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Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed
against IgE benefit hay fever! and allergic asthmal2. Genetic association studies have not yet
identified novel therapeutic targets or pathways underlying IgE regulation3-6. We therefore
surveyed epigenetic association between serum IgE concentrations and methylation at loci
concentrated in CpG islands (CGI) genome-wide in 95 nuclear pedigrees, using DNA from
peripheral blood leukocytes (PBL). We validated positive results in additional families and in
subjects from the general population. We show here replicated associations with a meta-analysis
false discovery rate <104 between IgE and low methylation at 36 loci. Genes annotated to these
loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators,
specific transcription factors, and mitochondrial proteins. We confirmed that methylation at these
loci differed significantly in isolated eosinophils from subjects with and without high IgE levels.
The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining 10
fold higher variance than that derived from large SNP GWAS34. The study identifies novel
therapeutic targets and biomarkers for patient stratification for allergic diseases.

Asthma, atopic dermatitis (eczema) and hay fever are IgE-related diseases that are
increasing in prevalence and are a major source of disability. Systematic knowledge of IgE
production is limited, beyond the regulation of IgE creation in B-cells by Interleukin-4 (IL4)
released from T2 cells and eosinophils’. Genome-wide association studies show
polymorphisms in STAT6, FCERIA, IL4/RAD50 and the MHC to be associated with high
IgE concentrations3-6, but these SNPs combined account for only 1-2% of the variation in
serum IgE4.

CpG methylation is associated with gene silencing and the patterning of gene expression that
determines cellular types and functions®, and islands of CpG (CGI) sequences are positioned
near the promoters of 40% of human genes®. 1L4 expression has been related to upstream
epigenetic variation in DNA methylation in T-cells1?, encouraging us to search genome-
wide for other CGI associated with IgE serum concentrations.

We used Illumina HumanMethylation27 arrays to target individual CpG sites (loci) within
proximal promoter regions of 14,475 genes. The panel is enriched for genomic regions
regulating expression, but does not cover all functionally important CpG sites. We excluded
from downstream analyses any loci with SNPs overlapping the Illumina probe sequence, and
established that direct bisulphite pyrosequencing correlates robustly with the array in our
hands (Extended Data Figure 1) and elsewherell,

We investigated nuclear families from the MRCA panel in which we have previously carried
out genome-wide SNP association studies for IgE levels and asthmal2. The panel contained
355 subjects (183 male) with a mean age in children of 12.2 years (ranging from 2 to 39)
and adults of 42 years (27 to 61) (Table 1). 113 children had doctor-diagnosed asthma
(DDAST). We sought for replication in 149 Caucasian subjects selected equally from the
top and bottom deciles of IgE distribution in 1,614 unselected volunteers for the PAPA
study (Poplogaeth Asthma Prifysgol Abertawe: students and staff from Swansea
University)!3; and in 160 subjects in an asthmatic family panel from the Saguenay—Lac-
Saint-Jean region (SLSJ) of Quebec!* with a mean age in children of 16 years (ranging from
5 to 50; 40 DDAST) and adults of 44 years (31 to 79)(Table 1).
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We fitted models with Ln(IgE) as dependent variable and methylation status for each
Illumina probe as a predictor with age, sex, parental status, interactions and batch identifiers
as covariates. We identified 34 loci with a false discovery rate (FDR)<0.01 (Figure 1 and
Supplementary Table 1) in 32 different CGls in the MRCA panel. Following replication in
PAPA and SLSJ panels a meta-analysis combining the results identified 36 loci with FDR <
10~ and 62 loci with an FDR<0.005 (Table 2 and Supplementary Table 1). All loci showed
associations with the same anti-correlated direction in the three datasets (Table 2). A RAST
index, quantifying IgE against common allergens!®, showed similar but non-independent
associations, suggesting common regulation of total and specific IgE. Testing of models
with asthma as the dependent variable showed only LPCAT2 and ZNF22 to be associated
with asthma independently of IgE levels (P=7.7x107° and P=1.8x107%).

