and mES_Snca,

respectively), with CGR8 as parental line [31,32]. For this

purpose, a transfer vector based on pMSCV (BD BioSciences

Clontech Heidelberg, Germany), which contained a puromycin

resistance gene, was modified by inserting a 1.3 kb fragment of the

rat promoter for translation elongation factor 1 alpha 1 (Eef1a1).

This promoter has been shown to be suitable for protein

overexpression in ES cells [33]. cDNA of a target gene (human

App or mouse Snca) was inserted in frame with the initiating

methionine specified by the rat Eef1a1 promoter. The vector was

electroporated into the ES cells at standard conditions (250V,

500 mF). 24h after electroporation, seven days of puromycin

selection followed to select stably transformed ES cell lines.

Western blotting was carried out to confirm protein overexpres-

sion (monoclonal mouse IgG against human amyloid b peptide,

amino acids 1–17, clone 6E10; monoclonal mouse IgG against a-

synuclein, clone 5D6, Signet Laboratories, Berkeley, USA). The

MICER strategy was used to generate ES cell lines bearing

segmental deletion or duplication of Abcg1-U2af1 on mouse

chromosome 17 (30333543 to 31387432 bp), using ES cell line

HM-1 as parental line [13,15,34,35] (mES_14_Mono and

mES_14_Tris, respectively). This chromosome segment contains

the following genes: Abcg1, Tff3, Tff2, Tff1, Tmprss3, Ubash3a,

Figure 5. A protein-protein interaction subgraph showing the
proteasome subunits, where nodes denote proteins and the edges
describe protein-protein interaction. Two local hub proteins of this
subgraph (Psma2 and Psma3) belong to cell line-specific proteins, while
a candidate balancer protein (Psmb6) represents a connection between
these two modules (see discussion for details). This supports our
assumption that balancer proteins could be connective hubs between
different modules. Protein marked in green: Psma2; yellow: Psmb6;
magenta: Psma3.
doi:10.1371/journal.pone.0001218.g005
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Tsga2, LOC667056, Slc37a1, Pde9a, Wdr4, 1500032D14Rik, Pknox1,

Cbs and LOC623242. The bordering gene Abcg1 was deleted in the

monosomy, but unaffected in the trisomy cell line. ES cell lines

trisomic for murine Dyrk1a (mES_Dyrk1a_Tris) or murine Dopey2

(mES_Dopey2_Tris) were generated using a BAC gene transfer

protocol [36], with D3 as parental cell line (for Dyrk1a: BAC

189N10 from the CT7 library, pBeloBac11 vector, 94672437 to

94823558 bp on MMU16; for Dopey2: PAC 186P4 from the RP21

library, pPAC4 vector, 93576842 to 93751423 bp on MMU16)

[37]. All ES cell lines were able to give germ-line transmission

[14,15], except for the CGR8 subclone used, which is primarily

intended for work in vitro (Savatier, personal communication).

Maintenance of ES cells
ES cell lines were grown in Dulbecco’s Modified Eagle Medium

(DMEM; Invitrogen, Karlsruhe, Germany) supplemented with

15% fetal calf serum (Biochrom, Berlin Germany), 2mM L-

glutamine (Invitrogen), 0.1mM non-essential amino acids (Invitro-

gen), 1mM sodium pyruvate (Invitrogen), 0.1 mM 2-mercap-

toethanol (Invitrogen) and 100U/ml leukemia inhibitory factor

(LIF, Chemicon, Hampshire UK) under standard cell culture

conditions (37uC, 5% CO2, 95% humidity). Modified and control

cell lines were always cultured in parallel. CGR8-derived ES cell

lines were maintained on gelatine-coated (0.1% v/v) cell culture

plates. ES cells with E3 or HM-1 as parental line were maintained

on mitotically inactivated murine embryonic fibroblasts. Prior to

cell harvest, these cells were grown for three further passages on

gelatine-coated plates to eliminate feeder cells. Cells were grown to

70–90% confluence and met morphological criteria for undifferen-

tiated ES cells at the time of harvest (tightly packed cells forming

round colonies). ES cells of three independent 10cm culture dishes

were gently dissociated in ice cold PBS containing 5mM EDTA.

This resulted in three biological replicates for each cell line.

Trypsinization was avoided to preclude protein alteration artifacts.

2D-Electrophoresis
ES cell total protein extraction was carried out using our standard

protocol [8]. 70 mg of protein was separated in each 2-DE-run as

described previously [7]. Transgenic and their parental cell lines

were always run in parallel. Two technical repeats were conducted

for each cellular protein extract. Silver staining protocol was

employed to visualize protein spots [38]. Computer-assisted

manual gel evaluation was performed after scanning of the gel

images (600 dpi, UMAX, Willich Germany) (Delta2D version 3.4,

Decodon, Greifswald Germany) [39]. Briefly, corresponding gel

images were first warped using ‘‘exact mode’’ (manual vector

setting combined with automatic warping). A fusion gel image was

subsequently generated using union mode, which is a weighted

arithmetic mean across the entire gel series. Spot detection was

carried out on this fusion image automatically, followed by manual

spot editing. Subsequently, spots were transferred from fusion

image to all gels. The signal intensities of each spot was computed

as a weighted sum of all pixel intensities (volume of protein spot).

Percent volume of spot intensities calculated as a fraction of the

total spot volume of the parent gel was used for quantitative

analysis of protein expression level. Ninety-five percent of the

protein spots on the 2D gels that did not vary in their

concentration and spot intensity served as reference. Thus, the

balancing phenomenon is not due to a normalization artifact that

could have arisen from global normalization to a mean or median.

