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Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed 

against IgE benefit hay fever1 and allergic asthma1,2. Genetic association studies have not yet 

identified novel therapeutic targets or pathways underlying IgE regulation3-6. We therefore 

surveyed epigenetic association between serum IgE concentrations and methylation at loci 

concentrated in CpG islands (CGI) genome-wide in 95 nuclear pedigrees, using DNA from 

peripheral blood leukocytes (PBL). We validated positive results in additional families and in 

subjects from the general population. We show here replicated associations with a meta-analysis 

false discovery rate <10−4 between IgE and low methylation at 36 loci. Genes annotated to these 

loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators, 

specific transcription factors, and mitochondrial proteins. We confirmed that methylation at these 

loci differed significantly in isolated eosinophils from subjects with and without high IgE levels. 

The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining 10 

fold higher variance than that derived from large SNP GWAS3,4. The study identifies novel 

therapeutic targets and biomarkers for patient stratification for allergic diseases.

Asthma, atopic dermatitis (eczema) and hay fever are IgE-related diseases that are 

increasing in prevalence and are a major source of disability. Systematic knowledge of IgE 

production is limited, beyond the regulation of IgE creation in B-cells by Interleukin-4 (IL4) 

released from TH2 cells and eosinophils7. Genome-wide association studies show 

polymorphisms in STAT6, FCERIA, IL4/RAD50 and the MHC to be associated with high 

IgE concentrations3-6, but these SNPs combined account for only 1-2% of the variation in 

serum IgE4.

CpG methylation is associated with gene silencing and the patterning of gene expression that 

determines cellular types and functions8, and islands of CpG (CGI) sequences are positioned 

near the promoters of 40% of human genes9. IL4 expression has been related to upstream 

epigenetic variation in DNA methylation in T-cells10, encouraging us to search genome-

wide for other CGI associated with IgE serum concentrations.

We used Illumina HumanMethylation27 arrays to target individual CpG sites (loci) within 

proximal promoter regions of 14,475 genes. The panel is enriched for genomic regions 

regulating expression, but does not cover all functionally important CpG sites. We excluded 

from downstream analyses any loci with SNPs overlapping the Illumina probe sequence, and 

established that direct bisulphite pyrosequencing correlates robustly with the array in our 

hands (Extended Data Figure 1) and elsewhere11.

We investigated nuclear families from the MRCA panel in which we have previously carried 

out genome-wide SNP association studies for IgE levels and asthma12. The panel contained 

355 subjects (183 male) with a mean age in children of 12.2 years (ranging from 2 to 39) 

and adults of 42 years (27 to 61) (Table 1). 113 children had doctor-diagnosed asthma 

(DDAST). We sought for replication in 149 Caucasian subjects selected equally from the 

top and bottom deciles of IgE distribution in 1,614 unselected volunteers for the PAPA 

study (Poplogaeth Asthma Prifysgol Abertawe: students and staff from Swansea 

University)13; and in 160 subjects in an asthmatic family panel from the Saguenay–Lac-

Saint-Jean region (SLSJ) of Quebec14 with a mean age in children of 16 years (ranging from 

5 to 50; 40 DDAST) and adults of 44 years (31 to 79)(Table 1).
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We fitted models with Ln(IgE) as dependent variable and methylation status for each 

Illumina probe as a predictor with age, sex, parental status, interactions and batch identifiers 

as covariates. We identified 34 loci with a false discovery rate (FDR)<0.01 (Figure 1 and 

Supplementary Table 1) in 32 different CGIs in the MRCA panel. Following replication in 

PAPA and SLSJ panels a meta-analysis combining the results identified 36 loci with FDR < 

10−4 and 62 loci with an FDR<0.005 (Table 2 and Supplementary Table 1). All loci showed 

associations with the same anti-correlated direction in the three datasets (Table 2). A RAST 

index, quantifying IgE against common allergens15, showed similar but non-independent 

associations, suggesting common regulation of total and specific IgE. Testing of models 

with asthma as the dependent variable showed only LPCAT2 and ZNF22 to be associated 

with asthma independently of IgE levels (P=7.7×10−5 and P=1.8×10−4).