The variable methylation site upstream of I1L4 has a well-studied effect on 1L4
production1®17 and IgE regulation, with methylation anticorrelated with expression in the
same direction as in our study. We looked for SNP associations at this locus by imputation
with the 1000G phase 1 SNPs and indels in all three panels, analysing the 20,746 variants
within 1Mb upstream or downstream of the IL4 5’UTR. We found no significant SNP
associations with IgE after accounting for multiple testing.

We carried out Mendelian randomization to test for a causal effect of IL4 methylation on
IgE18, choosing the SNP showing strongest association to methylation at the 1L4 CpG probe
(cg26787239) as the instrumental variable. The First Stage F-test statistics for the MRCA
and SLSJ panels (F=16.4 and 26.2) indicated effects strong enough to ensure the validity of
the method. In the MRCA panel, association between the instrument SNP (rs12311504) and
IgE before adjusting for IL4 methylation was P=0.03 and P=0.53 after adjustment,
indicating that methylation mediated most of the SNP effect. The meta-analysis P for a
causal effect was 6.8x1074, suggesting that the locus represents a functionally validated
epigenetic association with a complex phenotype.

Several loci were annotated to genes that encode proteins characteristic of eosinophils
(Table 2 and Supplementary Table 1). IL5RA encodes a receptor that selectively stimulates
eosinophil production and activation?; CCR3 encodes the eosinophil eotaxin receptor;
IL1IRL1 encodes the receptor for the eosinophil-activating cytokine 1L33; PGR2 encodes
eosinophil granule major basic protein (PRG2); PGR3 is a PGR2 homologue; and GATAL is
an eosinophil transcription factor. We therefore tested whether methylation at our associated
loci marked activation in eosinophils purified from peripheral blood, studying 8 asthmatics
with high serum IgE levels (>110 IU/L), 8 asthmatics with low serum IgE (<110 IU/L)
levels and 8 controls (mean age all subjects 31 years (range 6-56), 8 females and 2 current
smokers). Asthmatics in both groups were on a maintenance regime of inhaled beta agonists,
augmented with inhaled glucocorticoids during exacerbations.

We observed the lowest levels of methylation in the subjects with asthma and high IgE and
that methylation in asthmatics with low IgE was intermediate to controls (Figure 2) (P
<0.05; Supplementary Table 1), supporting our initial results. Partitioning the data into high
or low IgE groups gave similar conclusions. The range of variation for the principal loci was
narrower in asthmatics with high IgE (Figure 2) than in the other two groups, suggesting the
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enrichment of a distinctive eosinophil subset in atopic asthma. This is consistent with the
recognised mixture of eosinophil populations in human blood and eosinophil activation in
atopic disease?0. Comparison of methylation levels in the MRCA panel for our IgE-
associated loci (P<0.001) with an independent study of eosinophils isolated from normal
subjects?! confirmed correlations with methylation status (R=0.64).

Lineage commitment to particular cell types is accompanied by specific methylation
changes®, and it has been suggested that DNA from mixtures of cells (such as PBL) will not
support EWAS of complex diseases?!. We extracted DNA from unfractionated populations
of PBL, so that our methylation patterns reflect the numbers and the activity of different
cells in each specimen. We further explored whether our associations to IgE reflected
carriage in particular cell types by fitting regression models that included differential white
cell counts. We identified partial associations with eosinophil numbers for all IgE associated
loci (Supplementary Table 2 and Figure 3), consistent with independent effects on IgE from
the numbers of eosinophils and the activity of the loci within eosinophils.

It is well recognised that the regulation of IgE production against particular antigens may
reside in T-cells and B-cells as well as in eosinophils?2. Our regression models however
found that the top IgE associations were not accounted for by concomitant correlation with
lymphocyte counts (Supplementary Table 2). We further examined the distribution of our
IgE-associated CpG loci in leukocyte subsets isolated in our Centre and in subsets from
published data?!. The results showed robustly in both datasets that low levels of methylation
at the IgE associated loci were confined to eosinophils (Extended Data Figure 2).