Normalized values after local background subtraction were

subsequently exported from Delta2D in spreadsheet format for

statistical analysis.

Mass spectrometric protein identification
For protein identification by mass spectrometry, 2-DE gels were

stained with a mass spectrometry compatible silver staining

protocol [40]. Protein spots of interest were excised from 2-DE

gels and subjected to in-gel trypsin digestion without reduction and

alkylation. Tryptic fragments were analyzed on a LCQ Deca XP

nano HPLC/ESI ion trap mass spectrometer (Thermo Fisher

Scientific, Waltham, MA, USA) as described previously [11]. For

database-assisted protein mass finger printing, monoisotopic mass

values of peptides were searched against NCBI-nr (version

20061206, taxonomy: Mus musculus), allowing one missed cleavage.

Peptide mass tolerance and fragment mass tolerance were set at

0.8 Dalton. Oxidation of methionine and arylamide adducts on

cysteine (propionaide) were considered as variable peptide

modifications. Criteria for positive identification of proteins were

set according to the scoring algorithm delineated in Mascot

(Matrix Science, London, UK) [41], with individual ion score cut-

off threshold corresponding to p,0.05.

Annotation of biochemical properties and

functional categories to proteins
Public database queries were performed for the characterization of

proteins with altered expression profiles in transgenic ES cells. For

this purpose, GOstat (http://gostat.wehi.edu.au) was employed to

annotate and search against the human GOA database (www.ebi.

ac.uk/GOA) in order to determine highly represented functional

categories for our proteins of interests [42]. This tool integrates

a Fisher’s exact test that decides whether the observed GO-term

over-representation is significant. p,0.01 was set as statistical

significance threshold. ProtParam was used to predict the protein

instability, aliphatic index and Gravy scores (www.expasy.org/

tools/protparam). The Human Reference Protein Database (www.

hprd.org) was used to access the number of direct protein

interaction partners. Batch searches of overall protein-protein

interaction network information were performed via the meta-

database UniHi (http://theoderich.fb3.mdc-berlin.de:8080/

unihi). Subsequently, information originating from HPRD, BIND,

DIP and Reactome, which are curated manually, was extracted.

The visualization of the protein interaction network was

performed using Cytoscape (www.cytoscape.org) [43]. The Mouse

Genome informatics database (MGI 3.5) was used to access the

number of SNPs across 86 inbred mouse strains (www.informatics.

jax.org). Biological pathway analyses were performed using

KEGG (www.genome.ad.jp/kegg) and Biocarta pathway data-

bases (www.biocarta.com). Protein abundance information was

extracted from 2-DE data.

Statistics
To assess statistical significance of expression differences between

transgenic and control cell lines, Student’s T-test was carried out

for control vs. transgenic groups (pair-wise, two sided, n = 6).

p,0.05 was used as statistical significance threshold. Only protein

expression changes over 30% compared to control were retained

for further analysis. As a post hoc control analysis, protein

expression data generated from 2DE were scrutinized using the

Significance Analysis of Microarrays tool (SAM, www-stat.stan-

ford.edu) to identify the false detective rate required to gain the

comparable set of altered proteins (100 permutations) [44]. Protein

expression alteration (fold change against wild-type controls) was

reported with standard error of means (SEM). Due to their non-

parametric distribution nature, protein property data (protein

cellular abundance, biochemical properties and entropic contri-

bution) were visualized as cumulative fraction plots. Differences of
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datasets between balancer and cell line-specific proteins were

assessed with the Wilcoxon sum rank test (p,0.05).

Network-based approach for system robustness

analysis
Many aspects of cellular behavior are mainly determined by the

structural properties of the underlying molecular network. In order

to characterize the macroscopic resilience properties of the

proteomic system, we adopted a network approach which is based

on molecular protein interactions. This approach utilizes a fluctu-

ation theorem [24], which states that the resilience of macroscoptic

network observables is positively correlated with the pathway

diversity, a property which can be measured by network entropy.

In this context, network entropy appears as the dynamical entropy

of a stochastic process defined on the network, i.e the weighted-

average Shannon entropy, H~
X

i
piHi, where pi is the

stationary distribution of the stochastic process (Pij) and Hi is the

standard Shannon entropy defined by:

Hi~{
X

j

PijLogPij

i.e., the uncertainty about the next step of a random walk

operating on the network. The stochastic process, Pij, is defined

through a variational principle for the leading eigenvalue, which,

for unweighted networks, maximizes the overall network entropy

[24]. Thus, ‘‘H’’ denotes the network entropy of the whole protein-

protein interaction network, whereas ‘‘Hi’’ denotes the entropic

contribution of each individual protein (see Methods S1 for

details). This entropic characterization leads to a natural impor-

tance ranking of proteins within the context of resilience of the

global protein interaction network [25]. For this purpose, a pro-

tein-protein interaction network was generated from all proteins

identified from the 2-DE protein pattern of ES cells. This

generates an undirected, un-weighted information transfer graph

where nodes denote proteins and the edges describe protein-

protein interaction. The topological structure of the graph can be

described by an NxN adjacency matrix A = (aij). The entropic

contribution of each protein to the global network entropy was

calculated as in [25].

SUPPORTING INFORMATION

Table S1 Protein expression profile changes in transgenic ES

cell lines.

Found at: doi:10.1371/journal.pone.0001218.s001 (0.11 MB

XLS)

Methods S1 Supplementary method of network entropy

calculation

Found at: doi:10.1371/journal.pone.0001218.s002 (0.05 MB

PDF)
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