The variable methylation site upstream of IL4 has a well-studied effect on IL4 

production16,17 and IgE regulation, with methylation anticorrelated with expression in the 

same direction as in our study. We looked for SNP associations at this locus by imputation 

with the 1000G phase 1 SNPs and indels in all three panels, analysing the 20,746 variants 

within 1Mb upstream or downstream of the IL4 5′UTR. We found no significant SNP 

associations with IgE after accounting for multiple testing.

We carried out Mendelian randomization to test for a causal effect of IL4 methylation on 

IgE18, choosing the SNP showing strongest association to methylation at the IL4 CpG probe 

(cg26787239) as the instrumental variable. The First Stage F-test statistics for the MRCA 

and SLSJ panels (F=16.4 and 26.2) indicated effects strong enough to ensure the validity of 

the method. In the MRCA panel, association between the instrument SNP (rs12311504) and 

IgE before adjusting for IL4 methylation was P=0.03 and P=0.53 after adjustment, 

indicating that methylation mediated most of the SNP effect. The meta-analysis P for a 

causal effect was 6.8×10−4, suggesting that the locus represents a functionally validated 

epigenetic association with a complex phenotype.

Several loci were annotated to genes that encode proteins characteristic of eosinophils 

(Table 2 and Supplementary Table 1). IL5RA encodes a receptor that selectively stimulates 

eosinophil production and activation19; CCR3 encodes the eosinophil eotaxin receptor; 

IL1RL1 encodes the receptor for the eosinophil-activating cytokine IL33; PGR2 encodes 

eosinophil granule major basic protein (PRG2); PGR3 is a PGR2 homologue; and GATA1 is 

an eosinophil transcription factor. We therefore tested whether methylation at our associated 

loci marked activation in eosinophils purified from peripheral blood, studying 8 asthmatics 

with high serum IgE levels (>110 IU/L), 8 asthmatics with low serum IgE (<110 IU/L) 

levels and 8 controls (mean age all subjects 31 years (range 6-56), 8 females and 2 current 

smokers). Asthmatics in both groups were on a maintenance regime of inhaled beta agonists, 

augmented with inhaled glucocorticoids during exacerbations.

We observed the lowest levels of methylation in the subjects with asthma and high IgE and 

that methylation in asthmatics with low IgE was intermediate to controls (Figure 2) (P 

<0.05; Supplementary Table 1), supporting our initial results. Partitioning the data into high 

or low IgE groups gave similar conclusions. The range of variation for the principal loci was 

narrower in asthmatics with high IgE (Figure 2) than in the other two groups, suggesting the 

Liang et al. Page 3

Nature. Author manuscript; available in PMC 2015 October 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



enrichment of a distinctive eosinophil subset in atopic asthma. This is consistent with the 

recognised mixture of eosinophil populations in human blood and eosinophil activation in 

atopic disease20. Comparison of methylation levels in the MRCA panel for our IgE-

associated loci (P<0.001) with an independent study of eosinophils isolated from normal 

subjects21 confirmed correlations with methylation status (R=0.64).

Lineage commitment to particular cell types is accompanied by specific methylation 

changes8, and it has been suggested that DNA from mixtures of cells (such as PBL) will not 

support EWAS of complex diseases21. We extracted DNA from unfractionated populations 

of PBL, so that our methylation patterns reflect the numbers and the activity of different 

cells in each specimen. We further explored whether our associations to IgE reflected 

carriage in particular cell types by fitting regression models that included differential white 

cell counts. We identified partial associations with eosinophil numbers for all IgE associated 

loci (Supplementary Table 2 and Figure 3), consistent with independent effects on IgE from 

the numbers of eosinophils and the activity of the loci within eosinophils.

It is well recognised that the regulation of IgE production against particular antigens may 

reside in T-cells and B-cells as well as in eosinophils22. Our regression models however 

found that the top IgE associations were not accounted for by concomitant correlation with 

lymphocyte counts (Supplementary Table 2). We further examined the distribution of our 

IgE-associated CpG loci in leukocyte subsets isolated in our Centre and in subsets from 

published data21. The results showed robustly in both datasets that low levels of methylation 

at the IgE associated loci were confined to eosinophils (Extended Data Figure 2).