Surrogate CpG markers that identify lymphocyte subsets can be used as an alternative to
white cell counts in association models?3, We also applied these methods to our data
(Extended Data Table 1). This analysis provided further evidence that T-cell subsets do not
have strong effects on these loci.

The variance (Standard Deviation) in our IgE-associated CpG loci was on average 4.4 fold
larger in isolated eosinophils than in PBL from the MRCA dataset, indicating an attenuation
of effect size in PBL that would mask associations rather magnify them. The power to detect
cell-specific associations from PBL depends on the proportion of each cell type, the effect
size in specific cells, and the sample size. We estimated that we had 90% power to detect
loci accounting for 10% of variance in IgE in the MRCA panel and >99% power in the
combined panels (Extended Data Figure 3). Although our ability to detect associations was
enhanced by eosinophil counts that were above the normal range for many of our subjects
(Table 1), the power estimates and the large observed effect size encourage EWAS of other
diseases in which PBLs may be important.

We investigated the variance attributable to different loci in the MRCA panel through a
stepwise regression that included all significant CGI associations together with differential
white cell counts, age, sex and parental status. Using a cut-off of corrected P<0.1 for
inclusion, we found SLC25A33, LPCAT2 and L2HGDH to predict the serum IgE
concentration independently of each other and of eosinophil counts.
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In the MRCA panel the top 3 CpGs independently explained 13.5% IgE variation and counts
8.8%, and in the SLSJ panel the top 3 CpGs explained 8.3% IgE variation and counts 15.5%.
(We were not able to estimate variances meaningfully in the PAPA dataset, because the
samples were selected by extreme IgE values). The regression models therefore matched the
results from isolated eosinophils, with the conclusion the methylation status of eosinophils
and their numbers were both related to IgE levels.

Methylation levels were highly correlated between loci and similar estimations of variance
were obtained with forced entry of other significantly associated markers, so the results do
not imply that SLC25A33, LPCAT2 and L2ZHGDH are the most important loci. DNA
methylation is not meiotically heritable and the variance in IgE attributable to these loci
does not impact on the problem of missing heritability.

Overall, the most significant association was to cg01998785, within a CGI adjacent to
LPCAT2 (also known as AYTL1). LPCAT2 encodes lyso-platelet-activating factor (PAF)
acetyltransferase, which is essential to induced formation of PAF, a potent pro-inflammatory
lipid mediator?4. It is of interest that hypoactive variants of plasmatic PAF-acetylhydrolase
are associated with atopy and asthma2°. Other significant associations annotated to genes
involved in phospholipid metabolism included lysoplasmalogenase (TMEM86B), CEL and
CLC.

GATAL is a known eosinophil transcription factor and subsequent investigations will
determine if the other associated transcription factors ZNF22, RB1 and KLF regulate
eosinophil activation. Other associations may encode proteins released from eosinophil
granules, including PRG2, PRG3, SERPINC1 (antithrombin), TFF1 (which may protect the
mucosa), CEL (carboxyl ester lipase), and the polyvalent serine protease inhibitor SPINK4.
Genes encoding mitochondrial proteins (L2ZHGDH and SLC25A3) are consistent with
mitochondrial suppression of apoptosis in activated eosinophils5.

Although the relationship between methylation and gene expression at these loci requires
further investigation in isolated cells, our results support the recognition that eosinophils are
an important source of cytokines and other pro-inflammatory molecules at the site of allergic
inflammation’. Eosinophils are required locally for the maintenance of bone-marrow plasma
cells?’, allowing direct regulation of 1gE production in specialised environments. Clinically,
the presence of eosinophilia in the peripheral blood or airways identifies a subgroup of
refractory asthmatic individuals in whom therapies directed at eosinophils may be
effective?8. The measurement of methylation at these loci may identify patients responsive
to therapies directed at eosinophils or individual gene products.