Surrogate CpG markers that identify lymphocyte subsets can be used as an alternative to 

white cell counts in association models23. We also applied these methods to our data 

(Extended Data Table 1). This analysis provided further evidence that T-cell subsets do not 

have strong effects on these loci.

The variance (Standard Deviation) in our IgE-associated CpG loci was on average 4.4 fold 

larger in isolated eosinophils than in PBL from the MRCA dataset, indicating an attenuation 

of effect size in PBL that would mask associations rather magnify them. The power to detect 

cell-specific associations from PBL depends on the proportion of each cell type, the effect 

size in specific cells, and the sample size. We estimated that we had 90% power to detect 

loci accounting for 10% of variance in IgE in the MRCA panel and >99% power in the 

combined panels (Extended Data Figure 3). Although our ability to detect associations was 

enhanced by eosinophil counts that were above the normal range for many of our subjects 

(Table 1), the power estimates and the large observed effect size encourage EWAS of other 

diseases in which PBLs may be important.

We investigated the variance attributable to different loci in the MRCA panel through a 

stepwise regression that included all significant CGI associations together with differential 

white cell counts, age, sex and parental status. Using a cut-off of corrected P<0.1 for 

inclusion, we found SLC25A33, LPCAT2 and L2HGDH to predict the serum IgE 

concentration independently of each other and of eosinophil counts.
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In the MRCA panel the top 3 CpGs independently explained 13.5% IgE variation and counts 

8.8%, and in the SLSJ panel the top 3 CpGs explained 8.3% IgE variation and counts 15.5%. 

(We were not able to estimate variances meaningfully in the PAPA dataset, because the 

samples were selected by extreme IgE values). The regression models therefore matched the 

results from isolated eosinophils, with the conclusion the methylation status of eosinophils 

and their numbers were both related to IgE levels.

Methylation levels were highly correlated between loci and similar estimations of variance 

were obtained with forced entry of other significantly associated markers, so the results do 

not imply that SLC25A33, LPCAT2 and L2HGDH are the most important loci. DNA 

methylation is not meiotically heritable and the variance in IgE attributable to these loci 

does not impact on the problem of missing heritability.

Overall, the most significant association was to cg01998785, within a CGI adjacent to 

LPCAT2 (also known as AYTL1). LPCAT2 encodes lyso-platelet-activating factor (PAF) 

acetyltransferase, which is essential to induced formation of PAF, a potent pro-inflammatory 

lipid mediator24. It is of interest that hypoactive variants of plasmatic PAF-acetylhydrolase 

are associated with atopy and asthma25. Other significant associations annotated to genes 

involved in phospholipid metabolism included lysoplasmalogenase (TMEM86B), CEL and 

CLC.

GATA1 is a known eosinophil transcription factor and subsequent investigations will 

determine if the other associated transcription factors ZNF22, RB1 and KLF regulate 

eosinophil activation. Other associations may encode proteins released from eosinophil 

granules, including PRG2, PRG3, SERPINC1 (antithrombin), TFF1 (which may protect the 

mucosa), CEL (carboxyl ester lipase), and the polyvalent serine protease inhibitor SPINK4. 

Genes encoding mitochondrial proteins (L2HGDH and SLC25A3) are consistent with 

mitochondrial suppression of apoptosis in activated eosinophils26.

Although the relationship between methylation and gene expression at these loci requires 

further investigation in isolated cells, our results support the recognition that eosinophils are 

an important source of cytokines and other pro-inflammatory molecules at the site of allergic 

inflammation7. Eosinophils are required locally for the maintenance of bone-marrow plasma 

cells27, allowing direct regulation of IgE production in specialised environments. Clinically, 

the presence of eosinophilia in the peripheral blood or airways identifies a subgroup of 

refractory asthmatic individuals in whom therapies directed at eosinophils may be 

effective28. The measurement of methylation at these loci may identify patients responsive 

to therapies directed at eosinophils or individual gene products.