Cigarette smoking may increase serum IgE, and we found anti-correlated associations to
current cigarette smoking with F2RL3 (P=8.6x10717) and GPR15 (P=4.6x1079). The SLSJ
dataset confirmed these associations (P=2.5x1076 and P=6.6x107"), in keeping with
previous studies?®:30, Adjusting for smoking had minimal impact on the top hits for IgE and
neither locus affected IgE in our subjects. F2RL3 and GPR15 may represent therapeutic
targets to counter tobacco smoke and their methylation status may prospectively predict
consequences of smoking.
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Our EWAS has discovered reproducible CGI associations accounting for a variation in the
total serum IgE that is 10 fold higher than that derived from large SNP GWAS?. In contrast
to SNP studies, association to methylation levels captures responses to environmental
factors and the loci should not be assumed to cause disease. Nevertheless, our findings
suggest the presence of novel therapeutically tractable pathways underlying IgE production.

Online Methods

Phenotyping

Ethical approval for the study was obtained from the NHS Multicentre Research Ethics
Committee for the MRCA subjects; from the Swansea Joint Scientific Research Committee
and Swansea Research Ethics Committee for the Swansea (PAPA) subjects; and from le
Centre de Santé et des Services Sociaux de Chicoutimi for the SLSJ families. Written
informed consent was obtained from all subjects or in the case of children, from their
parents. Asthma was doctor defined. Following a standard respiratory questionnaire, all
subjects submitted to venipuncture. Differential white cell counts were measured by
automated counter. Total serum IgE and specific serum IgE to whole HDM
(Dermatophagoides pteronyssinus) and Timothy grass pollen (Phleum pratense) were
measured using the Immunocap FEIA (Pharmacia AB, Uppsala, Sweden). The levels of
specific IgE were converted to RAST units according to Pharmacia recommendations. A
combined RAST index was calculated for each individual as the sum of the RAST scores to
HDM and Timothy grass.

Detection of Methylation status

DNA was extracted after red cell lysis and centrifugation to recover leukocyte nuclear
pellets. DNA samples were bisulfite converted using the Zymo EZ DNA Methylation kit
(Zymo Research, Orange, CA, USA) with an input of 1000ng. The assay was carried out as
per the HHlumina Infinium Methylation instructions, using the HumanMethylation27
BeadChips (Illumina Inc, San Diego, CA, USA). These interrogate 27,578 of CpG sites for
the extent of DNA methylation. Data were visualized using the BeadStudio software, and
samples that failed quality control were repeated. Raw methylation data was exported from
the GenomeStudio software. For the lllumina HumanMethylation27 BeadChip data, quantile
normalization of intensity was applied to all methylated and unmethylated probes for all
samples together. The methylation 3 values were recalculated as the ratio of methylated
probe signal/(total signal + 100). The Touleimat and Tost3! analysis pipeline was used for
the HumanMethylation450 BeadChip. Individual data points with detection P>0.01 or
number of beads <3 were treated as missing data, as were samples with more than 20%
missing probes. The lumi package32 was used for background and colour bias correction.
BeadChip ID and position on chip were included as categorical covariates to account for
potential batch effects. Quantile normalization across samples was applied to probes within
each functional category (CpG island, shelf, shore, etc.) separately to correct the shift of
methylation beta value between Infinium I and Infinium Il probes on the
HumanMethylation450 BeadChip. Probe overlaps with any frequent SNP (MAF >5% in
1000 Genomes Project phase 1 EUR population) in the probe sequence or in position +1 or
+2 of the query site (depending on Infinium I or Infinium Il status) were removed. The use
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of meta-analysis to combine 27K and 450K data together with this implementation of the
Tost pipeline ensured our analysis was not confounded by probe differences.

Isolation of human eosinophils

Isolation of human eosinophils was as described33. Briefly, platelet-rich plasma was
removed from 200ml using centrifugation, followed by Dextran-mediated sedimentation to
remove erythrocytes and removal of mononuclear cells using a lymphocyte separation
medium. Hypotonic lysis with sterile water removed remaining erythrocytes and other
granulocytes were removed using negative selection with anti-CD16 MicroBeads. DNA was
extracted using the QlAamp® DNA Blood Mini Kit. Methylation was assessed using
Illumina 450K arrays, with analysis restricted to significantly associated probes from the
meta analysis.

Statistical analyses

In order to investigate the association with the total serum IgE concentration we tested for
association with log-normalized IgE (Ln(IgE)) as response with methylation (p) at each
locus as predictor whilst including Sex, Age, Parent indicator, Age*Sex and Age*Parent
interactions in the model, together with batch indicators captured by Illumina chip ID and
position of chip (such as operators, sample wells, plates, runs, and reagents). We applied
inverse normal transformation to methylation measures to remove the effect of outliers. We
used the R function Ime() in the nime package to implement a linear mixed model, assuming
a compound symmetry variance-covariance structure to account for correlation of
phenotypes among family members. The R code for the discovery stage of association in the
MRCA panel was:

index=lis.na(methylation)

fam=familyID[index]

par=parent[index]

methylation = methylation [index]

methylation =gnorm(rank(methylation)/(length(methylation)+1),mean=0,sd=1)
Inige=LNIGE[index]

age=AGE[index]

sex=SEX[index]
Im2=Ime(Inige~sex+age+methylation+par+sex*age+age*par,random=~1|fam)

The residual methylation value after removal of effects of chip ID and position for the
genome-wide significant loci in the MRCA, PAPA and SLSJ panels is provided in
Supplementary Tables 3-5, together with phenotypic and covariate parameters. We
calculated false discovery rates (FDR) and applied Bonferroni corrections to adjust for
multiple comparisons to 27,578 probes. The same analyses were carried out in the PAPA
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and SLSJ subjects before meta-analysis of the three datasets. We use a weighted z-score
method for meta-analysis based on pvalue and effect direction from individual studies with
weights proportion to the square root of sample size of individual study34. SNPs and indels

from the 1000 Genomes Project phase 1 release (2012-03-14 haplotypes) were imputed

using MINIMAC35. SNPs or indels with imputation quality score R2<0.3 were removed
from downstream analysis. We carried out Mendelian randomization to assess the causal
effect of 1L4 methylation on IgE level through a 2 stage least square instrumental variable
regression3% implemented in the ivreg2.r program (http://diffuseprior.wordpress.com/
2012/05/03/an-ivreg2-function-for-r/). We tested association trends in isolated eosinophils
by exact regression (Cytel Studio 9) with asthma/high IgE coded as 2, asthma/low IgE coded
as 1, and controls as 0. Covariates for age, sex, and batch were included in the model and to
test the hypothesis that low levels of methylation were associated with high IgE, P values
were one-sided. Differences in methylation between peripheral blood leukocyte subsets were

assessed with Kruskal-Wallis tests, using two-sided P values.

Extended Data
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comparing whole-genome bisulphite sequencing (WGBS) with the Illumina platform
These results were produced by us (EG and TMP) at the Genome Quebec Innovation Centre.

The figures show a comparison between IgE-associated CpG probes using lHlumina 450K
(x-axis) and WGBS (y-axis) platforms for two samples (left and right panels) with 20 fold

sequence coverage. The results show a high R? between platforms (0.76 and 0.73). The
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median of the correlation coefficients for our IgE associated loci across 30 different samples

(using WGBS at various depths) was R2=0.76. This to be compared with the global

assessment of all overlapping 450K sites which is R?=0.81.
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Extended Data Figure 2. Distribution of methylation status at IgE-associated loci in isolated

leukocyte subsets

The figure shows the distribution of methylation in peripheral blood leukocyte subsets at the
most strongly IgE-associated loci. CpG methylation was measured by the Illumina Infinium
450K platform. Boxplots show means and interquartile ranges. a, c, e, g, i, K) Results from
publically available data derived from 6 healthy controls (Reinius et al 21). Lower levels of
methylation with wider variation is observed in eosinophils when compared to whole blood
(WB) and subsets comprising CD14+ Monocytes (CD14+M); CD19+ B cells (CD19+B);
CDA4+ T-cells (CD4+T); CD56+ natural killer cells (CD56+NK); CD8+ T cells (CD8+T);
granulocytes (Gran); Neutrophils (Neu) and PBMC. b, d, f, h, j, I) Results from cells
isolated and analyzed by us at the Genome Quebec Innovation Centre (GQIC). Eosinophils
(Eos) (from 24 subjects in the SLSJ panel) also show lower levels of methylation with wider
variation compared to whole blood (WB, 22 SLSJ subjects), and to subsets including B-cells
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Extended Data Figure 3. Power estimations to detect eosinophil-specific effects in DNA from
peripheral blood lymphocytes