Cigarette smoking may increase serum IgE, and we found anti-correlated associations to 

current cigarette smoking with F2RL3 (P=8.6×10−17) and GPR15 (P=4.6×10−9). The SLSJ 

dataset confirmed these associations (P=2.5×10−6 and P=6.6×10−7), in keeping with 

previous studies29,30. Adjusting for smoking had minimal impact on the top hits for IgE and 

neither locus affected IgE in our subjects. F2RL3 and GPR15 may represent therapeutic 

targets to counter tobacco smoke and their methylation status may prospectively predict 

consequences of smoking.
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Our EWAS has discovered reproducible CGI associations accounting for a variation in the 

total serum IgE that is 10 fold higher than that derived from large SNP GWAS4. In contrast 

to SNP studies, association to methylation levels captures responses to environmental 

factors and the loci should not be assumed to cause disease. Nevertheless, our findings 

suggest the presence of novel therapeutically tractable pathways underlying IgE production.

Online Methods

Phenotyping

Ethical approval for the study was obtained from the NHS Multicentre Research Ethics 

Committee for the MRCA subjects; from the Swansea Joint Scientific Research Committee 

and Swansea Research Ethics Committee for the Swansea (PAPA) subjects; and from le 

Centre de Santé et des Services Sociaux de Chicoutimi for the SLSJ families. Written 

informed consent was obtained from all subjects or in the case of children, from their 

parents. Asthma was doctor defined. Following a standard respiratory questionnaire, all 

subjects submitted to venipuncture. Differential white cell counts were measured by 

automated counter. Total serum IgE and specific serum IgE to whole HDM 

(Dermatophagoides pteronyssinus) and Timothy grass pollen (Phleum pratense) were 

measured using the Immunocap FEIA (Pharmacia AB, Uppsala, Sweden). The levels of 

specific IgE were converted to RAST units according to Pharmacia recommendations. A 

combined RAST index was calculated for each individual as the sum of the RAST scores to 

HDM and Timothy grass15.

Detection of Methylation status

DNA was extracted after red cell lysis and centrifugation to recover leukocyte nuclear 

pellets. DNA samples were bisulfite converted using the Zymo EZ DNA Methylation kit 

(Zymo Research, Orange, CA, USA) with an input of 1000ng. The assay was carried out as 

per the Illumina Infinium Methylation instructions, using the HumanMethylation27 

BeadChips (Illumina Inc, San Diego, CA, USA). These interrogate 27,578 of CpG sites for 

the extent of DNA methylation. Data were visualized using the BeadStudio software, and 

samples that failed quality control were repeated. Raw methylation data was exported from 

the GenomeStudio software. For the Illumina HumanMethylation27 BeadChip data, quantile 

normalization of intensity was applied to all methylated and unmethylated probes for all 

samples together. The methylation β values were recalculated as the ratio of methylated 

probe signal/(total signal + 100). The Touleimat and Tost31 analysis pipeline was used for 

the HumanMethylation450 BeadChip. Individual data points with detection P>0.01 or 

number of beads <3 were treated as missing data, as were samples with more than 20% 

missing probes. The lumi package32 was used for background and colour bias correction. 

BeadChip ID and position on chip were included as categorical covariates to account for 

potential batch effects. Quantile normalization across samples was applied to probes within 

each functional category (CpG island, shelf, shore, etc.) separately to correct the shift of 

methylation beta value between Infinium I and Infinium II probes on the 

HumanMethylation450 BeadChip. Probe overlaps with any frequent SNP (MAF >5% in 

1000 Genomes Project phase 1 EUR population) in the probe sequence or in position +1 or 

+2 of the query site (depending on Infinium I or Infinium II status) were removed. The use 
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of meta-analysis to combine 27K and 450K data together with this implementation of the 

Tost pipeline ensured our analysis was not confounded by probe differences.

Isolation of human eosinophils

Isolation of human eosinophils was as described33. Briefly, platelet-rich plasma was 

removed from 200ml using centrifugation, followed by Dextran-mediated sedimentation to 

remove erythrocytes and removal of mononuclear cells using a lymphocyte separation 

medium. Hypotonic lysis with sterile water removed remaining erythrocytes and other 

granulocytes were removed using negative selection with anti-CD16 MicroBeads. DNA was 

extracted using the QIAamp® DNA Blood Mini Kit. Methylation was assessed using 

Illumina 450K arrays, with analysis restricted to significantly associated probes from the 

meta analysis.

Statistical analyses

In order to investigate the association with the total serum IgE concentration we tested for 

association with log-normalized IgE (Ln(IgE)) as response with methylation (β) at each 

locus as predictor whilst including Sex, Age, Parent indicator, Age*Sex and Age*Parent 

interactions in the model, together with batch indicators captured by Illumina chip ID and 

position of chip (such as operators, sample wells, plates, runs, and reagents). We applied 

inverse normal transformation to methylation measures to remove the effect of outliers. We 

used the R function lme() in the nlme package to implement a linear mixed model, assuming 

a compound symmetry variance-covariance structure to account for correlation of 

phenotypes among family members. The R code for the discovery stage of association in the 

MRCA panel was:

index=!is.na(methylation)

fam=familyID[index]

par=parent[index]

methylation = methylation [index]

methylation =qnorm(rank(methylation)/(length(methylation)+1),mean=0,sd=1)

lnige=LNIGE[index]

age=AGE[index]

sex=SEX[index]

lm2=lme(lnige~sex+age+methylation+par+sex*age+age*par,random=~1|fam)

The residual methylation value after removal of effects of chip ID and position for the 

genome-wide significant loci in the MRCA, PAPA and SLSJ panels is provided in 

Supplementary Tables 3-5, together with phenotypic and covariate parameters. We 

calculated false discovery rates (FDR) and applied Bonferroni corrections to adjust for 

multiple comparisons to 27,578 probes. The same analyses were carried out in the PAPA 

Liang et al. Page 7

Nature. Author manuscript; available in PMC 2015 October 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and SLSJ subjects before meta-analysis of the three datasets. We use a weighted z-score 

method for meta-analysis based on pvalue and effect direction from individual studies with 

weights proportion to the square root of sample size of individual study34. SNPs and indels 

from the 1000 Genomes Project phase 1 release (2012-03-14 haplotypes) were imputed 

using MINIMAC35. SNPs or indels with imputation quality score R2<0.3 were removed 

from downstream analysis. We carried out Mendelian randomization to assess the causal 

effect of IL4 methylation on IgE level through a 2 stage least square instrumental variable 

regression36 implemented in the ivreg2.r program (http://diffuseprior.wordpress.com/

2012/05/03/an-ivreg2-function-for-r/). We tested association trends in isolated eosinophils 

by exact regression (Cytel Studio 9) with asthma/high IgE coded as 2, asthma/low IgE coded 

as 1, and controls as 0. Covariates for age, sex, and batch were included in the model and to 

test the hypothesis that low levels of methylation were associated with high IgE, P values 

were one-sided. Differences in methylation between peripheral blood leukocyte subsets were 

assessed with Kruskal-Wallis tests, using two-sided P values.

Extended Data

Extended Data Figure 1. Concordance in methylation status at IgE-associated loci when 
comparing whole-genome bisulphite sequencing (WGBS) with the Illumina platform
These results were produced by us (EG and TMP) at the Genome Quebec Innovation Centre. 

The figures show a comparison between IgE-associated CpG probes using Illumina 450K 

(x-axis) and WGBS (y-axis) platforms for two samples (left and right panels) with 20 fold 

sequence coverage. The results show a high R2 between platforms (0.76 and 0.73). The 

median of the correlation coefficients for our IgE associated loci across 30 different samples 

(using WGBS at various depths) was R2=0.76. This to be compared with the global 

assessment of all overlapping 450K sites which is R2=0.81.
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Extended Data Figure 2. Distribution of methylation status at IgE-associated loci in isolated 
leukocyte subsets
The figure shows the distribution of methylation in peripheral blood leukocyte subsets at the 

most strongly IgE-associated loci. CpG methylation was measured by the Illumina Infinium 

450K platform. Boxplots show means and interquartile ranges. a, c, e, g, i, k) Results from 

publically available data derived from 6 healthy controls (Reinius et al 21). Lower levels of 

methylation with wider variation is observed in eosinophils when compared to whole blood 

(WB) and subsets comprising CD14+ Monocytes (CD14+M); CD19+ B cells (CD19+B); 

CD4+ T-cells (CD4+T); CD56+ natural killer cells (CD56+NK); CD8+ T cells (CD8+T); 

granulocytes (Gran); Neutrophils (Neu) and PBMC. b, d, f, h, j, l) Results from cells 

isolated and analyzed by us at the Genome Quebec Innovation Centre (GQIC). Eosinophils 

(Eos) (from 24 subjects in the SLSJ panel) also show lower levels of methylation with wider 

variation compared to whole blood (WB, 22 SLSJ subjects), and to subsets including B-cells 
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(BC, 9 control subjects), Monocytes (Mono, 76 control subjects), and T-cells (TC, 74 

control subjects).