The figure shows that our original MRCA dataset (green line) and our combined dataset
(blue line) are well powered to detect signals of the magnitude observed in our three groups
of subjects. The red line shows the power of sample size of 6 described in Reinius et al.? to
detect differences in CpG methylation in unfractionated PBL. The mean variance (as
standard deviation, SD) for the IgE-associated loci was 0.036 in PBLs from our primary
MRCA panel and 0.023 in the whole blood normal samples from Reinius et al.2!,
demonstrating that our results were consistent with the previous experiment.
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Figure 1. Manhattan plot of the results of the genome-wide methylation association study
The results of genome-wide association testing to CGI are shown for 27,000 loci in 355

subjects from the MRCA panel of families. a) The QQ plot showing observed vs. expected
—log1gP values for association at all loci. b) Manhattan plot showing chromosomal locations
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of —logygP values for association at each locus. The red line illustrates the threshold for a
False Discovery Rate (FDR) <0.01.
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Figure 2. Boxplots of methylation at selected CpG loci in isolated eosinophils from subjects with
and without asthma and high total serum IgE concentrations (>110 1U/1)

Subjects were derived from the SLSJ population. Methylation () is shown on a scale of 0-1
for 8 subjects in each group. Boxplots show means and interquartile ranges. The intensity of
the data point colour is proportion to total serum IgE. All loci exhibited reduced variability
and levels of methylation in the subjects with asthma and high IgE (P<0.05).
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Figure 3. Association of selected CpG loci to total serum IgE concentrations in the MRCA panel,
partitioned by eosinophil counts

Methylation values for 355 individuals normalised around a mean of 0 on the abscissa (x)
with In(IgE) levels on the ordinate. Blue dots indicate subjects with eosinophil counts
greater than the median for the MRCA panel.
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Subject characteristics

Table 1

MRCA (discovery)

PAPA (1st replication)

SLSJ (2nd replication)

Number

355

149

160

Age (Mean, range)

28, 2-61

21,18-30

29, 5-79

N (%) Female

172 (48.5%)

72 (48.3%)

80 (50.0%)

N (%) Asthmatic

175 (49.3%)

34 (22.8%)

69 (43.1%)

N (%) Smokers

45 (12.7%)

33 (22.1%)

28 (17.5%)

Eosinophil count (mean + SE) per mcl *

406+383

246+214

242+205

Geometric Mean Serum IgE (Range) 1U/L f

320, 1-4999

663, 0-18800

412, 2-7653

*
Normal range <350 cells per mcl;

ﬂNormaI range <100 IU/L
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Table 2

Page 20

Meta-analysis of association of total serum IgE concentration in three subject panels