Extended Data Figure 3. Power estimations to detect eosinophil-specific effects in DNA from 
peripheral blood lymphocytes
The figure shows that our original MRCA dataset (green line) and our combined dataset 

(blue line) are well powered to detect signals of the magnitude observed in our three groups 

of subjects. The red line shows the power of sample size of 6 described in Reinius et al.21 to 

detect differences in CpG methylation in unfractionated PBL. The mean variance (as 

standard deviation, SD) for the IgE-associated loci was 0.036 in PBLs from our primary 

MRCA panel and 0.023 in the whole blood normal samples from Reinius et al.21, 

demonstrating that our results were consistent with the previous experiment.
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Figure 1. Manhattan plot of the results of the genome-wide methylation association study
The results of genome-wide association testing to CGI are shown for 27,000 loci in 355 

subjects from the MRCA panel of families. a) The QQ plot showing observed vs. expected 

−log10P values for association at all loci. b) Manhattan plot showing chromosomal locations 
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of −log10P values for association at each locus. The red line illustrates the threshold for a 

False Discovery Rate (FDR) <0.01.
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Figure 2. Boxplots of methylation at selected CpG loci in isolated eosinophils from subjects with 
and without asthma and high total serum IgE concentrations (>110 IU/l)
Subjects were derived from the SLSJ population. Methylation (β) is shown on a scale of 0-1 

for 8 subjects in each group. Boxplots show means and interquartile ranges. The intensity of 

the data point colour is proportion to total serum IgE. All loci exhibited reduced variability 

and levels of methylation in the subjects with asthma and high IgE (P<0.05).
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Figure 3. Association of selected CpG loci to total serum IgE concentrations in the MRCA panel, 
partitioned by eosinophil counts
Methylation values for 355 individuals normalised around a mean of 0 on the abscissa (x) 

with ln(IgE) levels on the ordinate. Blue dots indicate subjects with eosinophil counts 

greater than the median for the MRCA panel.
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Table 1
Subject characteristics

MRCA (discovery) PAPA (1st replication) SLSJ (2nd replication)

Number 355 149 160

Age (Mean, range) 28, 2-61 21, 18-30 29, 5-79

N (%) Female 172 (48.5%) 72 (48.3%) 80 (50.0%)

N (%) Asthmatic 175 (49.3%) 34 (22.8%) 69 (43.1%)

N (%) Smokers 45 (12.7%) 33 (22.1%) 28 (17.5%)

Eosinophil count (mean ± SE) per mcl * 406±383 246±214 242±205

Geometric Mean Serum IgE (Range) IU/L ¶ 320, 1-4999 663, 0-18800 412, 2-7653

*
Normal range <350 cells per mcl;

¶
Normal range <100 IU/L
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Table 2
Meta-analysis of association of total serum IgE concentration in three subject panels

Probe Symbol Function P MRCA P SLSJ P PAPA P Meta

cg01998785 LPCAT2 Lysophospholipid metabolism 1.2E-13 8.0E-03 9.6E-06 1.2E-18

cg10159529 IL5RA Cytokine signalling 5.1E-12 2.1E-04 7.2E-05 2.2E-18

cg01614759 ZNF22 Transcription Factor 4.4E-12 3.4E-03 2.8E-06 2.8E-18

cg15996947 L2HGDH Mitochondrial oxidoreductase 7.4E-13 1.0E-02 3.7E-05 2.8E-17

cg26787239 IL4 Cytokine signalling 1.6E-11 1.3E-03 4.8E-04 3.2E-16

cg18783781 SLC25A33 Mitochondrial transport: dendritic cell endocytosis 5.0E-14 3.4E-02 6.2E-03 4.4E-15