Probe Symbol Function PMRCA PSLS] PPAPA P Meta
cg01998785  LPCAT2 Lysophospholipid metabolism 1.2E-13 8.0E-03  9.6E-06 1.2E-18
€g10159529  ILSRA Cytokine signalling 5.1E-12 2.1E-04  7.2E-05 2.2E-18
cg01614759  ZNF22 Transcription Factor 4.4E-12 3.4E-03  2.8E-06 2.8E-18
€g15996947  L2HGDH Mitochondrial oxidoreductase 7.4E-13 1.0E-02  3.7E-05 2.8E-17
cg26787239  IL4 Cytokine signalling 1.6E-11 1.3E-03 4.8E-04 3.2E-16
cg18783781 SLC25A33  Mitochondrial transport: dendritic cell endocytosis 5.0E-14 3.4E-02  6.2E-03 4.4E-15
cgl3221796 RB1 Transcription Factor 5.7E-10 6.0E-02  4.9E-06 2.5E-14
cg01770400 SERPINC1  Anti-thrombin 6.6E-12 7.0E-03  1.3E-02 5.3E-14
cg02643667  TFF1 Mucus stabilising secreted protein 7.9E-12 1.3E-01 2.6E-03 7.6E-13
€g21627181 SL.C17A4 Sodium/phosphate cotransporter 1.1E-06 14E-04 3.8E-04 1.1E-12
€g20189937  L2HGDH Mitochondrial oxidoreductase 1.3E-06 2.4E-03  3.2E-05 2.6E-12
€g26457013 TMEMS86B  Lysoplasmalogenase: phospholipid metabolism 1.0E-09 9.5E-02  9.0E-04 7.1E-12
€g20503329 COL15A1 Cell shape, motlity, adhesion 1.2E-09 3.0E-01 8.8E-05 9.5E-12
€g03693099  CEL Secreted carboxyl ester lipase 1.8E-08 11E-01 8.3E-05 1.3E-11
cg00079056  SPINK4 Serine peptidase inhibitor 1.5E-07 6.4E-02  3.1E-05 1.8E-11
cg09676390  ADARBL Pre-mRNA editing of the glutamate receptor 1.2E-08 7.0E-02  8.0E-04 3.1E-11
cgl5998761 MFSD6 MHC receptor homolog 9.3E-07 1.3E-02 1.7E-04 4.5E-11
€g25494227 TMEMS52B  Transmembrane protein 1.3E-07 2.0E-01 1.2E-05 5.1E-11
cg11398517  FAM112A 2.4E-06 7.4E-03  3.3E-04 1.0E-10
cg06690548  SLC7A11 Cystine/glutamate antiporter: dendritic cell differentiation ~ 2.7E-05 3.3E-04 1.1E-03 1.8E-10
cgl7784922  KEL Metallo-endopeptidase 4.2E-07 79E-03  4.4E-03 2.1E-10
cg16050349  PIK3CB Catalytic subunit for PI3Kbeta: activation of neutrophils 4.0E-05 1.7E-03  2.3E-04 3.2E-10
cg25636075 TMEMA41A  Transmembrane protein 2.5E-04 5.1E-05 7.7E-04 3.9E-10
€g08404225  ILSRA Cytokine signalling 2.3E-04 3.3E-03  8.4E-06 4.1E-10
cg09447105  PDE6H Inhibitory subunit of cGMP phosphodiesterase 2.2E-07 1.3E-01 4.0E-04 5.3E-10
cg05215575  SEPT12 Cell shape, motlity, adhesion 3.1E-07 2.1E-01 2.7E-04 1.2E-09
€g26136776  KLF1 Erythroid-specific transcription factor 3.3E-08 43E-01 6.6E-04 1.5E-09
cgl7749520 ITGA2B Platelet fibronectin receptor: role in coagulation 1.4E-06 2.5E-02  3.5E-03 1.8E-09
€g24459209  PRG3 Eosinophil major basic protein homolog 3.3E-06 29E-02 1.1E-03 1.8E-09
€g00002426  SLMAP Sarcolemma associated protein 7.9E-05 8.3E-03  1.6E-04 2.4E-09
cg15357945 PRG2 Eosinophil granule major basic protein 2.2E-03 2.8E-05 5.8E-04 3.1E-09
cgl7582777  EFNA3 Receptor protein-tyrosine kinase 1.1E-04 3.1E-02  8.2E-05 8.6E-09
cgl9881895 S.C43A3 Transmembrane protein 7.5E-05 2.8E-03  6.7E-03 1.6E-08
cg18254848 CLC Lysophospholipid metabolism 1.8E-05 4.4E-02  4.6E-03 4.5E-08
€g21631409  ALDH3B2 Enzyme or Kinase 2.3E-04 1.7E-02  1.2E-03 6.8E-08
€g00536175  GATAL Eosinophil transcription factor 7.9E-08 40E-01 5.1E-02 1.4E-07

Loci with a false discovery rate for the meta-analysis <10~4 are shown: a full list of significant associations is in Supplementary Table 1. Markers
are identified through their Illumina IDs and the associated gene symbol is derived from the lllumina annotation updated through PubMed. Note
that two probes from IL5RA and from L2HGDH are associated to IgE concentrations.
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