cg13221796 RB1 Transcription Factor 5.7E-10 6.0E-02 4.9E-06 2.5E-14

cg01770400 SERPINC1 Anti-thrombin 6.6E-12 7.0E-03 1.3E-02 5.3E-14

cg02643667 TFF1 Mucus stabilising secreted protein 7.9E-12 1.3E-01 2.6E-03 7.6E-13

cg21627181 SLC17A4 Sodium/phosphate cotransporter 1.1E-06 1.4E-04 3.8E-04 1.1E-12

cg20189937 L2HGDH Mitochondrial oxidoreductase 1.3E-06 2.4E-03 3.2E-05 2.6E-12

cg26457013 TMEM86B Lysoplasmalogenase: phospholipid metabolism 1.0E-09 9.5E-02 9.0E-04 7.1E-12

cg20503329 COL15A1 Cell shape, motlity, adhesion 1.2E-09 3.0E-01 8.8E-05 9.5E-12

cg03693099 CEL Secreted carboxyl ester lipase 1.8E-08 1.1E-01 8.3E-05 1.3E-11

cg00079056 SPINK4 Serine peptidase inhibitor 1.5E-07 6.4E-02 3.1E-05 1.8E-11

cg09676390 ADARB1 Pre-mRNA editing of the glutamate receptor 1.2E-08 7.0E-02 8.0E-04 3.1E-11

cg15998761 MFSD6 MHC receptor homolog 9.3E-07 1.3E-02 1.7E-04 4.5E-11

cg25494227 TMEM52B Transmembrane protein 1.3E-07 2.0E-01 1.2E-05 5.1E-11

cg11398517 FAM112A 2.4E-06 7.4E-03 3.3E-04 1.0E-10

cg06690548 SLC7A11 Cystine/glutamate antiporter: dendritic cell differentiation 2.7E-05 3.3E-04 1.1E-03 1.8E-10

cg17784922 KEL Metallo-endopeptidase 4.2E-07 7.9E-03 4.4E-03 2.1E-10

cg16050349 PIK3CB Catalytic subunit for PI3Kbeta: activation of neutrophils 4.0E-05 1.7E-03 2.3E-04 3.2E-10

cg25636075 TMEM41A Transmembrane protein 2.5E-04 5.1E-05 7.7E-04 3.9E-10

cg08404225 IL5RA Cytokine signalling 2.3E-04 3.3E-03 8.4E-06 4.1E-10

cg09447105 PDE6H Inhibitory subunit of cGMP phosphodiesterase 2.2E-07 1.3E-01 4.0E-04 5.3E-10

cg05215575 SEPT12 Cell shape, motlity, adhesion 3.1E-07 2.1E-01 2.7E-04 1.2E-09

cg26136776 KLF1 Erythroid-specific transcription factor 3.3E-08 4.3E-01 6.6E-04 1.5E-09

cg17749520 ITGA2B Platelet fibronectin receptor: role in coagulation 1.4E-06 2.5E-02 3.5E-03 1.8E-09

cg24459209 PRG3 Eosinophil major basic protein homolog 3.3E-06 2.9E-02 1.1E-03 1.8E-09

cg00002426 SLMAP Sarcolemma associated protein 7.9E-05 8.3E-03 1.6E-04 2.4E-09

cg15357945 PRG2 Eosinophil granule major basic protein 2.2E-03 2.8E-05 5.8E-04 3.1E-09

cg17582777 EFNA3 Receptor protein-tyrosine kinase 1.1E-04 3.1E-02 8.2E-05 8.6E-09

cg19881895 SLC43A3 Transmembrane protein 7.5E-05 2.8E-03 6.7E-03 1.6E-08

cg18254848 CLC Lysophospholipid metabolism 1.8E-05 4.4E-02 4.6E-03 4.5E-08

cg21631409 ALDH3B2 Enzyme or Kinase 2.3E-04 1.7E-02 1.2E-03 6.8E-08

cg00536175 GATA1 Eosinophil transcription factor 7.9E-08 4.0E-01 5.1E-02 1.4E-07

Loci with a false discovery rate for the meta-analysis <10−4 are shown: a full list of significant associations is in Supplementary Table 1. Markers 
are identified through their Illumina IDs and the associated gene symbol is derived from the Illumina annotation updated through PubMed. Note 
that two probes from IL5RA and from L2HGDH are associated to IgE concentrations.
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